Review Article
No access
Published Online: 30 September 2010

Intracellular Iron Transport and Storage: From Molecular Mechanisms to Health Implications

Publication: Antioxidants & Redox Signaling
Volume 10, Issue Number 6

Abstract

Maintenance of proper “labile iron” levels is a critical component in preserving homeostasis. Iron is a vital element that is a constituent of a number of important macromolecules, including those involved in energy production, respiration, DNA synthesis, and metabolism; however, excess “labile iron” is potentially detrimental to the cell or organism or both because of its propensity to participate in oxidation–reduction reactions that generate harmful free radicals. Because of this dual nature, elaborate systems tightly control the concentration of available iron. Perturbation of normal physiologic iron concentrations may be both a cause and a consequence of cellular damage and disease states. This review highlights the molecular mechanisms responsible for regulation of iron absorption, transport, and storage through the roles of key regulatory proteins, including ferroportin, hepcidin, ferritin, and frataxin. In addition, we present an overview of the relation between iron regulation and oxidative stress and we discuss the role of functional iron overload in the pathogenesis of hemochromatosis, neurodegeneration, and inflammation. Antioxid. Redox Signal. 10, 997–1030.

Abstract

I.
Introduction
II.
Iron Transport
A.
Nonintestinal iron transport by transferring
B.
Iron-bound transferrin binds the transferrin receptor for cellular iron uptake
C.
Regulation of transferrin receptor 1 by iron regulatory element–iron regulatory protein system
D.
Transcriptional regulation of transferrin receptor 1
E.
Differential regulation of transferrin receptor 1 and transferrin receptor 2
F.
Transferrin receptor 1 is regulated by hereditary hemochromatosis protein
G.
Transferrin-independent cellular iron uptake
H.
Intestinal iron absorption
I.
Regulation of divalent metal transporter 1
J.
Ferroportin is responsible for cellular iron efflux
K.
Ferroportin associates and cooperates with ceruloplasmin
L.
Ferroportin and hephaestin cooperate in iron efflux from intestinal cells
M.
Hepcidin
III.
Iron Storage and Ferritin
A.
Structure, tissue distribution, and importance of cytoplasmic ferritin
B.
Iron efflux and ferritin degradation
C.
Serum ferritin and ferritin receptor
D.
Mitochondrial ferritin
E.
Nuclear ferritin
IV.
Regulation of Ferritin
A.
Iron-mediated ferritin regulation
B.
Ferritin regulation by reactive oxygen species
C.
Ferritin transcriptional regulation by cytokines
D.
Ferritin regulation in erythroleukemic cells
V.
Frataxin and Iron Homeostasis
A.
Frataxin and Friedreich ataxia
B.
Frataxin and mitochondrial iron traffic
C.
Frataxin, heme synthesis, and iron–sulfur cluster biogenesis
D.
Frataxin gene regulation
E.
Treatments
VI.
Functional Iron Overload and Human Health
A.
Hereditary hemochromatosis
B.
Mutant iron-responsive element-mediated iron overload
C.
Iron regulation and neurodegeneration
VII.
Conclusions and Future Directions

Get full access to this article

View all available purchase options and get full access to this article.

Abbreviations

AD, Alzheimer disease; ARE, antioxidant responsive element; ATF1, activating transcription factor 1; BMP, bone morphogenetic protein; C/EBP, CCAAT/enhancer-binding proteins; CNS, central nervous system; Cp, ceruloplasmin; DMT1, divalent metal transporter 1; ER, endoplasmic reticulum; FLC, Friend leukemia cells; FRDA, Friedreich ataxia; Fpn, ferroportin; GPI, glycosylphosphatidylinositol; GST, glutathione-S-transferase; HCP1, heme carrier protein 1; HD, Huntington disease; Heph, hephaestin; HFE, hereditary hemochromatosis protein; HFE2, hemojuvelin; HH, hereditary hemochromatosis; HIF, hypoxia-inducible factor; HO-1, heme oxygenase 1; HRE, hypoxia-responsive element; IGFBP3, insulin-like growth factor-binding protein 3; IRE, iron-regulatory element; IRPs, iron-regulatory proteins; ISC, iron–sulfur cluster; MPP, mitochondrial processing peptidase; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; NQO1, NAD(P)H quinone oxidoreductase 1; Nramp, natural resistance-associated macrophage protein; NTBI, non-Tf-bound iron; 6-OHDA, 6-hydroxy-dopamine; PD, Parkinson disease; PIAS3, protein inhibitor of activated STAT3; PMA, phorbol 12-myristate 13-acetate; ROS, reactive oxygen species; Sla, sex-linked anemia; SOD, superoxide dismutase; STAT, signal transducer and activator of transcription; tBHQ, tert-butylhydroquinone; Tf, transferrin; TfR, transferrin receptor; TIM, T-cell immunoglobulin domain and mucin domain; UPR, unfolded protein response; UTR, untranslated region; VHL, von Hippel–Lindau.

References

1.
Abboud SHaile DJ. A novel mammalian iron-regulated protein involved in intracellular iron metabolismJ Biol Chem27519906-199122000. 1. Abboud S and Haile DJ. A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem 275: 19906–19912, 2000.
2.
Adamec JRusnak FOwen WGNaylor SBenson LMGacy AMIsaya G. Iron-dependent self-assembly of recombinant yeast frataxin: implications for Friedreich ataxiaAm J Hum Genet67549-5622000. 2. Adamec J, Rusnak F, Owen WG, Naylor S, Benson LM, Gacy AM, and Isaya G. Iron-dependent self-assembly of recombinant yeast frataxin: implications for Friedreich ataxia. Am J Hum Genet 67: 549–562, 2000.
3.
Adams PCPowell LWHalliday JW. Isolation of a human hepatic ferritin receptorHepatology8719-7211988. 3. Adams PC, Powell LW, and Halliday JW. Isolation of a human hepatic ferritin receptor. Hepatology 8: 719–721, 1988.
4.
Aisen PLeibman AZweier J. Stoichiometric and site characteristics of the binding of iron to human transferrinJ Biol Chem2531930-19371978. 4. Aisen P, Leibman A, and Zweier J. Stoichiometric and site characteristics of the binding of iron to human transferrin. J Biol Chem 253: 1930–1937, 1978.
5.
Al-Mahdawi SPinto RMVarshney DLawrence LLowrie MBHughes SWebster ZBlake JCooper JMKing RPook MA. GAA repeat expansion mutation mouse models of Friedreich ataxia exhibit oxidative stress leading to progressive neuronal and cardiac pathologyGenomics88580-5902006. 5. Al-Mahdawi S, Pinto RM, Varshney D, Lawrence L, Lowrie MB, Hughes S, Webster Z, Blake J, Cooper JM, King R, and Pook MA. GAA repeat expansion mutation mouse models of Friedreich ataxia exhibit oxidative stress leading to progressive neuronal and cardiac pathology. Genomics 88: 580–590, 2006.
6.
Alam JCamhi SChoi AM. Identification of a second region upstream of the mouse heme oxygenase-1 gene that functions as a basal level and inducer-dependent transcription enhancerJ Biol Chem27011977-119841995. 6. Alam J, Camhi S, and Choi AM. Identification of a second region upstream of the mouse heme oxygenase-1 gene that functions as a basal level and inducer-dependent transcription enhancer. J Biol Chem 270: 11977–11984, 1995.
7.
Anderson GJFaulk WPArosio PMoss DPowell LWHalliday JW. Identification of H- and L-ferritin subunit binding sites on human T and B lymphoid cellsBr J Haematol73260-2641989. 7. Anderson GJ, Faulk WP, Arosio P, Moss D, Powell LW, and Halliday JW. Identification of H- and L-ferritin subunit binding sites on human T and B lymphoid cells. Br J Haematol 73: 260–264, 1989.
8.
Andriopoulos BHegedusch SMangin JRiedel HDHebling UWang JPantopoulos KMueller S. Sustained hydrogen peroxide induces iron uptake by transferrin receptor-1 independent of the iron regulatory protein/iron-responsive element networkJ Biol Chem28220301-203082007. 8. Andriopoulos B, Hegedusch S, Mangin J, Riedel HD, Hebling U, Wang J, Pantopoulos K, and Mueller S. Sustained hydrogen peroxide induces iron uptake by transferrin receptor-1 independent of the iron regulatory protein/iron-responsive element network. J Biol Chem 282: 20301–20308, 2007.
9.
Arosio PLevi S. Ferritin, iron homeostasis, and oxidative damageFree Radic Biol Med33457-4632002. 9. Arosio P and Levi S. Ferritin, iron homeostasis, and oxidative damage. Free Radic Biol Med 33: 457–463, 2002.
10.
Arosio PYokota MDrysdale JW. Structural and immunological relationships of isoferritins in normal and malignant cellsCancer Res361735-17391976. 10. Arosio P, Yokota M, and Drysdale JW. Structural and immunological relationships of isoferritins in normal and malignant cells. Cancer Res 36: 1735–1739, 1976.
11.
Arranz Caso JAGarcia Tena JLlorens MMMoreno R. High serum ferritin concentration in an AIDS patient with miliary tuberculosisClin Infect Dis251263-12641997. 11. Arranz Caso JA, Garcia Tena J, Llorens MM, and Moreno R. High serum ferritin concentration in an AIDS patient with miliary tuberculosis. Clin Infect Dis 25: 1263–1264, 1997.
12.
Askwith CEide DVan Ho ABernard PSLi LDavis-Kaplan SSipe DMKaplan J. The FET3 gene of S cerevisiae encodes a multicopper oxidase required for ferrous iron uptakeCell76403-4101994. 12. Askwith C, Eide D, Van Ho A, Bernard PS, Li L, Davis-Kaplan S, Sipe DM, and Kaplan J. The FET3 gene of S cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 76: 403–410, 1994.
13.
Babcock Mde Silva DOaks RDavis-Kaplan SJiralerspong SMontermini LPandolfo MKaplan J. Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxinScience2761709-17121997. 13. Babcock M, de Silva D, Oaks R, Davis-Kaplan S, Jiralerspong S, Montermini L, Pandolfo M, and Kaplan J. Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin. Science 276: 1709–1712, 1997.
14.
Babitt JLHuang FWWrighting DMXia YSidis YSamad TACampagna JAChung RTSchneyer ALWoolf CJAndrews NCLin HY. Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expressionNat Genet38531-5392006. 14. Babitt JL, Huang FW, Wrighting DM, Xia Y, Sidis Y, Samad TA, Campagna JA, Chung RT, Schneyer AL, Woolf CJ, Andrews NC, and Lin HY. Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat Genet 38: 531–539, 2006.
15.
Babitt JLHuang FWXia YSidis YAndrews NCLin HY. Modulation of bone morphogenetic protein signaling in vivo regulates systemic iron balanceJ Clin Invest1171933-19392007. 15. Babitt JL, Huang FW, Xia Y, Sidis Y, Andrews NC, and Lin HY. Modulation of bone morphogenetic protein signaling in vivo regulates systemic iron balance. J Clin Invest 117: 1933–1939, 2007.
16.
Barton JCBertoli LF. Hemochromatosis: the genetic disorder of the twenty-first centuryNat Med2394-3951996. 16. Barton JC and Bertoli LF. Hemochromatosis: the genetic disorder of the twenty-first century. Nat Med 2: 394–395, 1996.
17.
Battistini ACoccia EMMarziali GBulgarini DScalzo SFiorucci GRomeo GAffabris ETesta URossi GBPeschle C. Intracellular heme coordinately modulates globin chain synthesis, transferrin receptor number, and ferritin content in differentiating Friend erythroleukemia cellsBlood782098-21031991. 17. Battistini A, Coccia EM, Marziali G, Bulgarini D, Scalzo S, Fiorucci G, Romeo G, Affabris E, Testa U, Rossi GB, and Peschle C. Intracellular heme coordinately modulates globin chain synthesis, transferrin receptor number, and ferritin content in differentiating Friend erythroleukemia cells. Blood 78: 2098–2103, 1991.
18.
Beard J. Iron deficiency alters brain development and functioningJ Nutr1331468S-1472S2003. 18. Beard J. Iron deficiency alters brain development and functioning. J Nutr 133: 1468S–1472S, 2003.
19.
Beaumont CLeneuve PDevaux IScoazec JYBerthier MLoiseau MNGrandchamp BBonneau D. Mutation in the iron responsive element of the L ferritin mRNA in a family with dominant hyperferritinaemia and cataractNat Genet11444-4461995. 19. Beaumont C, Leneuve P, Devaux I, Scoazec JY, Berthier M, Loiseau MN, Grandchamp B, and Bonneau D. Mutation in the iron responsive element of the L ferritin mRNA in a family with dominant hyperferritinaemia and cataract. Nat Genet 11: 444–446, 1995.
