Research Article
No access
Published Online: 20 October 2009

In-Depth Analysis of the Origins of HIV Type 1 Subtype C in South America

Publication: AIDS Research and Human Retroviruses
Volume 25, Issue Number 10

Abstract

The South American HIV-1 epidemic is characterized by the cocirculation of subtype B and BF recombinant variants. Together with the B and BF genotypes, HIV-1 subtype C (HIV-1C), F1, and several other recombinants have been reported. The epidemiological significance and immune correlates of these “non-B-non-BF” strains circulating in South America are still uncertain and therefore are increasingly attracting the interest of the scientific community. In this study, the South American HIV-1C epidemic was studied using new technologies for the phylogenetic analysis of large datasets. Our results indicate that there is a major clade encompassing most of the South American HIV-1C strains. These analyses also agreed that some strains do not group inside this major clade, suggesting that there could be HIV-1C sequences of different origins circulating in South America. Others have proposed different hypotheses about the origins of HIV-1C strains from South America. This study shows that an exact single origin cannot be determined, a fact that could be attributed to sampling problems, phylogenetic uncertainty, and the shortage of historical and epidemiological data. Currently, the reported data indicate that HIV-1C strains were introduced in Brazil and afterward spread to other regions of South America. By using character optimization on the obtained phylogenetic trees, we observed that Argentina could also be a point in which the HIV-1C epidemic entered South America.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Rambaut APosada DCrandall KAHolmes EC. The causes and consequences of HIV evolutionNat Rev Genet20045152-61. 1. Rambaut A, Posada D, Crandall KA, and Holmes EC: The causes and consequences of HIV evolution. Nat Rev Genet 2004;5(1):52–61.
2.
Hahn BHShaw GMArya SKPopovic MGallo RCWong-Staal F. Molecular cloning and characterization of the HTLV-III virus associated with AIDSNature19843125990166-169. 2. Hahn BH, Shaw GM, Arya SK, Popovic M, Gallo RC, and Wong-Staal F: Molecular cloning and characterization of the HTLV-III virus associated with AIDS. Nature 1984;312(5990):166–169.
3.
Seillier-Moiseiwitsch FMargolin BHSwanstrom R. Genetic variability of the human immunodeficiency virus: Statistical and biological issuesAnnu Rev Genet199428559-596. 3. Seillier-Moiseiwitsch F, Margolin BH, and Swanstrom R: Genetic variability of the human immunodeficiency virus: Statistical and biological issues. Annu Rev Genet 1994;28:559–596.
4.
Peeters MSharp PM. Genetic diversity of HIV-1: The moving targetAIDS200014Suppl. 3S129-140. 4. Peeters M and Sharp PM: Genetic diversity of HIV-1: The moving target. AIDS 2000;14(Suppl. 3):S129–140.
5.
UNAIDS: 08 Report on the global AIDS epidemichttp://www.unaids.org/. 5. UNAIDS: 08 Report on the global AIDS epidemic. http://www.unaids.org/.
6.
Buonaguro LTornesello MLBuonaguro FM. Human immunodeficiency virus type 1 subtype distribution in the worldwide epidemic: Pathogenetic and therapeutic implicationsJ Virol2007811910209-10219. 6. Buonaguro L, Tornesello ML, and Buonaguro FM: Human immunodeficiency virus type 1 subtype distribution in the worldwide epidemic: Pathogenetic and therapeutic implications. J Virol 2007;81(19):10209–10219.
7.
Robertson DLAnderson JPBradac JA et al. HIV-1 nomenclature proposalScience2000288546355-56. 7. Robertson DL, Anderson JP, Bradac JA, et al.: HIV-1 nomenclature proposal. Science 2000;288(5463):55–56.
8.
Ramirez BCSimon-Loriere EGaletto RNegroni M. Implications of recombination for HIV diversityVirus Res20081341–264-73. 8. Ramirez BC, Simon-Loriere E, Galetto R, and Negroni M: Implications of recombination for HIV diversity. Virus Res 2008;134(1–2):64–73.
9.
Hemelaar JGouws EGhys PDOsmanov S. Global and regional distribution of HIV-1 genetic subtypes and recombinants in 2004AIDS20062016W13-23. 9. Hemelaar J, Gouws E, Ghys PD, and Osmanov S: Global and regional distribution of HIV-1 genetic subtypes and recombinants in 2004. AIDS 2006;20(16):W13–23.
