HIV-1-Induced miR-146a Attenuates Monocyte Migration by Targeting CCL5 in Human Primary Macrophages
Abstract
MicroRNAs (miRNAs) are widely involved in immune regulation during virus infection. Several studies showed that the expression of miR-146a was increased in human immunodeficiency virus type I (HIV-1)-infected cells, but the definitive function of miR-146a in HIV-1 infection remains obscure. The production of chemokine (C-C motif) ligand 5 (CCL5) in macrophages has been reported to play an important role in HIV/AIDS-associated pathogenesis. In this study, we examined the effects of miR-146a on CCL5 regulation in HIV-1-infected macrophages. Gain and loss of function studies showed that CCL5 might be one of the miR-146a targets, as miR-146a mimic reduced, while miR-146a inhibitor increased CCL5 production in HIV-1-infected macrophages. In addition, we demonstrated that miR-146a reduced CCL5-induced monocyte migration. Our study provided evidence that miR-146a targets CCL5 3′ untranslated regions, downregulates its release from macrophages, and affects monocyte migration consequently. These findings drew a novel layer of posttranscriptional control of the chemokine CCL5 by miR-146a during HIV infection, which might contribute to HIV pathogenesis.