20.
Beaumont CSeyhan AYachou AKGrandchamp BJones R. Mouse ferritin H subunit gene: functional analysis of the promoter and identification of an upstream regulatory element active in erythroid cellsJ Biol Chem26920281-202881994. 20. Beaumont C, Seyhan A, Yachou AK, Grandchamp B, and Jones R. Mouse ferritin H subunit gene: functional analysis of the promoter and identification of an upstream regulatory element active in erythroid cells. J Biol Chem 269: 20281–20288, 1994.
20a.
Bernstein SEJ Lab Clin Med110690-7051987. 20a. Bernstein SE. J Lab Clin Med 110: 690–705, 1987.
21.
Bianchi LTacchini LCairo G. HIF-1-mediated activation of transferrin receptor gene transcription by iron chelationNucleic Acids Res274223-42271999. 21. Bianchi L, Tacchini L, and Cairo G. HIF-1-mediated activation of transferrin receptor gene transcription by iron chelation. Nucleic Acids Res 27: 4223–4227, 1999.
22.
Bidichandani SIAshizawa TPatel PI. The GAA triplet-repeat expansion in Friedreich ataxia interferes with transcription and may be associated with an unusual DNA structureAm J Hum Genet62111-1211998. 22. Bidichandani SI, Ashizawa T, and Patel PI. The GAA triplet-repeat expansion in Friedreich ataxia interferes with transcription and may be associated with an unusual DNA structure. Am J Hum Genet 62: 111–121, 1998.
23.
Bishop GMRobinson SRLiu QPerry GAtwood CSSmith MA. Iron: a pathological mediator of Alzheimer disease?Dev Neurosci24184-1872002. 23. Bishop GM, Robinson SR, Liu Q, Perry G, Atwood CS, and Smith MA. Iron: a pathological mediator of Alzheimer disease? Dev Neurosci 24: 184–187, 2002.
24.
Bjorkman PJParham P. Structure, function, and diversity of class I major histocompatibility complex moleculesAnnu Rev Biochem59253-2881990. 24. Bjorkman PJ and Parham P. Structure, function, and diversity of class I major histocompatibility complex molecules. Annu Rev Biochem 59: 253–288, 1990.
25.
Boddaert NLe Quan Sang KHRotig ALeroy-Willig AGallet SBrunelle FSidi DThalabard JCMunnich ACabantchik ZI. Selective iron chelation in Friedreich ataxia: biologic and clinical implicationsBlood110401-4082007. 25. Boddaert N, Le Quan Sang KH, Rotig A, Leroy-Willig A, Gallet S, Brunelle F, Sidi D, Thalabard JC, Munnich A, and Cabantchik ZI. Selective iron chelation in Friedreich ataxia: biologic and clinical implications. Blood 110: 401–408, 2007.
26.
Boutet SCDisatnik MHChan LSIori KRando TA. Regulation of pax3 by proteasomal degradation of monoubiquitinated protein in skeletal muscle progenitorsCell130349-3622007. 26. Boutet SC, Disatnik MH, Chan LS, Iori K, and Rando TA. Regulation of pax3 by proteasomal degradation of monoubiquitinated protein in skeletal muscle progenitors. Cell 130: 349–362, 2007.
27.
Bradley JLBlake JCChamberlain SThomas PKCooper JMSchapira AH. Clinical, biochemical and molecular genetic correlations in Friedreich's ataxiaHum Mol Genet9275-2822000. 27. Bradley JL, Blake JC, Chamberlain S, Thomas PK, Cooper JM, and Schapira AH. Clinical, biochemical and molecular genetic correlations in Friedreich's ataxia. Hum Mol Genet 9: 275–282, 2000.
28.
Branda SSCavadini PAdamec JKalousek FTaroni FIsaya G. Yeast and human frataxin are processed to mature form in two sequential steps by the mitochondrial processing peptidaseJ Biol Chem27422763-227691999. 28. Branda SS, Cavadini P, Adamec J, Kalousek F, Taroni F, and Isaya G. Yeast and human frataxin are processed to mature form in two sequential steps by the mitochondrial processing peptidase. J Biol Chem 274: 22763–22769, 1999.
29.
Bulteau ALO'Neill HAKennedy MCIkeda-Saito MIsaya GSzweda LI. Frataxin acts as an iron chaperone protein to modulate mitochondrial aconitase activityScience305242-2452004. 29. Bulteau AL, O'Neill HA, Kennedy MC, Ikeda-Saito M, Isaya G, and Szweda LI. Frataxin acts as an iron chaperone protein to modulate mitochondrial aconitase activity. Science 305: 242–245, 2004.
30.
Burnett RMelander CPuckett JWSon LSWells RDDervan PBGottesfeld JM. DNA sequence-specific polyamides alleviate transcription inhibition associated with long GAA.TTC repeats in Friedreich's ataxiaProc Natl Acad Sci USA10311497-115022006. 30. Burnett R, Melander C, Puckett JW, Son LS, Wells RD, Dervan PB, and Gottesfeld JM. DNA sequence-specific polyamides alleviate transcription inhibition associated with long GAA.TTC repeats in Friedreich's ataxia. Proc Natl Acad Sci USA 103: 11497–11502, 2006.
31.
Cai CXBirk DELinsenmayer TF. Ferritin is a developmentally regulated nuclear protein of avian corneal epithelial cellsJ Biol Chem27212831-128391997. 31. Cai CX, Birk DE, and Linsenmayer TF. Ferritin is a developmentally regulated nuclear protein of avian corneal epithelial cells. J Biol Chem 272: 12831–12839, 1997.
32.
Cai CXBirk DELinsenmayer TF. Nuclear ferritin protects DNA from UV damage in corneal epithelial cellsMol Biol Cell91037-10511998. 32. Cai CX, Birk DE, and Linsenmayer TF. Nuclear ferritin protects DNA from UV damage in corneal epithelial cells. Mol Biol Cell 9: 1037–1051, 1998.
33.
Caltagirone AWeiss GPantopoulos K. Modulation of cellular iron metabolism by hydrogen peroxide: effects of H2O2 on the expression and function of iron-responsive element-containing mRNAs in B6 fibroblastsJ Biol Chem27619738-197452001. 33. Caltagirone A, Weiss G, and Pantopoulos K. Modulation of cellular iron metabolism by hydrogen peroxide: effects of H2O2 on the expression and function of iron-responsive element-containing mRNAs in B6 fibroblasts. J Biol Chem 276: 19738–19745, 2001.
34.
Camaschella CRoetto ACali ADe Gobbi MGarozzo GCarella MMajorano NTotaro AGasparini P. The gene TFR2 is mutated in a new type of haemochromatosis mapping to 7q22Nat Genet2514-152000. 34. Camaschella C, Roetto A, Cali A, De Gobbi M, Garozzo G, Carella M, Majorano N, Totaro A, and Gasparini P. The gene TFR2 is mutated in a new type of haemochromatosis mapping to 7q22. Nat Genet 25: 14–15, 2000.
35.
Camaschella CRoetto ADe Gobbi M. Genetic haemochromatosis: genes and mutations associated with iron loadingBest Pract Res Clin Haematol15261-2762002. 35. Camaschella C, Roetto A, and De Gobbi M. Genetic haemochromatosis: genes and mutations associated with iron loading. Best Pract Res Clin Haematol 15: 261–276, 2002.
36.
Campanella AIsaya GO'Neill HASantambrogio PCozzi AArosio PLevi S. The expression of human mitochondrial ferritin rescues respiratory function in frataxin-deficient yeastHum Mol Genet132279-22882004. 36. Campanella A, Isaya G, O'Neill HA, Santambrogio P, Cozzi A, Arosio P, and Levi S. The expression of human mitochondrial ferritin rescues respiratory function in frataxin-deficient yeast. Hum Mol Genet 13: 2279–2288, 2004.
37.
Campuzano VMontermini LMolto MDPianese LCossee MCavalcanti FMonros ERodius FDuclos FMonticelli AZara FCanizares JKoutnikova HBidichandani SIGellera CBrice ATrouillas PDe Michele GFilla ADe Frutos RPalau FPatel PIDi Donato SMandel JLCocozza SKoenig MPandolfo M. Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansionScience2711423-14271996. 37. Campuzano V, Montermini L, Molto MD, Pianese L, Cossee M, Cavalcanti F, Monros E, Rodius F, Duclos F, Monticelli A, Zara F, Canizares J, Koutnikova H, Bidichandani SI, Gellera C, Brice A, Trouillas P, De Michele G, Filla A, De Frutos R, Palau F, Patel PI, Di Donato S, Mandel JL, Cocozza S, Koenig M, and Pandolfo M. Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271: 1423–1427, 1996.
38.
Canonne-Hergaux FGruenheid SPonka PGros P. Cellular and subcellular localization of the Nramp2 iron transporter in the intestinal brush border and regulation by dietary ironBlood934406-44171999. 38. Canonne-Hergaux F, Gruenheid S, Ponka P, and Gros P. Cellular and subcellular localization of the Nramp2 iron transporter in the intestinal brush border and regulation by dietary iron. Blood 93: 4406–4417, 1999.
39.
Canonne-Hergaux FZhang ASPonka PGros P. Characterization of the iron transporter DMT1 (NRAMP2/DCT1) in red blood cells of normal and anemic mk/mk miceBlood983823-38302001. 39. Canonne-Hergaux F, Zhang AS, Ponka P, and Gros P. Characterization of the iron transporter DMT1 (NRAMP2/DCT1) in red blood cells of normal and anemic mk/mk mice. Blood 98: 3823–3830, 2001.
40.
Carella MD'Ambrosio LTotaro AGrifa AValentino MAPiperno AGirelli DRoetto AFranco BGasparini PCamaschella C. Mutation analysis of the HLA-H gene in Italian hemochromatosis patientsAm J Hum Genet60828-8321997. 40. Carella M, D'Ambrosio L, Totaro A, Grifa A, Valentino MA, Piperno A, Girelli D, Roetto A, Franco B, Gasparini P, and Camaschella C. Mutation analysis of the HLA-H gene in Italian hemochromatosis patients. Am J Hum Genet 60: 828–832, 1997.
41.
Casey JLHentze MWKoeller DMCaughman SWRouault TAKlausner RDHarford JB. Iron-responsive elements: regulatory RNA sequences that control mRNA levels and translationScience240924-9281988. 41. Casey JL, Hentze MW, Koeller DM, Caughman SW, Rouault TA, Klausner RD, and Harford JB. Iron-responsive elements: regulatory RNA sequences that control mRNA levels and translation. Science 240: 924–928, 1988.
42.
Cass WAGrondin RAndersen AHZhang ZHardy PAHussey-Andersen LKRayens WSGerhardt GAGash DM. Iron accumulation in the striatum predicts aging-related decline in motor function in rhesus monkeysNeurobiol Aging28258-2712007. 42. Cass WA, Grondin R, Andersen AH, Zhang Z, Hardy PA, Hussey-Andersen LK, Rayens WS, Gerhardt GA, and Gash DM. Iron accumulation in the striatum predicts aging-related decline in motor function in rhesus monkeys. Neurobiol Aging 28: 258–271, 2007.
43.
Cavadini PAdamec JTaroni FGakh OIsaya G. Two-step processing of human frataxin by mitochondrial processing peptidase: precursor and intermediate forms are cleaved at different ratesJ Biol Chem27541469-414752000. 43. Cavadini P, Adamec J, Taroni F, Gakh O, and Isaya G. Two-step processing of human frataxin by mitochondrial processing peptidase: precursor and intermediate forms are cleaved at different rates. J Biol Chem 275: 41469–41475, 2000.
44.
Cavadini PO'Neill HABenada OIsaya G. Assembly and iron-binding properties of human frataxin, the protein deficient in Friedreich ataxiaHum Mol Genet11217-2272002. 44. Cavadini P, O'Neill HA, Benada O, and Isaya G. Assembly and iron-binding properties of human frataxin, the protein deficient in Friedreich ataxia. Hum Mol Genet 11: 217–227, 2002.
45.
Chan KLu RChang JCKan YW. NRF2, a member of the NFE2 family of transcription factors, is not essential for murine erythropoiesis, growth, and developmentProc Natl Acad Sci U S A9313943-139481996. 45. Chan K, Lu R, Chang JC, and Kan YW. NRF2, a member of the NFE2 family of transcription factors, is not essential for murine erythropoiesis, growth, and development. Proc Natl Acad Sci U S A 93: 13943–13948, 1996.
46.