10.
Gomez-Carrillo MPampuro SDuran A et al. Analysis of HIV type 1 diversity in pregnant women from four Latin American and Caribbean countriesAIDS Res Hum Retroviruses200622111186-1191. 10. Gomez-Carrillo M, Pampuro S, Duran A, et al.: Analysis of HIV type 1 diversity in pregnant women from four Latin American and Caribbean countries. AIDS Res Hum Retroviruses 2006;22(11):1186–1191.
958
11.
Bello GPassaes CPGuimaraes ML et al. Origin and evolutionary history of HIV-1 subtype C in BrazilAIDS200822151993-2000. 11. Bello G, Passaes CP, Guimaraes ML, et al.: Origin and evolutionary history of HIV-1 subtype C in Brazil. AIDS 2008;22(15):1993–2000.
12.
Carr JKAvila MGomez Carrillo M et al. Diverse BF recombinants have spread widely since the introduction of HIV-1 into South AmericaAIDS20011515F41-47. 12. Carr JK, Avila M, Gomez Carrillo M, et al.: Diverse BF recombinants have spread widely since the introduction of HIV-1 into South America. AIDS 2001;15(15):F41–47.
13.
Carrion GEyzaguirre LMontano SM et al. Documentation of subtype C HIV Type 1 strains in Argentina, Paraguay, and UruguayAIDS Res Hum Retroviruses20042091022-1025. 13. Carrion G, Eyzaguirre L, Montano SM, et al.: Documentation of subtype C HIV Type 1 strains in Argentina, Paraguay, and Uruguay. AIDS Res Hum Retroviruses 2004;20(9):1022–1025.
14.
Carrion GHierholzer JMontano S et al. Circulating recombinant form CRF02_AG in South AmericaAIDS Res Hum Retroviruses2003194329-332. 14. Carrion G, Hierholzer J, Montano S, et al.: Circulating recombinant form CRF02_AG in South America. AIDS Res Hum Retroviruses 2003;19(4):329–332.
15.
Gomez Carrillo MAvila MHierholzer J et al. Mother-to-child HIV type 1 transmission in Argentina: BF recombinants have predominated in infected children since the mid-1980sAIDS Res Hum Retroviruses2002187477-483. 15. Gomez Carrillo M, Avila M, Hierholzer J, et al.: Mother-to-child HIV type 1 transmission in Argentina: BF recombinants have predominated in infected children since the mid-1980s. AIDS Res Hum Retroviruses 2002;18(7):477–483.
16.
Carobene MGRubio AECarrillo MG et al. Differences in frequencies of drug resistance-associated mutations in the HIV-1 pol gene of B subtype and BF intersubtype recombinant samplesJ Acquir Immune Defic Syndr2004352207-209. 16. Carobene MG, Rubio AE, Carrillo MG, et al.: Differences in frequencies of drug resistance-associated mutations in the HIV-1 pol gene of B subtype and BF intersubtype recombinant samples. J Acquir Immune Defic Syndr 2004;35(2):207–209.
17.
Dilernia DAGomez AMLourtau L et al. HIV type 1 genetic diversity surveillance among newly diagnosed individuals from 2003 to 2005 in Buenos Aires, ArgentinaAIDS Res Hum Retroviruses200723101201-1207. 17. Dilernia DA, Gomez AM, Lourtau L, et al.: HIV type 1 genetic diversity surveillance among newly diagnosed individuals from 2003 to 2005 in Buenos Aires, Argentina. AIDS Res Hum Retroviruses 2007;23(10):1201–1207.
18.
Gomez-Carrillo MQuarleri JFRubio AE et al. Drug resistance testing provides evidence of the globalization of HIV type 1: A new circulating recombinant formAIDS Res Hum Retroviruses2004208885-888. 18. Gomez-Carrillo M, Quarleri JF, Rubio AE, et al.: Drug resistance testing provides evidence of the globalization of HIV type 1: A new circulating recombinant form. AIDS Res Hum Retroviruses 2004;20(8):885–888.
19.
Quarleri JFRubio ACarobene M et al. HIV type 1 BF recombinant strains exhibit different pol gene mosaic patterns: Descriptive analysis from 284 patients under treatment failureAIDS Res Hum Retroviruses200420101100-1107. 19. Quarleri JF, Rubio A, Carobene M, et al.: HIV type 1 BF recombinant strains exhibit different pol gene mosaic patterns: Descriptive analysis from 284 patients under treatment failure. AIDS Res Hum Retroviruses 2004;20(10):1100–1107.
20.
Castro EMoreno MDeibis Lde Perez GSalmen SBerrueta L. Trends of HIV-1 molecular epidemiology in Venezuela: Introduction of subtype C and identification of a novel B/C mosaic genomeJ Clin Virol2005323257-258. 20. Castro E, Moreno M, Deibis L, de Perez G, Salmen S, and Berrueta L: Trends of HIV-1 molecular epidemiology in Venezuela: Introduction of subtype C and identification of a novel B/C mosaic genome. J Clin Virol 2005;32(3):257–258.
