Research Article
No access
Published Online: 5 July 2004

New Imaging Techniques for Cardiovascular Autonomic Neuropathy: A Window on the Heart

Publication: Diabetes Technology & Therapeutics
Volume 3, Issue Number 1


Cardiovascular autonomic neuropathy (CAN) is a common complication of diabetes, which results in disabling clinical manifestations and may predispose to sudden cardiac death. Recently, direct scintigraphic assessment of cardiac sympathetic integrity has become possible with the introduction of radiolabeled analogues of norepinephrine, which are actively taken up by the sympathetic nerve terminals of the heart. This article reviews how these techniques have been utilized to improve understanding of CAN complicating diabetes. Quantitative scintigraphic assessment of cardiac sympathetic innervation heart is possible with either [123I]-metaiodobenzylguanidine (MIBG) and single photon emission computed tomography (SPECT) or [11C]-hydroxyephedrine (HED) and positron emission tomography (PET). Studies in diabetic patients have explored the sensitivity of these techniques to detect CAN, characterize the effects of glycemic control on the progression of CAN and evaluate the effects of CAN on myocardial electrophysiology, blood flow regulation and function. Deficits of left ventricular (LV) [123I]-MIBG and [11C]-HED retention have been identified in diabetic subjects without abnormalities on cardiovascular reflex testing consistent with increased sensitivity to detect CAN. Poor glycemic control results in the progression of LV tracer deficits, which can be prevented or reversed by the institution of near-euglycemia. Deficits begin distally in the LV and may extend proximally. Paradoxically, however, absolute HED retention is increased in the proximal segments of the severe CAN subjects consistent with regional "hyperinnervation." These regions also exhibit abnormal blood flow regulation. Impaired myocardial MIBG uptake correlates with altered LV diastolic filling and myocardial electrophysiological deficits and is predictive of sudden death. Scintigraphic studies have provided unique insights into the effects of diabetes on cardiac sympathetic integrity and the pathophysiological consequences of LV sympathetic dysinnervation. Future studies using complementary neurotransmitter analogues will allow different aspects of regional dysfunction to be characterized with the aim of developing therapeutic strategies to prevent or reverse CAN.

Get full access to this article

View all available purchase options and get full access to this article.

Information & Authors


Published In

cover image Diabetes Technology & Therapeutics
Diabetes Technology & Therapeutics
Volume 3Issue Number 1March 2001
Pages: 9 - 22
PubMed: 11469712


Published online: 5 July 2004
Published in print: March 2001


Request permissions for this article.




    Martin J. Stevens, MD
    Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Michigan, and the Veterans Administration Ann Arbor Hospitals, Ann Arbor, Michigan.

    Metrics & Citations



    Export citation

    Select the format you want to export the citations of this publication.

    View Options

    Get Access

    Access content

    To read the fulltext, please use one of the options below to sign in or purchase access.

    Society Access

    If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

    Restore your content access

    Enter your email address to restore your content access:

    Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

    View options


    View PDF/ePub







    Copy the content Link

    Share on social media

    Back to Top