Chantrel-Groussard KGeromel VPuccio HKoenig MMunnich ARotig ARustin P. Disabled early recruitment of antioxidant defenses in Friedreich's ataxiaHum Mol Genet102061-20672001. 46. Chantrel-Groussard K, Geromel V, Puccio H, Koenig M, Munnich A, Rotig A, and Rustin P. Disabled early recruitment of antioxidant defenses in Friedreich's ataxia. Hum Mol Genet 10: 2061–2067, 2001.
47.
Chen OSHemenway SKaplan J. Inhibition of Fe-S cluster biosynthesis decreases mitochondrial iron export: evidence that Yfh1p affects Fe-S cluster synthesisProc Natl Acad Sci U S A9912321-123262002. 47. Chen OS, Hemenway S, and Kaplan J. Inhibition of Fe-S cluster biosynthesis decreases mitochondrial iron export: evidence that Yfh1p affects Fe-S cluster synthesis. Proc Natl Acad Sci U S A 99: 12321–12326, 2002.
48.
Chen TTLi LChung DHAllen CDTorti SVTorti FMCyster JGChen CYBrodsky FMNiemi ECNakamura MCSeaman WEDaws MR. TIM-2 is expressed on B cells and in liver and kidney and is a receptor for H-ferritin endocytosisJ Exp Med202955-9652005. 48. Chen TT, Li L, Chung DH, Allen CD, Torti SV, Torti FM, Cyster JG, Chen CY, Brodsky FM, Niemi EC, Nakamura MC, Seaman WE, and Daws MR. TIM-2 is expressed on B cells and in liver and kidney and is a receptor for H-ferritin endocytosis. J Exp Med 202: 955–965, 2005.
49.
Cheng YZak OAisen PHarrison SCWalz T. Structure of the human transferrin receptor-transferrin complexCell116565-5762004. 49. Cheng Y, Zak O, Aisen P, Harrison SC, and Walz T. Structure of the human transferrin receptor-transferrin complex. Cell 116: 565–576, 2004.
50.
Chinnery PFCrompton DEBirchall DJackson MJCoulthard ALombes AQuinn NWills AFletcher NMottershead JPCooper PKellett MBates DBurn J. Clinical features and natural history of neuroferritinopathy caused by the FTL1 460InsA mutationBrain130110-1192007. 50. Chinnery PF, Crompton DE, Birchall D, Jackson MJ, Coulthard A, Lombes A, Quinn N, Wills A, Fletcher N, Mottershead JP, Cooper P, Kellett M, Bates D, and Burn J. Clinical features and natural history of neuroferritinopathy caused by the FTL1 460InsA mutation. Brain 130: 110–119, 2007.
51.
Collawn JFStangel MKuhn LAEsekogwu VJing SQTrowbridge ISTainer JA. Transferrin receptor internalization sequence YXRF implicates a tight turn as the structural recognition motif for endocytosisCell631061-10721990. 51. Collawn JF, Stangel M, Kuhn LA, Esekogwu V, Jing SQ, Trowbridge IS, and Tainer JA. Transferrin receptor internalization sequence YXRF implicates a tight turn as the structural recognition motif for endocytosis. Cell 63: 1061–1072, 1990.
52.
Condo IVentura NMalisan FRufini ATomassini BTesti R. In vivo maturation of human frataxinHum Mol Genet161534-15402007. 52. Condo I, Ventura N, Malisan F, Rufini A, Tomassini B, and Testi R. In vivo maturation of human frataxin. Hum Mol Genet 16: 1534–1540, 2007.
53.
Connor JRBoeshore KLBenkovic SAMenzies SL. Isoforms of ferritin have a specific cellular distribution in the brainJ Neurosci Res37461-4651994. 53. Connor JR, Boeshore KL, Benkovic SA, and Menzies SL. Isoforms of ferritin have a specific cellular distribution in the brain. J Neurosci Res 37: 461–465, 1994.
54.
Conrad MEUmbreit JNMoore EGParmley RT. Hereditary hemochromatosis: a prevalent disorder of iron metabolism with an elusive etiologyAm J Hematol47218-2241994. 54. Conrad ME, Umbreit JN, Moore EG, and Parmley RT. Hereditary hemochromatosis: a prevalent disorder of iron metabolism with an elusive etiology. Am J Hematol 47: 218–224, 1994.
55.
Cooperman SSMeyron-Holtz EGOlivierre-Wilson HGhosh MCMcConnell JPRouault TA. Microcytic anemia, erythropoietic protoporphyria, and neurodegeneration in mice with targeted deletion of iron-regulatory protein 2Blood1061084-10912005. 55. Cooperman SS, Meyron-Holtz EG, Olivierre-Wilson H, Ghosh MC, McConnell JP, and Rouault TA. Microcytic anemia, erythropoietic protoporphyria, and neurodegeneration in mice with targeted deletion of iron-regulatory protein 2. Blood 106: 1084–1091, 2005.
56.
Corsi BCozzi AArosio PDrysdale JSantambrogio PCampanella ABiasiotto GAlbertini ALevi S. Human mitochondrial ferritin expressed in HeLa cells incorporates iron and affects cellular iron metabolismJ Biol Chem27722430-224372002. 56. Corsi B, Cozzi A, Arosio P, Drysdale J, Santambrogio P, Campanella A, Biasiotto G, Albertini A, and Levi S. Human mitochondrial ferritin expressed in HeLa cells incorporates iron and affects cellular iron metabolism. J Biol Chem 277: 22430–22437, 2002.
57.
Cossee MPuccio HGansmuller AKoutnikova HDierich ALeMeur MFischbeck KDolle PKoenig M. Inactivation of the Friedreich ataxia mouse gene leads to early embryonic lethality without iron accumulationHum Mol Genet91219-12262000. 57. Cossee M, Puccio H, Gansmuller A, Koutnikova H, Dierich A, LeMeur M, Fischbeck K, Dolle P, and Koenig M. Inactivation of the Friedreich ataxia mouse gene leads to early embryonic lethality without iron accumulation. Hum Mol Genet 9: 1219–1226, 2000.
58.
Courselaud BPigeon CInoue YInoue JGonzalez FJLeroyer PGilot DBoudjema KGuguen-Guillouzo CBrissot PLoreal OIlyin G. C/EBPalpha regulates hepatic transcription of hepcidin, an antimicrobial peptide and regulator of iron metabolism: cross-talk between C/EBP pathway and iron metabolismJ Biol Chem27741163-411702002. 58. Courselaud B, Pigeon C, Inoue Y, Inoue J, Gonzalez FJ, Leroyer P, Gilot D, Boudjema K, Guguen-Guillouzo C, Brissot P, Loreal O, and Ilyin G. C/EBPalpha regulates hepatic transcription of hepcidin, an antimicrobial peptide and regulator of iron metabolism: cross-talk between C/EBP pathway and iron metabolism. J Biol Chem 277: 41163–41170, 2002.
59.
Cozzi ACorsi BLevi SSantambrogio PAlbertini AArosio P. Overexpression of wild type and mutated human ferritin H-chain in HeLa cells: in vivo role of ferritin ferroxidase activityJ Biol Chem27525122-251292000. 59. Cozzi A, Corsi B, Levi S, Santambrogio P, Albertini A, and Arosio P. Overexpression of wild type and mutated human ferritin H-chain in HeLa cells: in vivo role of ferritin ferroxidase activity. J Biol Chem 275: 25122–25129, 2000.
60.
Cozzi ACorsi BLevi SSantambrogio PBiasiotto GArosio P. Analysis of the biologic functions of H- and L-ferritins in HeLa cells by transfection with siRNAs and cDNAs: evidence for a proliferative role of L-ferritinBlood1032377-23832004. 60. Cozzi A, Corsi B, Levi S, Santambrogio P, Biasiotto G and Arosio P. Analysis of the biologic functions of H- and L-ferritins in HeLa cells by transfection with siRNAs and cDNAs: evidence for a proliferative role of L-ferritin. Blood 103: 2377–2383, 2004.
61.
Cozzi ASantambrogio PCorsi BCampanella AArosio PLevi S. Characterization of the l-ferritin variant 460InsA responsible of a hereditary ferritinopathy disorderNeurobiol Dis23644-6522006. 61. Cozzi A, Santambrogio P, Corsi B, Campanella A, Arosio P, and Levi S. Characterization of the l-ferritin variant 460InsA responsible of a hereditary ferritinopathy disorder. Neurobiol Dis 23: 644–652, 2006.
62.
Curtis ARFey CMorris CMBindoff LAInce PGChinnery PFCoulthard AJackson MJJackson APMcHale DPHay DBarker WAMarkham AFBates DCurtis ABurn J. Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia diseaseNat Genet28350-3542001. 62. Curtis AR, Fey C, Morris CM, Bindoff LA, Ince PG, Chinnery PF, Coulthard A, Jackson MJ, Jackson AP, McHale DP, Hay D, Barker WA, Markham AF, Bates D, Curtis A, and Burn J. Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease. Nat Genet 28: 350–354, 2001.
63.
Dancis AYuan DSHaile DAskwith CEide DMoehle CKaplan JKlausner RD. Molecular characterization of a copper transport protein in S. cerevisiae: an unexpected role for copper in iron transportCell76393-4021994. 63. Dancis A, Yuan DS, Haile D, Askwith C, Eide D, Moehle C, Kaplan J, and Klausner RD. Molecular characterization of a copper transport protein in S. cerevisiae: an unexpected role for copper in iron transport. Cell 76: 393–402, 1994.
64.
De Domenico IVaughn MBLi LBagley DMusci GWard DMKaplan J. Ferroportin-mediated mobilization of ferritin iron precedes ferritin degradation by the proteasomeEMBO J255396-54042006. 64. De Domenico I, Vaughn MB, Li L, Bagley D, Musci G, Ward DM, and Kaplan J. Ferroportin-mediated mobilization of ferritin iron precedes ferritin degradation by the proteasome. EMBO J 25: 5396–5404, 2006.
65.
De Domenico IWard DMdi Patti MCJeong SYDavid SMusci GKaplan J. Ferroxidase activity is required for the stability of cell surface ferroportin in cells expressing GPI-ceruloplasminEMBO J262823-28312007. 65. De Domenico I, Ward DM, di Patti MC, Jeong SY, David S, Musci G, and Kaplan J. Ferroxidase activity is required for the stability of cell surface ferroportin in cells expressing GPI-ceruloplasmin. EMBO J 26: 2823–2831, 2007.
66.
De Domenico IWard DMLangelier CVaughn MBNemeth ESundquist WIGanz TMusci GKaplan J. The molecular mechanism of hepcidin-mediated ferroportin down-regulationMol Biol Cell182569-25782007. 66. De Domenico I, Ward DM, Langelier C, Vaughn MB, Nemeth E, Sundquist WI, Ganz T, Musci G, and Kaplan J. The molecular mechanism of hepcidin-mediated ferroportin down-regulation. Mol Biol Cell 18: 2569–2578, 2007.
67.
De Domenico IWard DMMusci GKaplan J. Iron overload due to mutations in ferroportinHaematologica9192-952006. 67. De Domenico I, Ward DM, Musci G, and Kaplan J. Iron overload due to mutations in ferroportin. Haematologica 91: 92–95, 2006.
68.
De Domenico IWard DMNemeth EVaughn MBMusci GGanz TKaplan J. The molecular basis of ferroportin-linked hemochromatosisProc Natl Acad Sci U S A1028955-89602005. 68. De Domenico I, Ward DM, Nemeth E, Vaughn MB, Musci G, Ganz T, and Kaplan J. The molecular basis of ferroportin-linked hemochromatosis. Proc Natl Acad Sci U S A 102: 8955–8960, 2005.
69.
Delatycki MBCamakaris JBrooks HEvans-Whipp TThorburn DRWilliamson RForrest SM. Direct evidence that mitochondrial iron accumulation occurs in Friedreich ataxiaAnn Neurol45673-6751999. 69. Delatycki MB, Camakaris J, Brooks H, Evans-Whipp T, Thorburn DR, Williamson R, and Forrest SM. Direct evidence that mitochondrial iron accumulation occurs in Friedreich ataxia. Ann Neurol 45: 673–675, 1999.
70.
Desmyter LDewaele SReekmans RNystrom TContreras RChen C. Expression of the human ferritin light chain in a frataxin mutant yeast affects ageing and cell deathExp Gerontol39707-7152004. 70. Desmyter L, Dewaele S, Reekmans R, Nystrom T, Contreras R, and Chen C. Expression of the human ferritin light chain in a frataxin mutant yeast affects ageing and cell death. Exp Gerontol 39: 707–715, 2004.
71.