21.
Fontella RSoares MASchrago CG. On the origin of HIV-1 subtype C in South AmericaAIDS200822152001-2011. 21. Fontella R, Soares MA, and Schrago CG: On the origin of HIV-1 subtype C in South America. AIDS 2008;22(15):2001–2011.
22.
Farris JPlatnick NIFunk VA. The logical basis of phylogenetic analysisAdvances in CladisticsColumbia University PressNew York1983. 22. Farris J: The logical basis of phylogenetic analysis. In: Advances in Cladistics (Platnick NI and Funk VA, eds.). Columbia University Press, New York, 1983.
23.
Cavalli-Sforza LLEdwards AW. Phylogenetic analysis. Models and estimation proceduresAm J Hum Genet1967193Pt. 1233-257. 23. Cavalli-Sforza LL and Edwards AW: Phylogenetic analysis. Models and estimation procedures. Am J Hum Genet 1967;19(3Pt. 1):233–257.
24.
Felsenstein J. The number of evolutionary treesSyst Zool19782717. 24. Felsenstein J: The number of evolutionary trees. Syst Zool 1978;27(1):7.
25.
Swofford DHillis DMoriz CMable B. Phylogenetic inferenceMolecular SystematicsSinauer AssociatesSunderland, MA1996407-514. 25. Swofford D: Phylogenetic inference. In: Molecular Systematics (Hillis D, Moriz C, and Mable B, eds.). Sinauer Associates, Sunderland, MA, 1996, pp. 407–514.
26.
Goloboff P. Analysing large data sets in reasonable times: Solutions for composite optimaCladistics19991514. 26. Goloboff P: Analysing large data sets in reasonable times: Solutions for composite optima. Cladistics 1999;15:14.
27.
Nixon K. The parsimony ratchet, a new method for rapid parsimony analysisCladistics1999158. 27. Nixon K: The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 1999;15:8.
28.
T.N.T.: Tree Analysis Using New Technology [computer program]. Version: Program and documentations are available from the authorshttp://www.zmuc.dk/public/phylogeny2003. 28. T.N.T.: Tree Analysis Using New Technology [computer program]. Version: Program and documentations are available from the authors, and at http://www.zmuc.dk/public/phylogeny; 2003.
29.
Goloboff PAPol D. On divide-and-conquer strategies for parsimony analysis of large data sets: Rec-I-DCM3 versus TNTSyst Biol2007563485-495. 29. Goloboff PA and Pol D: On divide-and-conquer strategies for parsimony analysis of large data sets: Rec-I-DCM3 versus TNT. Syst Biol 2007;56(3):485–495.
30.
Guindon SGascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihoodSyst Biol2003525696-704. 30. Guindon S and Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003;52(5):696–704.
31.
Stamatakis A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed modelsBioinformatics200622212688-2690. 31. Stamatakis A: RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006;22(21):2688–2690.
32.
Katoh KKuma KMiyata TToh H. Improvement in the accuracy of multiple sequence alignment program MAFFTGenome Inform200516122-33. 32. Katoh K, Kuma K, Miyata T, and Toh H: Improvement in the accuracy of multiple sequence alignment program MAFFT. Genome Inform 2005;16(1):22–33.
33.
Katoh KToh H. Recent developments in the MAFFT multiple sequence alignment programBrief Bioinform200894286-298. 33. Katoh K and Toh H: Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 2008;9(4):286–298.
34.
Smith SWOverbeek RWoese CRGilbert WGillevet PM. The genetic data environment: An expandable GUI for multiple sequence analysisComput Appl Biosci1994106671-675. 34. Smith SW, Overbeek R, Woese CR, Gilbert W, and Gillevet PM: The genetic data environment: An expandable GUI for multiple sequence analysis. Comput Appl Biosci 1994;10(6):671–675.
35.
Camin JSSokal RR. A method for deducing branching sequences in phylogenyEvolution196719311-326. 35. Camin JS and Sokal RR: A method for deducing branching sequences in phylogeny. Evolution 1967;19:311–326.
36.
Saitou NNei M. The neighbor-joining method: A new method for reconstructing phylogenetic treesMol Biol Evol198744406-425. 36. Saitou N and Nei M: The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4(4):406–425.
37.