Dhe-Paganon SShigeta RChi YIRistow MShoelson SE. Crystal structure of human frataxinJ Biol Chem27530753-307562000. 71. Dhe-Paganon S, Shigeta R, Chi YI, Ristow M, and Shoelson SE. Crystal structure of human frataxin. J Biol Chem 275: 30753–30756, 2000.
72.
Donovan ABrownlie AZhou YShepard JPratt SJMoynihan JPaw BHDrejer ABarut BZapata ALaw TCBrugnara CLux SEPinkus GSPinkus JLKingsley PDPalis JFleming MDAndrews NCZon LI. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporterNature403776-7812000. 72. Donovan A, Brownlie A, Zhou Y, Shepard J, Pratt SJ, Moynihan J, Paw BH, Drejer A, Barut B, Zapata A, Law TC, Brugnara C, Lux SE, Pinkus GS, Pinkus JL, Kingsley PD, Palis J, Fleming MD, Andrews NC, and Zon LI. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403: 776–781, 2000.
73.
Donovan ALima CAPinkus JLPinkus GSZon LIRobine SAndrews NC. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasisCell Metab1191-2002005. 73. Donovan A, Lima CA, Pinkus JL, Pinkus GS, Zon LI, Robine S, and Andrews NC. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab 1: 191–200, 2005.
74.
Drysdale JArosio PInvernizzi RCazzola MVolz ACorsi BBiasiotto GLevi S. Mitochondrial ferritin: a new player in iron metabolismBlood Cells Mol Dis29376-3832002. 74. Drysdale J, Arosio P, Invernizzi R, Cazzola M, Volz A, Corsi B, Biasiotto G, and Levi S. Mitochondrial ferritin: a new player in iron metabolism. Blood Cells Mol Dis 29: 376–383, 2002.
75.
Dubljevic VSali AGoding JW. A conserved RGD (Arg-Gly-Asp) motif in the transferrin receptor is required for binding to transferrinBiochem J34111-141999. 75. Dubljevic V, Sali A, and Goding JW. A conserved RGD (Arg-Gly-Asp) motif in the transferrin receptor is required for binding to transferrin. Biochem J 341: 11–14, 1999.
76.
Durr ACossee MAgid YCampuzano VMignard CPenet CMandel JLBrice AKoenig M. Clinical and genetic abnormalities in patients with Friedreich's ataxiaN Engl J Med3351169-11751996. 76. Durr A, Cossee M, Agid Y, Campuzano V, Mignard C, Penet C, Mandel JL, Brice A, and Koenig M. Clinical and genetic abnormalities in patients with Friedreich's ataxia. N Engl J Med 335: 1169–1175, 1996.
77.
Elmberg MHultcrantz REkbom ABrandt LOlsson SOlsson RLindgren SLoof LStal PWallerstedt SAlmer SSandberg-Gertzen HAskling J. Cancer risk in patients with hereditary hemochromatosis and in their first-degree relativesGastroenterology1251733-17412003. 77. Elmberg M, Hultcrantz R, Ekbom A, Brandt L, Olsson S, Olsson R, Lindgren S, Loof L, Stal P, Wallerstedt S, Almer S, Sandberg-Gertzen H, and Askling J. Cancer risk in patients with hereditary hemochromatosis and in their first-degree relatives. Gastroenterology 125: 1733–1741, 2003.
78.
Epsztejn SGlickstein HPicard VSlotki INBreuer WBeaumont CCabantchik ZI. H-ferritin subunit overexpression in erythroid cells reduces the oxidative stress response and induces multidrug resistance propertiesBlood943593-36031999. 78. Epsztejn S, Glickstein H, Picard V, Slotki IN, Breuer W, Beaumont C, and Cabantchik ZI. H-ferritin subunit overexpression in erythroid cells reduces the oxidative stress response and induces multidrug resistance properties. Blood 94: 3593–3603, 1999.
79.
Fahn S. Description of Parkinson's disease as a clinical syndromeAnn N Y Acad Sci9911-142003. 79. Fahn S. Description of Parkinson's disease as a clinical syndrome. Ann N Y Acad Sci 991: 1–14, 2003.
80.
Faniello MCBevilacqua MACondorelli Gde Crombrugghe BMaity SNAvvedimento VECimino FCostanzo F. The B subunit of the CAAT-binding factor NFY binds the central segment of the Co-activator p300J Biol Chem2747623-76261999. 80. Faniello MC, Bevilacqua MA, Condorelli G, de Crombrugghe B, Maity SN, Avvedimento VE, Cimino F, and Costanzo F. The B subunit of the CAAT-binding factor NFY binds the central segment of the Co-activator p300. J Biol Chem 274: 7623–7626, 1999.
81.
Favreau LVPickett CB. Transcriptional regulation of the rat NAD(P)H:quinone reductase gene: identification of regulatory elements controlling basal level expression and inducible expression by planar aromatic compounds and phenolic antioxidantsJ Biol Chem2664556-45611991. 81. Favreau LV and Pickett CB. Transcriptional regulation of the rat NAD(P)H:quinone reductase gene: identification of regulatory elements controlling basal level expression and inducible expression by planar aromatic compounds and phenolic antioxidants. J Biol Chem 266: 4556–4561, 1991.
82.
Feder JNGnirke AThomas WTsuchihashi ZRuddy DABasava ADormishian FDomingo R JrEllis MCFullan AHinton LMJones NLKimmel BEKronmal GSLauer PLee VKLoeb DBMapa FAMcClelland EMeyer NCMintier GAMoeller NMoore TMorikang EPrass CEQuintana LStarnes SMSchatzman RCBrunke KJDrayna DTRisch NJBacon BRWolff RK. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosisNat Genet13399-4081996. 82. Feder JN, Gnirke A, Thomas W, Tsuchihashi Z, Ruddy DA, Basava A, Dormishian F, Domingo R Jr, Ellis MC, Fullan A, Hinton LM, Jones NL, Kimmel BE, Kronmal GS, Lauer P, Lee VK, Loeb DB, Mapa FA, McClelland E, Meyer NC, Mintier GA, Moeller N, Moore T, Morikang E, Prass CE, Quintana L, Starnes SM, Schatzman RC, Brunke KJ, Drayna DT, Risch NJ, Bacon BR, and Wolff RK. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet 13: 399–408, 1996.
83.
Feder JNPenny DMIrrinki ALee VKLebron JAWatson NTsuchihashi ZSigal EBjorkman PJSchatzman RC. The hemochromatosis gene product complexes with the transferrin receptor and lowers its affinity for ligand bindingProc Natl Acad Sci U S A951472-14771998. 83. Feder JN, Penny DM, Irrinki A, Lee VK, Lebron JA, Watson N, Tsuchihashi Z, Sigal E, Bjorkman PJ, and Schatzman RC. The hemochromatosis gene product complexes with the transferrin receptor and lowers its affinity for ligand binding. Proc Natl Acad Sci U S A 95: 1472–1477, 1998.
84.
Feder JNTsuchihashi ZIrrinki ALee VKMapa FAMorikang EPrass CEStarnes SMWolff RKParkkila SSly WSSchatzman RC. The hemochromatosis founder mutation in HLA-H disrupts beta2-microglobulin interaction and cell surface expressionJ Biol Chem27214025-140281997. 84. Feder JN, Tsuchihashi Z, Irrinki A, Lee VK, Mapa FA, Morikang E, Prass CE, Starnes SM, Wolff RK, Parkkila S, Sly WS, and Schatzman RC. The hemochromatosis founder mutation in HLA-H disrupts beta2-microglobulin interaction and cell surface expression. J Biol Chem 272: 14025–14028, 1997.
85.
Ferreira CBucchini DMartin MELevi SArosio PGrand-champ BBeaumont C. Early embryonic lethality of H ferritin gene deletion in miceJ Biol Chem2753021-30242000. 85. Ferreira C, Bucchini D, Martin ME, Levi S, Arosio P, Grand-champ B, and Beaumont C. Early embryonic lethality of H ferritin gene deletion in mice. J Biol Chem 275: 3021–3024, 2000.
85a.
Ferreira C, Santambrogio P, Martin ME, Andrieu V, Feldmann G, Henin D, and Beaumont CBlood98525-5322001. 85a. Ferreira C, Santambrogio P, Martin ME, Andrieu V, Feldmann G, Henin D, and Beaumont C. Blood 98: 525–532, 2001.
86.
Fleming JSpinoulas AZheng MCunningham SCGinn SLMcQuilty RCRowe PBAlexander IE. Partial correction of sensitivity to oxidant stress in Friedreich ataxia patient fibroblasts by frataxin-encoding adeno-associated virus and lentivirus vectorsHum Gene Ther16947-9562005. 86. Fleming J, Spinoulas A, Zheng M, Cunningham SC, Ginn SL, McQuilty RC, Rowe PB, and Alexander IE. Partial correction of sensitivity to oxidant stress in Friedreich ataxia patient fibroblasts by frataxin-encoding adeno-associated virus and lentivirus vectors. Hum Gene Ther 16: 947–956, 2005.
87.
Fleming MDRomano MASu MAGarrick LMGarrick MDAndrews NC. Nramp2 is mutated in the anemic Belgrade (b) rat: evidence of a role for Nramp2 in endosomal iron transportProc Natl Acad Sci U S A951148-11531998. 87. Fleming MD, Romano MA, Su MA, Garrick LM, Garrick MD, and Andrews NC. Nramp2 is mutated in the anemic Belgrade (b) rat: evidence of a role for Nramp2 in endosomal iron transport. Proc Natl Acad Sci U S A 95: 1148–1153, 1998.
88.
Fleming MDTrenor CC 3rdSu MAFoernzler DBeier DRDietrich WFAndrews NC. Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter geneNat Genet16383-3861997. 88. Fleming MD, Trenor CC, 3rd, Su MA, Foernzler D, Beier DR, Dietrich WF, and Andrews NC. Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nat Genet 16: 383–386, 1997.
89.
Fleming REAhmann JRMigas MCWaheed AKoeffler HPKawabata HBritton RSBacon BRSly WS. Targeted mutagenesis of the murine transferrin receptor-2 gene produces hemochromatosisProc Natl Acad Sci U S A9910653-106582002. 89. Fleming RE, Ahmann JR, Migas MC, Waheed A, Koeffler HP, Kawabata H, Britton RS, Bacon BR, and Sly WS. Targeted mutagenesis of the murine transferrin receptor-2 gene produces hemochromatosis. Proc Natl Acad Sci U S A 99: 10653–10658, 2002.
90.
Fleming REMigas MCHolden CCWaheed ABritton RSTomatsu SBacon BRSly WS. Transferrin receptor 2: continued expression in mouse liver in the face of iron overload and in hereditary hemochromatosisProc Natl Acad Sci U S A972214-22192000. 90. Fleming RE, Migas MC, Holden CC, Waheed A, Britton RS, Tomatsu S, Bacon BR, and Sly WS. Transferrin receptor 2: continued expression in mouse liver in the face of iron overload and in hereditary hemochromatosis. Proc Natl Acad Sci U S A 97: 2214–2219, 2000.
91.
Fleming REMigas MCZhou XJiang JBritton RSBrunt EMTomatsu SWaheed ABacon BRSly WS. Mechanism of increased iron absorption in murine model of hereditary hemochromatosis: increased duodenal expression of the iron transporter DMT1Proc Natl Acad Sci U S A963143-31481999. 91. Fleming RE, Migas MC, Zhou X, Jiang J, Britton RS, Brunt EM, Tomatsu S, Waheed A, Bacon BR, and Sly WS. Mechanism of increased iron absorption in murine model of hereditary hemochromatosis: increased duodenal expression of the iron transporter DMT1. Proc Natl Acad Sci U S A 96: 3143–3148, 1999.
92.
Fleming RESly WS. Ferroportin mutation in autosomal dominant hemochromatosis: loss of function, gain in understandingJ Clin Invest108521-5222001. 92. Fleming RE and Sly WS. Ferroportin mutation in autosomal dominant hemochromatosis: loss of function, gain in understanding. J Clin Invest 108: 521–522, 2001.
93.
Foury FCazzalini O. Deletion of the yeast homologue of the human gene associated with Friedreich's ataxia elicits iron accumulation in mitochondriaFEBS Lett411373-3771997. 93. Foury F and Cazzalini O. Deletion of the yeast homologue of the human gene associated with Friedreich's ataxia elicits iron accumulation in mitochondria. FEBS Lett 411: 373–377, 1997.
94.
Foury FRoganti T. Deletion of the mitochondrial carrier genes MRS3 and MRS4 suppresses mitochondrial iron accumulation in a yeast frataxin-deficient strainJ Biol Chem27724475-244832002. 94. Foury F and Roganti T. Deletion of the mitochondrial carrier genes MRS3 and MRS4 suppresses mitochondrial iron accumulation in a yeast frataxin-deficient strain. J Biol Chem 277: 24475–24483, 2002.
95.
Friling RSBensimon ATichauer YDaniel V. Xenobiotic-inducible expression of murine glutathione S-transferase Ya subunit gene is controlled by an electrophile-responsive elementProc Natl Acad Sci U S A876258-62621990. 95. Friling RS, Bensimon A, Tichauer Y, and Daniel V. Xenobiotic-inducible expression of murine glutathione S-transferase Ya subunit gene is controlled by an electrophile-responsive element. Proc Natl Acad Sci U S A 87: 6258–6262, 1990.
96.
Gakh OAdamec JGacy AMTwesten RDOwen WGIsaya G. Physical evidence that yeast frataxin is an iron storage proteinBiochemistry416798-68042002. 96. Gakh O, Adamec J, Gacy AM, Twesten RD, Owen WG, and Isaya G. Physical evidence that yeast frataxin is an iron storage protein. Biochemistry 41: 6798–6804, 2002.
97.
Gakh OPark SLiu GMacomber LImlay JAFerreira GCIsaya G. Mitochondrial iron detoxification is a primary function of frataxin that limits oxidative damage and preserves cell longevityHum Mol Genet15467-4792006. 97. Gakh O, Park S, Liu G, Macomber L, Imlay JA, Ferreira GC, and Isaya G. Mitochondrial iron detoxification is a primary function of frataxin that limits oxidative damage and preserves cell longevity. Hum Mol Genet 15: 467–479, 2006.
98.
Ganz T. Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammationBlood102783-7882003. 98. Ganz T. Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood 102: 783–788, 2003.
99.
Ganz TNemeth E. Iron imports. IV. Hepcidin and regulation of body iron metabolismAm J Physiol Gastrointest Liver Physiol290G199-G2032006. 99. Ganz T and Nemeth E. Iron imports. IV. Hepcidin and regulation of body iron metabolism. Am J Physiol Gastrointest Liver Physiol 290: G199–G203, 2006.
100.
Gelvan DFibach EMeyron-Holtz EGKonijn AM. Ferritin uptake by human erythroid precursors is a regulated iron uptake pathwayBlood883200-32071996. 100. Gelvan D, Fibach E, Meyron-Holtz EG, and Konijn AM. Ferritin uptake by human erythroid precursors is a regulated iron uptake pathway. Blood 88: 3200–3207, 1996.
101.
Gerald DBerra EFrapart YMChan DAGiaccia AJMansuy DPouyssegur JYaniv MMechta-Grigoriou F. JunD reduces tumor angiogenesis by protecting cells from oxidative stressCell118781-7942004. 101. Gerald D, Berra E, Frapart YM, Chan DA, Giaccia AJ, Mansuy D, Pouyssegur J, Yaniv M, and Mechta-Grigoriou F. JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell 118: 781–794, 2004.
102.
Gerber JMuhlenhoff ULill R. An interaction between frataxin and Isu1/Nfs1 that is crucial for Fe/S cluster synthesis on Isu1EMBO Rep4906-9112003. 102. Gerber J, Muhlenhoff U, and Lill R. An interaction between frataxin and Isu1/Nfs1 that is crucial for Fe/S cluster synthesis on Isu1. EMBO Rep 4: 906–911, 2003.
103.
Gerstein MAnderson BFNorris GEBaker ENLesk AMChothia C. Domain closure in lactoferrin: two hinges produce a see-saw motion between alternative close-packed interfacesJ Mol Biol234357-3721993. 103. Gerstein M, Anderson BF, Norris GE, Baker EN, Lesk AM, and Chothia C. Domain closure in lactoferrin: two hinges produce a see-saw motion between alternative close-packed interfaces. J Mol Biol 234: 357–372, 1993.
104.
Giannetti AMBjorkman PJ. HFE and transferrin directly compete for transferrin receptor in solution and at the cell surfaceJ Biol Chem27925866-258752004. 104. Giannetti AM and Bjorkman PJ. HFE and transferrin directly compete for transferrin receptor in solution and at the cell surface. J Biol Chem 279: 25866–25875, 2004.
105.
Giannetti AMSnow PMZak OBjorkman PJ. Mechanism for multiple ligand recognition by the human transferrin receptorPLoS Biol1E512003. 105. Giannetti AM, Snow PM, Zak O, and Bjorkman PJ. Mechanism for multiple ligand recognition by the human transferrin receptor. PLoS Biol 1: E51, 2003.
106.
Gitlin JD. AceruloplasminemiaPediatr Res44271-2761998. 106. Gitlin JD. Aceruloplasminemia. Pediatr Res 44: 271–276, 1998.
106a.
Gonzalez-Cabo P, Vazquez-Manrique RP, Garcia-Gimeno MA, Sanz P, and Palau FHum Mol Genet142091-20982005. 106a. Gonzalez-Cabo P, Vazquez-Manrique RP, Garcia-Gimeno MA, Sanz P, and Palau F. Hum Mol Genet 14: 2091–2098, 2005.
107.
Goossen BCaughman SWHarford JBKlausner RDHentze MW. Translational repression by a complex between the iron-responsive element of ferritin mRNA and its specific cytoplasmic binding protein is position-dependent in vivoEMBO J94127-41331990. 107. Goossen B, Caughman SW, Harford JB, Klausner RD, and Hentze MW. Translational repression by a complex between the iron-responsive element of ferritin mRNA and its specific cytoplasmic binding protein is position-dependent in vivo. EMBO J 9: 4127–4133, 1990.
108.
Gordon DMShi QDancis APain D. Maturation of frataxin within mammalian and yeast mitochondria: one-step processing by matrix processing peptidaseHum Mol Genet82255-22621999. 108. Gordon DM, Shi Q, Dancis A, and Pain D. Maturation of frataxin within mammalian and yeast mitochondria: one-step processing by matrix processing peptidase. Hum Mol Genet 8: 2255–2262, 1999.
109.
Grant LSun JXu HSubramony SHChaires JBHebert MD. Rational selection of small molecules that increase transcription through the GAA repeats found in Friedreich's ataxiaFEBS Lett5805399-54052006. 109. Grant L, Sun J, Xu H, Subramony SH, Chaires JB, and Hebert MD. Rational selection of small molecules that increase transcription through the GAA repeats found in Friedreich's ataxia. FEBS Lett 580: 5399–5405, 2006.
110.
Gray CPArosio PHersey P. Association of increased levels of heavy-chain ferritin with increased CD4+ CD25+ regulatory T-cell levels in patients with melanomaClin Cancer Res92551-25592003. 110. Gray CP, Arosio P, and Hersey P. Association of increased levels of heavy-chain ferritin with increased CD4+ CD25+ regulatory T-cell levels in patients with melanoma. Clin Cancer Res 9: 2551–2559, 2003.
111.
Gray CPArosio PHersey P. Heavy chain ferritin activates regulatory T cells by induction of changes in dendritic cellsBlood993326-33342002. 111. Gray CP, Arosio P, and Hersey P. Heavy chain ferritin activates regulatory T cells by induction of changes in dendritic cells. Blood 99: 3326–3334, 2002.
112.
Gray NKHentze MW. Iron regulatory protein prevents binding of the 43S translation pre-initiation complex to ferritin and eALAS mRNAsEMBO J133882-38911994. 112. Gray NK and Hentze MW. Iron regulatory protein prevents binding of the 43S translation pre-initiation complex to ferritin and eALAS mRNAs. EMBO J 13: 3882–3891, 1994.
113.
Greene EEntezam AKumari DUsdin K. Ancient repeated DNA elements and the regulation of the human frataxin promoterGenomics85221-2302005. 113. Greene E, Entezam A, Kumari D, and Usdin K. Ancient repeated DNA elements and the regulation of the human frataxin promoter. Genomics 85: 221–230, 2005.
114.
Grossmann JGNeu MEvans RWLindley PFAppel HHasnain SS. Metal-induced conformational changes in transferrinsJ Mol Biol229585-5901993. 114. Grossmann JG, Neu M, Evans RW, Lindley PF, Appel H, and Hasnain SS. Metal-induced conformational changes in transferrins. J Mol Biol 229: 585–590, 1993.
115.
Grossmann JGNeu MPantos ESchwab FJEvans RWTownes-Andrews ELindley PFAppel HThies WGHasnain SS. X-ray solution scattering reveals conformational changes upon iron uptake in lactoferrin, serum and ovo-transferrinsJ Mol Biol225811-8191992. 115. Grossmann JG, Neu M, Pantos E, Schwab FJ, Evans RW, Townes-Andrews E, Lindley PF, Appel H, Thies WG, and Hasnain SS. X-ray solution scattering reveals conformational changes upon iron uptake in lactoferrin, serum and ovo-transferrins. J Mol Biol 225: 811–819, 1992.
116.
Gunshin HAllerson CRPolycarpou-Schwarz MRofts ARogers JTKishi FHentze MWRouault TAAndrews NCHediger MA. Iron-dependent regulation of the divalent metal ion transporterFEBS Lett509309-3162001. 116. Gunshin H, Allerson CR, Polycarpou-Schwarz M, Rofts A, Rogers JT, Kishi F, Hentze MW, Rouault TA, Andrews NC, and Hediger MA. Iron-dependent regulation of the divalent metal ion transporter. FEBS Lett 509: 309–316, 2001.
117.
Gunshin HMackenzie BBerger UVGunshin YRomero MFBoron WFNussberger SGollan JLHediger MA. Cloning and characterization of a mammalian proton-coupled metal-ion transporterNature388482-4881997. 117. Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, and Hediger MA. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388: 482–488, 1997.
118.
Gutteridge JMQuinlan GJ. Antioxidant protection against organic and inorganic oxygen radicals by normal human plasma: the important primary role for iron-binding and iron-oxidising proteinsBiochim Biophys Acta1159248-2541992. 118. Gutteridge JM and Quinlan GJ. Antioxidant protection against organic and inorganic oxygen radicals by normal human plasma: the important primary role for iron-binding and iron-oxidising proteins. Biochim Biophys Acta 1159: 248–254, 1992.
119.
Hahn PQian YDentchev TChen LBeard JHarris ZLDunaief JL. Disruption of ceruloplasmin and hephaestin in mice causes retinal iron overload and retinal degeneration with features of age-related macular degenerationProc Natl Acad Sci U S A10113850-138552004. 119. Hahn P, Qian Y, Dentchev T, Chen L, Beard J, Harris ZL, and Dunaief JL. Disruption of ceruloplasmin and hephaestin in mice causes retinal iron overload and retinal degeneration with features of age-related macular degeneration. Proc Natl Acad Sci U S A 101: 13850–13855, 2004.
120.
Halliwell B. Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatmentDrugs Aging18685-7162001. 120. Halliwell B. Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18: 685–716, 2001.
121.
Han OKim EY. Colocalization of ferroportin-1 with hephaestin on the basolateral membrane of human intestinal absorptive cellsJ Cell Biochem1011000-10102007. 121. Han O and Kim EY. Colocalization of ferroportin-1 with hephaestin on the basolateral membrane of human intestinal absorptive cells. J Cell Biochem 101: 1000–1010, 2007.
122.
Harris ZLDavis-Kaplan SRGitlin JDKaplan J. A fungal multicopper oxidase restores iron homeostasis in aceruloplasminemiaBlood1034672-46732004. 122. Harris ZL, Davis-Kaplan SR, Gitlin JD, and Kaplan J. A fungal multicopper oxidase restores iron homeostasis in aceruloplasminemia. Blood 103: 4672–4673, 2004.
123.
Harris ZLDurley APMan TKGitlin JD. Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron effluxProc Natl Acad Sci U S A9610812-108171999. 123. Harris ZL, Durley AP, Man TK, and Gitlin JD. Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux. Proc Natl Acad Sci U S A 96: 10812–10817, 1999.
124.
Harris ZLTakahashi YMiyajima HSerizawa MMacGillivray RTGitlin JD. Aceruloplasminemia: molecular characterization of this disorder of iron metabolismProc Natl Acad Sci U S A922539-25431995. 124. Harris ZL, Takahashi Y, Miyajima H, Serizawa M, MacGillivray RT, and Gitlin JD. Aceruloplasminemia: molecular characterization of this disorder of iron metabolism. Proc Natl Acad Sci U S A 92: 2539–2543, 1995.
125.
Harrison PMArosio P. The ferritins: molecular properties, iron storage function and cellular regulationBiochim Biophys Acta1275161-2031996. 125. Harrison PM and Arosio P. The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta 1275: 161–203, 1996.
126.