Felsenstein J. Evolutionary trees from DNA sequences: A maximum likelihood approachJ Mol Evol1981176368-376. 37. Felsenstein J: Evolutionary trees from DNA sequences: A maximum likelihood approach. J Mol Evol 1981;17(6):368–376.
38.
Stamatakis A. A rapid bootstrap algorithm for the RAxML web-serversSyst Biol2008575758-771. 38. Stamatakis A: A rapid bootstrap algorithm for the RAxML web-servers. Syst Biol 2008;57(5):758–771.
39.
MrAIC.pl. Program distributed by the author [computer program]Version: Evolutionary Biology CentreUppsala University2004. 39. MrAIC.pl. Program distributed by the author [computer program]. Version: Evolutionary Biology Centre, Uppsala University, 2004.
40.
McMahon MMSanderson MJ. Phylogenetic supermatrix analysis of GenBank sequences from 2228 papilionoid legumesSyst Biol2006555818-836. 40. McMahon MM and Sanderson MJ: Phylogenetic supermatrix analysis of GenBank sequences from 2228 papilionoid legumes. Syst Biol 2006;55(5):818–836.
41.
Smith SADonoghue MJ. Rates of molecular evolution are linked to life history in flowering plantsScience2008322589886-89. 41. Smith SA and Donoghue MJ: Rates of molecular evolution are linked to life history in flowering plants. Science 2008;322(5898):86–89.
42.
Goloboff PAFFarris JSKallersjo MOxelman BRamirez MJSzumuk CA. Improvements to resampling reassures group supportCladistics200319324-332. 42. Goloboff PAF, Farris JS, Kallersjo M, Oxelman B, Ramirez MJ, and Szumuk CA: Improvements to resampling reassures group support. Cladistics 2003;19:324–332.
43.
Farris JAAlbert VAKallersjo MLipscomb DKluge A. Parsimony jackknifing outperforms neighbor-joiningCladistics19961299-124. 43. Farris JA, Albert VA, Kallersjo M, Lipscomb D, and Kluge A: Parsimony jackknifing outperforms neighbor-joining. Cladistics 1996;12:99–124.
44.
Anisimova MGGascuel O. Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternativeSyst Biol200655539-552. 44. Anisimova MG and Gascuel O: Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. Syst Biol 2006;55:539–552.
45.
PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). [computer program]Version still betaSinauer AssociatesSunderland, MA1998. 45. PAUP*: Phylogenetic Analysis Using Parsimony (*and other methods). [computer program]. Version still beta. Sinauer Associates, Sunderland, MA, 1998.
46.
Salminen MOCarr JKBurke DSMcCutchan FE. Identification of breakpoints in intergenotypic recombinants of HIV type 1 by bootscanningAIDS Res Hum Retroviruses199511111423-1425. 46. Salminen MO, Carr JK, Burke DS, and McCutchan FE: Identification of breakpoints in intergenotypic recombinants of HIV type 1 by bootscanning. AIDS Res Hum Retroviruses 1995;11(11):1423–1425.
47.
Lole KSBollinger RCParanjape RS et al. Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombinationJ Virol1999731152-160. 47. Lole KS, Bollinger RC, Paranjape RS, et al.: Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J Virol 1999;73(1):152–160.
48.
Zhuang JJetzt AESun G et al. Human immunodeficiency virus type 1 recombination: Rate, fidelity, and putative hot spotsJ Virol2002762211273-11282. 48. Zhuang J, Jetzt AE, Sun G, et al.: Human immunodeficiency virus type 1 recombination: Rate, fidelity, and putative hot spots. J Virol 2002;76(22):11273–11282.
49.
Moumen APolomack LUnge TVeron MBuc HNegroni M. Evidence for a mechanism of recombination during reverse transcription dependent on the structure of the acceptor RNAJ Biol Chem20032781815973-15982. 49. Moumen A, Polomack L, Unge T, Veron M, Buc H, and Negroni M: Evidence for a mechanism of recombination during reverse transcription dependent on the structure of the acceptor RNA. J Biol Chem 2003;278(18):15973–15982.
50.
Galetto RMoumen AGiacomoni VVeron MCharneau PNegroni M. The structure of HIV-1 genomic RNA in the gp120 gene determines a recombination hot spot in vivoJ Biol Chem20042793536625-36632. 50. Galetto R, Moumen A, Giacomoni V, Veron M, Charneau P, and Negroni M: The structure of HIV-1 genomic RNA in the gp120 gene determines a recombination hot spot in vivo. J Biol Chem 2004;279(35):36625–36632.
959
51.