Hashimoto MHsu LJXia YTakeda ASisk ASundsmo MMasliah E. Oxidative stress induces amyloid-like aggregate formation of NACP/alpha-synuclein in vitroNeuroreport10717-7211999. 126. Hashimoto M, Hsu LJ, Xia Y, Takeda A, Sisk A, Sundsmo M and Masliah E. Oxidative stress induces amyloid-like aggregate formation of NACP/alpha-synuclein in vitro. Neuroreport 10: 717–721, 1999.
127.
Hentze MWArgos P. Homology between IRE-BP, a regulatory RNA-binding protein, aconitase, and isopropylmalate isomeraseNucleic Acids Res191739-17401991. 127. Hentze MW and Argos P. Homology between IRE-BP, a regulatory RNA-binding protein, aconitase, and isopropylmalate isomerase. Nucleic Acids Res 19: 1739–1740, 1991.
128.
Hentze MWCaughman SWCasey JLKoeller DMRouault TAHarford JBKlausner RD. A model for the structure and functions of iron-responsive elementsGene72201-2081988. 128. Hentze MW, Caughman SW, Casey JL, Koeller DM, Rouault TA, Harford JB, and Klausner RD. A model for the structure and functions of iron-responsive elements. Gene 72: 201–208, 1988.
129.
Hentze MWCaughman SWRouault TABarriocanal JGDancis AHarford JBKlausner RD. Identification of the iron-responsive element for the translational regulation of human ferritin mRNAScience2381570-15731987. 129. Hentze MW, Caughman SW, Rouault TA, Barriocanal JG, Dancis A, Harford JB, and Klausner RD. Identification of the iron-responsive element for the translational regulation of human ferritin mRNA. Science 238: 1570–1573, 1987.
130.
Hentze MWKuhn LC. Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stressProc Natl Acad Sci U S A938175-81821996. 130. Hentze MW and Kuhn LC. Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci U S A 93: 8175–8182, 1996.
131.
Hentze MWMuckenthaler MUAndrews NC. Balancing acts: molecular control of mammalian iron metabolismCell117285-2972004. 131. Hentze MW, Muckenthaler MU, and Andrews NC. Balancing acts: molecular control of mammalian iron metabolism. Cell 117: 285–297, 2004.
132.
Herman DJenssen KBurnett RSoragni EPerlman SLGottesfeld JM. Histone deacetylase inhibitors reverse gene silencing in Friedreich's ataxiaNat Chem Biol2551-5582006. 132. Herman D, Jenssen K, Burnett R, Soragni E, Perlman SL, and Gottesfeld JM. Histone deacetylase inhibitors reverse gene silencing in Friedreich's ataxia. Nat Chem Biol 2: 551–558, 2006.
133.
Hintze KJTheil EC. DNA and mRNA elements with complementary responses to hemin, antioxidant inducers, and iron control ferritin-L expressionProc Natl Acad Sci U S A10215048-150522005. 133. Hintze KJ and Theil EC. DNA and mRNA elements with complementary responses to hemin, antioxidant inducers, and iron control ferritin-L expression. Proc Natl Acad Sci U S A 102: 15048–15052, 2005.
134.
Hochstrasser HBauer PWalter UBehnke SSpiegel JCsoti IZeiler BBornemann APahnke JBecker GRiess OBerg D. Ceruloplasmin gene variations and substantia nigra hyperechogenicity in Parkinson diseaseNeurology631912-19172004. 134. Hochstrasser H, Bauer P, Walter U, Behnke S, Spiegel J, Csoti I, Zeiler B, Bornemann A, Pahnke J, Becker G, Riess O, and Berg D. Ceruloplasmin gene variations and substantia nigra hyperechogenicity in Parkinson disease. Neurology 63: 1912–1917, 2004.
135.
Hochstrasser HTomiuk JWalter UBehnke SSpiegel JKruger RBecker GRiess OBerg D. Functional relevance of ceruloplasmin mutations in Parkinson's diseaseFASEB J191851-18532005. 135. Hochstrasser H, Tomiuk J, Walter U, Behnke S, Spiegel J, Kruger R, Becker G, Riess O, and Berg D. Functional relevance of ceruloplasmin mutations in Parkinson's disease. FASEB J 19: 1851–1853, 2005.
136.
Holtz WAO'Malley KL. Parkinsonian mimetics induce aspects of unfolded protein response in death of dopaminergic neuronsJ Biol Chem27819367-193772003. 136. Holtz WA and O'Malley KL. Parkinsonian mimetics induce aspects of unfolded protein response in death of dopaminergic neurons. J Biol Chem 278: 19367–19377, 2003.
137.
Hubert NHentze MW. Previously uncharacterized isoforms of divalent metal transporter (DMT)-1: implications for regulation and cellular functionProc Natl Acad Sci U S A9912345-123502002. 137. Hubert N and Hentze MW. Previously uncharacterized isoforms of divalent metal transporter (DMT)-1: implications for regulation and cellular function. Proc Natl Acad Sci U S A 99: 12345–12350, 2002.
138.
Hulet SWPowers SConnor JR. Distribution of transferrin and ferritin binding in normal and multiple sclerotic human brainsJ Neurol Sci16548-551999. 138. Hulet SW, Powers S, and Connor JR. Distribution of transferrin and ferritin binding in normal and multiple sclerotic human brains. J Neurol Sci 165: 48–55, 1999.
139.
Hunter HNFulton DBGanz TVogel HJ. The solution structure of human hepcidin, a peptide hormone with antimicrobial activity that is involved in iron uptake and hereditary hemochromatosisJ Biol Chem27737597-376032002. 139. Hunter HN, Fulton DB, Ganz T, and Vogel HJ. The solution structure of human hepcidin, a peptide hormone with antimicrobial activity that is involved in iron uptake and hereditary hemochromatosis. J Biol Chem 277: 37597–37603, 2002.
140.
Iwai KDrake SKWehr NBWeissman AMLaVaute TMinato NKlausner RDLevine RLRouault TA. Iron-dependent oxidation, ubiquitination, and degradation of iron regulatory protein 2: implications for degradation of oxidized proteinsProc Natl Acad Sci U S A954924-49281998. 140. Iwai K, Drake SK, Wehr NB, Weissman AM, LaVaute T, Minato N, Klausner RD, Levine RL, and Rouault TA. Iron-dependent oxidation, ubiquitination, and degradation of iron regulatory protein 2: implications for degradation of oxidized proteins. Proc Natl Acad Sci U S A 95: 4924–4928, 1998.
141.
Iwai KKlausner RDRouault TA. Requirements for iron-regulated degradation of the RNA binding protein, iron regulatory protein 2EMBO J145350-53571995. 141. Iwai K, Klausner RD, and Rouault TA. Requirements for iron-regulated degradation of the RNA binding protein, iron regulatory protein 2. EMBO J 14: 5350–5357, 1995.
142.
Iwasaki KHailemariam KTsuji Y. PIAS3 interacts with ATF1 and regulates the human ferritin H gene through an antioxidant-responsive elementJ Biol Chem28222335-223432007. 142. Iwasaki K, Hailemariam K, and Tsuji Y. PIAS3 interacts with ATF1 and regulates the human ferritin H gene through an antioxidant-responsive element. J Biol Chem 282: 22335–22343, 2007.
143.
Iwasaki KMackenzie ELHailemariam KSakamoto KTsuji Y. Hemin-mediated regulation of an antioxidant-responsive element of the human ferritin H gene and role of Ref-1 during erythroid differentiation of K562 cellsMol Cell Biol262845-28562006. 143. Iwasaki K, Mackenzie EL, Hailemariam K, Sakamoto K, and Tsuji Y. Hemin-mediated regulation of an antioxidant-responsive element of the human ferritin H gene and role of Ref-1 during erythroid differentiation of K562 cells. Mol Cell Biol 26: 2845–2856, 2006.
144.
Jacobs EMHendriks JCvan Tits BLEvans PJBreuer WLiu DYJansen EHJauhiainen KSturm BPorter JBScheiber-Mo-jdehkar Bvon Bonsdorff LCabantchik ZIHider RCSwinkels DW. Results of an international round robin for the quantification of serum non-transferrin-bound iron: need for defining standardization and a clinically relevant isoformAnal Biochem341241-2502005. 144. Jacobs EM, Hendriks JC, van Tits BL, Evans PJ, Breuer W, Liu DY, Jansen EH, Jauhiainen K, Sturm B, Porter JB, Scheiber-Mo-jdehkar B, von Bonsdorff L, Cabantchik ZI, Hider RC, and Swinkels DW. Results of an international round robin for the quantification of serum non-transferrin-bound iron: need for defining standardization and a clinically relevant isoform. Anal Biochem 341: 241–250, 2005.
145.
Jauslin MLMeier TSmith RAMurphy MP. Mitochondriatargeted antioxidants protect Friedreich ataxia fibroblasts from endogenous oxidative stress more effectively than untargeted antioxidantsFASEB J171972-19742003. 145. Jauslin ML, Meier T, Smith RA, and Murphy MP. Mitochondriatargeted antioxidants protect Friedreich ataxia fibroblasts from endogenous oxidative stress more effectively than untargeted antioxidants. FASEB J 17: 1972–1974, 2003.
146.
Jauslin MLWirth TMeier TSchoumacher F. A cellular model for Friedreich ataxia reveals small-molecule glutathione peroxidase mimetics as novel treatment strategyHum Mol Genet113055-30632002. 146. Jauslin ML, Wirth T, Meier T, and Schoumacher F. A cellular model for Friedreich ataxia reveals small-molecule glutathione peroxidase mimetics as novel treatment strategy. Hum Mol Genet 11: 3055–3063, 2002.
147.
Jazwinska ECCullen LMBusfield FPyper WRWebb SIPowell LWMorris CPWalsh TP. Haemochromatosis and HLA-HNat Genet14249-2511996. 147. Jazwinska EC, Cullen LM, Busfield F, Pyper WR, Webb SI, Powell LW, Morris CP, and Walsh TP. Haemochromatosis and HLA-H. Nat Genet 14: 249–251, 1996.
148.
Jeong SYDavid S. Glycosylphosphatidylinositol-anchored ceruloplasmin is required for iron efflux from cells in the central nervous systemJ Biol Chem27827144-271482003. 148. Jeong SY and David S. Glycosylphosphatidylinositol-anchored ceruloplasmin is required for iron efflux from cells in the central nervous system. J Biol Chem 278: 27144–27148, 2003.
149.
Johnson MBEnns CA. Diferric transferrin regulates transferrin receptor 2 protein stabilityBlood1044287-42932004. 149. Johnson MB and Enns CA. Diferric transferrin regulates transferrin receptor 2 protein stability. Blood 104: 4287–4293, 2004.
150.
Jouanolle AMGandon GJezequel PBlayau MCampion MLYaouanq JMosser JFergelot PChauvel BBouric PCarn GAndrieux NGicquel ILe Gall JYDavid V. Haemochromatosis and HLA-HNat Genet14251-2521996. 150. Jouanolle AM, Gandon G, Jezequel P, Blayau M, Campion ML, Yaouanq J, Mosser J, Fergelot P, Chauvel B, Bouric P, Carn G, Andrieux N, Gicquel I, Le Gall JY, and David V. Haemochromatosis and HLA-H. Nat Genet 14: 251–252, 1996.
151.
Karlberg TSchagerlof UGakh OPark SRyde ULindahl MLeath KGarman EIsaya GAl-Karadaghi S. The structures of frataxin oligomers reveal the mechanism for the delivery and detoxification of ironStructure141535-15462006. 151. Karlberg T, Schagerlof U, Gakh O, Park S, Ryde U, Lindahl M, Leath K, Garman E, Isaya G, and Al-Karadaghi S. The structures of frataxin oligomers reveal the mechanism for the delivery and detoxification of iron. Structure 14: 1535–1546, 2006.
152.
Karthikeyan GLewis LKResnick MA. The mitochondrial protein frataxin prevents nuclear damageHum Mol Genet111351-13622002. 152. Karthikeyan G, Lewis LK, and Resnick MA. The mitochondrial protein frataxin prevents nuclear damage. Hum Mol Genet 11: 1351–1362, 2002.
153.
Karthikeyan GSantos JHGraziewicz MACopeland WCIsaya GVan Houten BResnick MA. Reduction in frataxin causes progressive accumulation of mitochondrial damageHum Mol Genet123331-33422003. 153. Karthikeyan G, Santos JH, Graziewicz MA, Copeland WC, Isaya G, Van Houten B, and Resnick MA. Reduction in frataxin causes progressive accumulation of mitochondrial damage. Hum Mol Genet 12: 3331–3342, 2003.
154.
Kato JFujikawa KKanda MFukuda NSasaki KTakayama TKobune MTakada KTakimoto RHamada HIkeda TNiitsu Y. A mutation, in the iron-responsive element of H ferritin mRNA, causing autosomal dominant iron overloadAm J Hum Genet69191-1972001. 154. Kato J, Fujikawa K, Kanda M, Fukuda N, Sasaki K, Takayama T, Kobune M, Takada K, Takimoto R, Hamada H, Ikeda T, and Niitsu Y. A mutation, in the iron-responsive element of H ferritin mRNA, causing autosomal dominant iron overload. Am J Hum Genet 69: 191–197, 2001.
155.
Kaufman RJ. Orchestrating the unfolded protein response in health and diseaseJ Clin Invest1101389-13982002. 155. Kaufman RJ. Orchestrating the unfolded protein response in health and disease. J Clin Invest 110: 1389–1398, 2002.
156.
Kaur DAndersen J. Does cellular iron dysregulation play a causative role in Parkinson's disease?Ageing Res Rev3327-3432004. 156. Kaur D and Andersen J. Does cellular iron dysregulation play a causative role in Parkinson's disease? Ageing Res Rev 3: 327–343, 2004.
157.
Kaur DAndersen JK. Ironing out Parkinson's disease: Is therapeutic treatment with iron chelators a real possibility?Aging Cell117-212002. 157. Kaur D and Andersen JK. Ironing out Parkinson's disease: Is therapeutic treatment with iron chelators a real possibility? Aging Cell 1: 17–21, 2002.
158.
Kaur DRajagopalan SChinta SKumar JDi Monte DCherny RAAndersen JK. Chronic ferritin expression within murine dopaminergic midbrain neurons results in a progressive age-related neurodegenerationBrain Res1140188-1942007. 158. Kaur D, Rajagopalan S, Chinta S, Kumar J, Di Monte D, Cherny RA, and Andersen JK. Chronic ferritin expression within murine dopaminergic midbrain neurons results in a progressive age-related neurodegeneration. Brain Res 1140: 188–194, 2007.
159.
Kaur DYantiri FRajagopalan SKumar JMo JQBoonplueang RViswanath VJacobs RYang LBeal MFDiMonte DVolitaskis IEllerby LCherny RABush AIAndersen JK. Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson's diseaseNeuron37899-9092003. 159. Kaur D, Yantiri F, Rajagopalan S, Kumar J, Mo JQ, Boonplueang R, Viswanath V, Jacobs R, Yang L, Beal MF, DiMonte D, Volitaskis I, Ellerby L, Cherny RA, Bush AI, and Andersen JK. Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson's disease. Neuron 37: 899–909, 2003.
160.
Kawabata HYang RHirama TVuong PTKawano SGombart AFKoeffler HP. Molecular cloning of transferrin receptor 2: a new member of the transferrin receptor-like familyJ Biol Chem27420826-208321999. 160. Kawabata H, Yang R, Hirama T, Vuong PT, Kawano S, Gombart AF, and Koeffler HP. Molecular cloning of transferrin receptor 2: a new member of the transferrin receptor-like family. J Biol Chem 274: 20826–20832, 1999.
161.
Kim HYKlausner RDRouault TA. Translational repressor activity is equivalent and is quantitatively predicted by in vitro RNA binding for two iron-responsive element-binding proteins, IRP1 and IRP2J Biol Chem2704983-49861995. 161. Kim HY, Klausner RD, and Rouault TA. Translational repressor activity is equivalent and is quantitatively predicted by in vitro RNA binding for two iron-responsive element-binding proteins, IRP1 and IRP2. J Biol Chem 270: 4983–4986, 1995.
162.
Knight SASepuri NBPain DDancis A. Mt-Hsp70 homolog, Ssc2p, required for maturation of yeast frataxin and mitochondrial iron homeostasisJ Biol Chem27318389-183931998. 162. Knight SA, Sepuri NB, Pain D, and Dancis A. Mt-Hsp70 homolog, Ssc2p, required for maturation of yeast frataxin and mitochondrial iron homeostasis. J Biol Chem 273: 18389–18393, 1998.
163.
Knutson MDOukka MKoss LMAydemir FWessling-Resnick M. Iron release from macrophages after erythrophagocytosis is up-regulated by ferroportin 1 overexpression and downregulated by hepcidinProc Natl Acad Sci U S A1021324-13282005. 163. Knutson MD, Oukka M, Koss LM, Aydemir F, and Wessling-Resnick M. Iron release from macrophages after erythrophagocytosis is up-regulated by ferroportin 1 overexpression and downregulated by hepcidin. Proc Natl Acad Sci U S A 102: 1324–1328, 2005.
164.
Knutson MDVafa MRHaile DJWessling-Resnick M. Iron loading and erythrophagocytosis increase ferroportin 1 (FPN1) expression in J774 macrophagesBlood1024191-41972003. 164. Knutson MD, Vafa MR, Haile DJ, and Wessling-Resnick M. Iron loading and erythrophagocytosis increase ferroportin 1 (FPN1) expression in J774 macrophages. Blood 102: 4191–4197, 2003.
165.
Konijn AMGlickstein HVaisman BMeyron-Holtz EGSlotki INCabantchik ZI. The cellular labile iron pool and intracellular ferritin in K562 cellsBlood942128-21341999. 165. Konijn AM, Glickstein H, Vaisman B, Meyron-Holtz EG, Slotki IN, and Cabantchik ZI. The cellular labile iron pool and intracellular ferritin in K562 cells. Blood 94: 2128–2134, 1999.
166.
Koutnikova HCampuzano VFoury FDolle PCazzalini OKoenig M. Studies of human, mouse and yeast homologues indicate a mitochondrial function for frataxinNat Genet16345-3511997. 166. Koutnikova H, Campuzano V, Foury F, Dolle P, Cazzalini O, and Koenig M. Studies of human, mouse and yeast homologues indicate a mitochondrial function for frataxin. Nat Genet 16: 345–351, 1997.
167.
Koutnikova HCampuzano VKoenig M. Maturation of wild-type and mutated frataxin by the mitochondrial processing peptidaseHum Mol Genet71485-14891998. 167. Koutnikova H, Campuzano V, and Koenig M. Maturation of wild-type and mutated frataxin by the mitochondrial processing peptidase. Hum Mol Genet 7: 1485–1489, 1998.
168.
Krause ANeitz SMagert HJSchulz AForssmann WGSchulz-Knappe PAdermann K. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activityFEBS Lett480147-1502000. 168. Krause A, Neitz S, Magert HJ, Schulz A, Forssmann WG, Schulz-Knappe P, and Adermann K. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett 480: 147–150, 2000.
169.
Kreuzer MKirchgessner M. Endogenous iron excretion: a quantitative means to control iron metabolism?Biol Trace Elem Res2977-921991. 169. Kreuzer M and Kirchgessner M. Endogenous iron excretion: a quantitative means to control iron metabolism? Biol Trace Elem Res 29: 77–92, 1991.
170.
Kuchroo VKUmetsu DTDeKruyff RHFreeman GJ. The TIM gene family: emerging roles in immunity and diseaseNat Rev Immunol3454-4622003. 170. Kuchroo VK, Umetsu DT, DeKruyff RH, and Freeman GJ. The TIM gene family: emerging roles in immunity and disease. Nat Rev Immunol 3: 454–462, 2003.
171.
Kwak ELLarochelle DABeaumont CTorti SVTorti FM. Role for NF-kappa B in the regulation of ferritin H by tumor necrosis factor-alphaJ Biol Chem27015285-152931995. 171. Kwak EL, Larochelle DA, Beaumont C, Torti SV, and Torti FM. Role for NF-kappa B in the regulation of ferritin H by tumor necrosis factor-alpha. J Biol Chem 270: 15285–15293, 1995.
172.
Langlois d'Estaintot BSantambrogio PGranier TGallois BChevalier JMPrecigoux GLevi SArosio P. Crystal structure and biochemical properties of the human mitochondrial ferritin and its mutant Ser144AlaJ Mol Biol340277-2932004. 172. Langlois d'Estaintot B, Santambrogio P, Granier T, Gallois B, Chevalier JM, Precigoux G, Levi S, and Arosio P. Crystal structure and biochemical properties of the human mitochondrial ferritin and its mutant Ser144Ala. J Mol Biol 340: 277–293, 2004.
173.
Larson JAHowie HLSo M. Neisseria meningitidis accelerates ferritin degradation in host epithelial cells to yield an essential iron sourceMol Microbiol53807-8202004. 173. Larson JA, Howie HL, and So M. Neisseria meningitidis accelerates ferritin degradation in host epithelial cells to yield an essential iron source. Mol Microbiol 53: 807–820, 2004.
174.
Latunde-Dada GOSimpson RJMcKie AT. Recent advances in mammalian haem transportTrends Biochem Sci31182-1882006. 174. Latunde-Dada GO, Simpson RJ, and McKie AT. Recent advances in mammalian haem transport. Trends Biochem Sci 31: 182–188, 2006.
175.
LaVaute TSmith SCooperman SIwai KLand WMeyron-Holtz EDrake SKMiller GAbu-Asab MTsokos MSwitzer R 3rdGrinberg ALove PTresser NRouault TA. Targeted deletion of the gene encoding iron regulatory protein-2 causes misregulation of iron metabolism and neurodegenerative disease in miceNat Genet27209-2142001. 175. LaVaute T, Smith S, Cooperman S, Iwai K, Land W, Meyron-Holtz E, Drake SK, Miller G, Abu-Asab M, Tsokos M, Switzer R 3rd, Grinberg A, Love P, Tresser N, and Rouault TA. Targeted deletion of the gene encoding iron regulatory protein-2 causes misregulation of iron metabolism and neurodegenerative disease in mice. Nat Genet 27: 209–214, 2001.
176.
Lawrence CMRay SBabyonyshev MGalluser RBorhani DWHarrison SC. Crystal structure of the ectodomain of human transferrin receptorScience286779-7821999. 176. Lawrence CM, Ray S, Babyonyshev M, Galluser R, Borhani DW, and Harrison SC. Crystal structure of the ectodomain of human transferrin receptor. Science 286: 779–782, 1999.
177.
Lawson DMArtymiuk PJYewdall SJSmith JMLivingstone JCTreffry ALuzzago ALevi SArosio PCesareni GThomas CDShaw WVHarrison PM. Solving the structure of human H ferritin by genetically engineering intermolecular crystal contactsNature349541-5441991. 177. Lawson DM, Artymiuk PJ, Yewdall SJ, Smith JM, Livingstone JC, Treffry A, Luzzago A, Levi S, Arosio P, Cesareni G, Thomas CD, Shaw WV, and Harrison PM. Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. Nature 349: 541–544, 1991.
178.
Lawson DMTreffry AArtymiuk PJHarrison PMYewdall SJLuzzago ACesareni GLevi SArosio P. Identification of the ferroxidase centre in ferritinFEBS Lett254207-2101989. 178. Lawson DM, Treffry A, Artymiuk PJ, Harrison PM, Yewdall SJ, Luzzago A, Cesareni G, Levi S, and Arosio P. Identification of the ferroxidase centre in ferritin. FEBS Lett 254: 207–210, 1989.
179.
Lebron JAWest AP JrBjorkman PJ. The hemochromatosis protein HFE competes with transferrin for binding to the transferrin receptorJ Mol Biol294239-2451999. 179. Lebron JA, West AP Jr, and Bjorkman PJ. The hemochromatosis protein HFE competes with transferrin for binding to the transferrin receptor. J Mol Biol 294: 239–245. 1999.
180.
Lee DWAndersen JKKaur D. Iron dysregulation and neurodegeneration: the molecular connectionMol Interv689-972006. 180. Lee DW, Andersen JK, and Kaur D. Iron dysregulation and neurodegeneration: the molecular connection. Mol Interv 6: 89–97, 2006.
181.
Lesuisse ESantos RMatzanke BFKnight SACamadro JMDancis A. Iron use for haeme synthesis is under control of the yeast frataxin homologue (Yfh1)Hum Mol Genet12879-8892003. 181. Lesuisse E, Santos R, Matzanke BF, Knight SA, Camadro JM, and Dancis A. Iron use for haeme synthesis is under control of the yeast frataxin homologue (Yfh1). Hum Mol Genet 12: 879–889, 2003.
182.
Levi SCorsi BBosisio MInvernizzi RVolz ASanford DArosio PDrysdale J. A human mitochondrial ferritin encoded by an intronless geneJ Biol Chem27624437-244402001. 182. Levi S, Corsi B, Bosisio M, Invernizzi R, Volz A, Sanford D, Arosio P, and Drysdale J. A human mitochondrial ferritin encoded by an intronless gene. J Biol Chem 276: 24437–24440, 2001.
183.