Aulicino PCKopka JRocco CMangano ASen L. Sequence analysis of a South American HIV type 1 BC recombinantAIDS Res Hum Retroviruses20052110894-896. 51. Aulicino PC, Kopka J, Rocco C, Mangano A, and Sen L: Sequence analysis of a South American HIV type 1 BC recombinant. AIDS Res Hum Retroviruses 2005;21(10):894–896.
52.
Galetto RGiacomoni VVeron MNegroni M. Dissection of a circumscribed recombination hot spot in HIV-1 after a single infectious cycleJ Biol Chem200628152711-2720. 52. Galetto R, Giacomoni V, Veron M, and Negroni M: Dissection of a circumscribed recombination hot spot in HIV-1 after a single infectious cycle. J Biol Chem 2006;281(5):2711–2720.
53.
Neogi USood VGoel NWanchu ABanerjea AC. Novel HIV-1 long terminal repeat (LTR) sequences of subtype B and mosaic intersubtype B/C recombinants in North IndiaArch Virol2008153101961-1966. 53. Neogi U, Sood V, Goel N, Wanchu A, and Banerjea AC: Novel HIV-1 long terminal repeat (LTR) sequences of subtype B and mosaic intersubtype B/C recombinants in North India. Arch Virol 2008;153(10):1961–1966.
54.
Dietrich UGrez Mvon Briesen H et al. HIV-1 strains from India are highly divergent from prototypic African and US/European strains, but are linked to a South African isolateAIDS19937123-27. 54. Dietrich U, Grez M, von Briesen H, et al.: HIV-1 strains from India are highly divergent from prototypic African and US/European strains, but are linked to a South African isolate. AIDS 1993;7(1):23–27.
55.
Khan IFVajpayee MPrasad VVSeth P. Genetic diversity of HIV type 1 subtype C env gene sequences from IndiaAIDS Res Hum Retroviruses2007237934-940. 55. Khan IF, Vajpayee M, Prasad VV, and Seth P: Genetic diversity of HIV type 1 subtype C env gene sequences from India. AIDS Res Hum Retroviruses 2007;23(7):934–940.
56.
Shankarappa RChatterjee RLearn GH et al. Human immunodeficiency virus type 1 env sequences from Calcutta in eastern India: Identification of features that distinguish subtype C sequences in India from other subtype C sequencesJ Virol2001752110479-10487. 56. Shankarappa R, Chatterjee R, Learn GH, et al.: Human immunodeficiency virus type 1 env sequences from Calcutta in eastern India: Identification of features that distinguish subtype C sequences in India from other subtype C sequences. J Virol 2001;75(21):10479–10487.
57.
Hue SClewley JPCane PAPillay D. HIV-1 pol gene variation is sufficient for reconstruction of transmissions in the era of antiretroviral therapyAIDS2004185719-728. 57. Hue S, Clewley JP, Cane PA, and Pillay D: HIV-1 pol gene variation is sufficient for reconstruction of transmissions in the era of antiretroviral therapy. AIDS 2004;18(5):719–728.
58.
Grenfell BTPybus OGGog JR et al. Unifying the epidemiological and evolutionary dynamics of pathogensScience20043035656327-332. 58. Grenfell BT, Pybus OG, Gog JR, et al.: Unifying the epidemiological and evolutionary dynamics of pathogens. Science 2004;303(5656):327–332.
59.
Pando MAEyzaguirre LMCarrion G et al. High genetic variability of HIV-1 in female sex workers from ArgentinaRetrovirology2007458. 59. Pando MA, Eyzaguirre LM, Carrion G, et al.: High genetic variability of HIV-1 in female sex workers from Argentina. Retrovirology 2007;4:58.
60.
Salemi Mde Oliveira TCiccozzi MRezza GGoodenow MM. High-resolution molecular epidemiology and evolutionary history of HIV-1 subtypes in AlbaniaPLoS ONE200831e1390. 60. Salemi M, de Oliveira T, Ciccozzi M, Rezza G, and Goodenow MM: High-resolution molecular epidemiology and evolutionary history of HIV-1 subtypes in Albania. PLoS ONE 2008;3(1):e1390.
61.
Fitch W. Toward defining the course of evolution: Minimum change for a specific tree topologySyst Zool197120406-416. 61. Fitch W: Toward defining the course of evolution: Minimum change for a specific tree topology. Syst Zool 1971;20:406–416.
62.
Yabar CASalvatierra JQuijano E. Polymorphism, recombination, and mutations in HIV type 1 gag-infecting Peruvian male sex workersAIDS Res Hum Retroviruses200824111405-1413. 62. Yabar CA, Salvatierra J, and Quijano E: Polymorphism, recombination, and mutations in HIV type 1 gag-infecting Peruvian male sex workers. AIDS Res Hum Retroviruses 2008;24(11):1405–1413.

Information & Authors

Information

Published In

cover image AIDS Research and Human Retroviruses
AIDS Research and Human Retroviruses
Volume 25Issue Number 10October 2009
Pages: 951 - 959
PubMed: 19842791

History

Published online: 20 October 2009
Published in print: October 2009

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Leandro R. Jones
*
Centro Nacional de Referencia para el SIDA, Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina.
Estación de Fotobiología Playa Unión-CONICET, Playa Unión, Chubut, Argentina.
Darío A. Dilernia
Centro Nacional de Referencia para el SIDA, Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina.
Julieta M. Manrique
Cátedra de Química Analítica Instrumental, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina.
Present address: New England Primate Research Center, Department of Microbiology and Molecular Genetics, Harvard Medical School, Southborough, Massachusetts 01772-9102.
Franco Moretti
Centro Nacional de Referencia para el SIDA, Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina.
Horacio Salomón
Centro Nacional de Referencia para el SIDA, Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina.
Manuel Gomez-Carrillo
Centro Nacional de Referencia para el SIDA, Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina.

Notes

Address correspondence to:
Leandro R. Jones
Estación de Fotobiología Playa Unión
CC 15 (9103)
Rawson,
Argentina 9103
E-mail: [email protected]

Disclosure Statement

No competing financial interests exist.

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top