Levi SGirelli DPerrone FPasti MBeaumont CCorrocher RAlbertini AArosio P. Analysis of ferritins in lymphoblastoid cell lines and in the lens of subjects with hereditary hyperferritinemia-cataract syndromeBlood914180-41871998. 183. Levi S, Girelli D, Perrone F, Pasti M, Beaumont C, Corrocher R, Albertini A, and Arosio P. Analysis of ferritins in lymphoblastoid cell lines and in the lens of subjects with hereditary hyperferritinemia-cataract syndrome. Blood 91: 4180–4187, 1998.
184.
Levy JEJin OFujiwara YKuo FAndrews NC. Transferrin receptor is necessary for development of erythrocytes and the nervous systemNat Genet21396-3991999. 184. Levy JE, Jin O, Fujiwara Y, Kuo F, and Andrews NC. Transferrin receptor is necessary for development of erythrocytes and the nervous system. Nat Genet 21: 396–399, 1999.
185.
Li YJaiswal AK. Regulation of human NAD(P)H:quinone oxidoreductase gene. Role of AP1 binding site contained within human antioxidant response elementJ Biol Chem26715097-151041992. 185. Li Y and Jaiswal AK. Regulation of human NAD(P)H:quinone oxidoreductase gene. Role of AP1 binding site contained within human antioxidant response element. J Biol Chem 267: 15097–15104, 1992.
186.
Liao QKKong PAGao JLi FYQian ZM. Expression of ferritin receptor in placental microvilli membrane in pregnant women with different iron status at mid-term gestationEur J Clin Nutr55651-6562001. 186. Liao QK, Kong PA, Gao J, Li FY, and Qian ZM. Expression of ferritin receptor in placental microvilli membrane in pregnant women with different iron status at mid-term gestation. Eur J Clin Nutr 55: 651–656, 2001.
187.
Lill RMuhlenhoff U. Iron-sulfur protein biogenesis in eukaryotes: components and mechanismsAnnu Rev Cell Dev Biol22457-4862006. 187. Lill R and Muhlenhoff U. Iron-sulfur protein biogenesis in eukaryotes: components and mechanisms. Annu Rev Cell Dev Biol 22: 457–486, 2006.
188.
Liuzzi JPAydemir FNam HKnutson MDCousins RJ. Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cellsProc Natl Acad Sci U S A10313612-136172006. 188. Liuzzi JP, Aydemir F, Nam H, Knutson MD, and Cousins RJ. Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells. Proc Natl Acad Sci U S A 103: 13612–13617, 2006.
189.
Lodi RCooper JMBradley JLManners DStyles PTaylor DJSchapira AH. Deficit of in vivo mitochondrial ATP production in patients with Friedreich ataxiaProc Natl Acad Sci U S A9611492-114951999. 189. Lodi R, Cooper JM, Bradley JL, Manners D, Styles P, Taylor DJ, and Schapira AH. Deficit of in vivo mitochondrial ATP production in patients with Friedreich ataxia. Proc Natl Acad Sci U S A 96: 11492–11495, 1999.
190.
Lok CNPonka P. Identification of a hypoxia response element in the transferrin receptor geneJ Biol Chem27424147-241521999. 190. Lok CN and Ponka P. Identification of a hypoxia response element in the transferrin receptor gene. J Biol Chem 274: 24147–24152, 1999.
191.
Lu CCortopassi G. Frataxin knockdown causes loss of cytoplasmic iron-sulfur cluster functions, redox alterations and induction of heme transcriptsArch Biochem Biophys457111-1222007. 191. Lu C and Cortopassi G. Frataxin knockdown causes loss of cytoplasmic iron-sulfur cluster functions, redox alterations and induction of heme transcripts. Arch Biochem Biophys 457: 111–122, 2007.
192.
Mack UPowell LWHalliday JW. Detection and isolation of a hepatic membrane receptor for ferritinJ Biol Chem2584672-46751983. 192. Mack U, Powell LW, and Halliday JW. Detection and isolation of a hepatic membrane receptor for ferritin. J Biol Chem 258: 4672–4675, 1983.
193.
Mariappan SVCatasti PSilks LA 3rdBradbury EMGupta G. The high-resolution structure of the triplex formed by the GAA/TTC triplet repeat associated with Friedreich's ataxiaJ Mol Biol2852035-20521999. 193. Mariappan SV, Catasti P, Silks LA 3rd, Bradbury EM, and Gupta G. The high-resolution structure of the triplex formed by the GAA/TTC triplet repeat associated with Friedreich's ataxia. J Mol Biol 285: 2035–2052, 1999.
194.
Marziali GPerrotti EIlari RTesta UCoccia EMBattistini A. Transcriptional regulation of the ferritin heavy-chain gene: the activity of the CCAAT binding factor NF-Y is modulated in heme-treated Friend leukemia cells and during monocyte-to-macrophage differentiationMol Cell Biol171387-13951997. 194. Marziali G, Perrotti E, Ilari R, Testa U, Coccia EM, and Battistini A. Transcriptional regulation of the ferritin heavy-chain gene: the activity of the CCAAT binding factor NF-Y is modulated in heme-treated Friend leukemia cells and during monocyte-to-macrophage differentiation. Mol Cell Biol 17: 1387–1395, 1997.
195.
Mayr BMontminy M. Transcriptional regulation by the phosphorylation-dependent factor CREBNat Rev Mol Cell Biol2599-6092001. 195. Mayr B and Montminy M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2: 599–609, 2001.
196.
McIntire JJUmetsu SEAkbari OPotter MKuchroo VKBarsh GSFreeman GJUmetsu DTDeKruyff RH. Identification of Tapr (an airway hyperreactivity regulatory locus) and the linked Tim gene familyNat Immunol21109-11162001. 196. McIntire JJ, Umetsu SE, Akbari O, Potter M, Kuchroo VK, Barsh GS, Freeman GJ, Umetsu DT, and DeKruyff RH. Identification of Tapr (an airway hyperreactivity regulatory locus) and the linked Tim gene family. Nat Immunol 2: 1109–1116, 2001.
197.
McKie ATBarrow DLatunde-Dada GORolfs ASager GMudaly EMudaly MRichardson CBarlow DBomford APeters TJRaja KBShirali SHediger MAFarzaneh FSimpson RJ. An iron-regulated ferric reductase associated with the absorption of dietary ironScience2911755-17592001. 197. McKie AT, Barrow D, Latunde-Dada GO, Rolfs A, Sager G, Mudaly E, Mudaly M, Richardson C, Barlow D, Bomford A, Peters TJ, Raja KB, Shirali S, Hediger MA, Farzaneh F, and Simpson RJ. An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 291: 1755–1759, 2001.
198.
McKie ATMarciani PRolfs ABrennan KWehr KBarrow DMiret SBomford APeters TJFarzaneh FHediger MAHentze MWSimpson RJ. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulationMol Cell5299-3092000. 198. McKie AT, Marciani P, Rolfs A, Brennan K, Wehr K, Barrow D, Miret S, Bomford A, Peters TJ, Farzaneh F, Hediger MA, Hentze MW, and Simpson RJ. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell 5: 299–309, 2000.
199.
Mehlhase JSandig GPantopoulos KGrune T. Oxidation-induced ferritin turnover in microglial cells: role of proteasomeFree Radic Biol Med38276-2852005. 199. Mehlhase J, Sandig G, Pantopoulos K, and Grune T. Oxidation-induced ferritin turnover in microglial cells: role of proteasome. Free Radic Biol Med 38: 276–285, 2005.
200.
Meyron-Holtz EGGhosh MCIwai KLaVaute TBrazzolotto XBerger UVLand WOllivierre-Wilson HGrinberg ALove PRouault TA. Genetic ablations of iron regulatory proteins 1 and 2 reveal why iron regulatory protein 2 dominates iron homeostasisEMBO J23386-3952004. 200. Meyron-Holtz EG, Ghosh MC, Iwai K, LaVaute T, Brazzolotto X, Berger UV, Land W, Ollivierre-Wilson H, Grinberg A, Love P, and Rouault TA. Genetic ablations of iron regulatory proteins 1 and 2 reveal why iron regulatory protein 2 dominates iron homeostasis. EMBO J 23: 386–395, 2004.
201.
Millholland JMFitch JMCai CXGibney EPBeazley KELinsenmayer TF. Ferritoid, a tissue-specific nuclear transport protein for ferritin in corneal epithelial cellsJ Biol Chem27823963-239702003. 201. Millholland JM, Fitch JM, Cai CX, Gibney EP, Beazley KE, and Linsenmayer TF. Ferritoid, a tissue-specific nuclear transport protein for ferritin in corneal epithelial cells. J Biol Chem 278: 23963–23970, 2003.
202.
Miranda CJSantos MMOhshima KSmith JLi LBunting MCossee MKoenig MSequeiros JKaplan JPandolfo M. Frataxin knockin mouseFEBS Lett512291-2972002. 202. Miranda CJ, Santos MM, Ohshima K, Smith J, Li L, Bunting M, Cossee M, Koenig M, Sequeiros J, Kaplan J, and Pandolfo M. Frataxin knockin mouse. FEBS Lett 512: 291–297, 2002.
203.
Miranda CJSantos MMOhshima KTessaro MSequeiros JPandolfo M. Frataxin overexpressing miceFEBS Lett572281-2882004. 203. Miranda CJ, Santos MM, Ohshima K, Tessaro M, Sequeiros J, and Pandolfo M. Frataxin overexpressing mice. FEBS Lett 572: 281–288, 2004.
204.
Missirlis FHolmberg SGeorgieva TDunkov BCRouault TALaw JH. Characterization of mitochondrial ferritin in DrosophilaProc Natl Acad Sci U S A1035893-58982006. 204. Missirlis F, Holmberg S, Georgieva T, Dunkov BC, Rouault TA, and Law JH. Characterization of mitochondrial ferritin in Drosophila. Proc Natl Acad Sci U S A 103: 5893–5898, 2006.
205.
Montosi GDonovan ATotaro AGaruti CPignatti ECassanelli STrenor CCGasparini PAndrews NCPietrangelo A. Autosomal-dominant hemochromatosis is associated with a mutation in the ferroportin (SLC11A3) geneJ Clin Invest108619-6232001. 205. Montosi G, Donovan A, Totaro A, Garuti C, Pignatti E, Cassanelli S, Trenor CC, Gasparini P, Andrews NC, and Pietrangelo A. Autosomal-dominant hemochromatosis is associated with a mutation in the ferroportin (SLC11A3) gene. J Clin Invest 108: 619–623, 2001.
206.
Moos TMorgan EH. The metabolism of neuronal iron and its pathogenic role in neurological disease: reviewAnn N Y Acad Sci101214-262004. 206. Moos T and Morgan EH. The metabolism of neuronal iron and its pathogenic role in neurological disease: review. Ann N Y Acad Sci 1012: 14–26, 2004.
207.
Mori K. Tripartite management of unfolded proteins in the endoplasmic reticulumCell101451-4542000. 207. Mori K. Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 101: 451–454, 2000.
208.
Moss DFargion SFracanzani ALLevi SCappellini MDArosio PPowell LWHalliday JW. Functional roles of the ferritin receptors of human liver, hepatoma, lymphoid and erythroid cellsJ Inorg Biochem47219-2271992. 208. Moss D, Fargion S, Fracanzani AL, Levi S, Cappellini MD, Arosio P, Powell LW, and Halliday JW. Functional roles of the ferritin receptors of human liver, hepatoma, lymphoid and erythroid cells. J Inorg Biochem 47: 219–227, 1992.
209.
Muhlenhoff URichhardt NRistow MKispal GLill R. The yeast frataxin homolog Yfh1p plays a specific role in the maturation of cellular Fe/S proteinsHum Mol Genet112025-20362002. 209. Muhlenhoff U, Richhardt N, Ristow M, Kispal G, and Lill R. The yeast frataxin homolog Yfh1p plays a specific role in the maturation of cellular Fe/S proteins. Hum Mol Genet 11: 2025–2036, 2002.
210.
Muir WAMcLaren GDBraun WAskari A. Evidence for heterogeneity in hereditary hemochromatosis: evaluation of 174 persons in nine familiesAm J Med76806-8141984. 210. Muir WA, McLaren GD, Braun W, and Askari A. Evidence for heterogeneity in hereditary hemochromatosis: evaluation of 174 persons in nine families. Am J Med 76: 806–814, 1984.
211.
Mullner EWKuhn LC. A stem-loop in the 3’ untranslated region mediates iron-dependent regulation of transferrin receptor mRNA stability in the cytoplasmCell53815-8251988. 211. Mullner EW and Kuhn LC. A stem-loop in the 3’ untranslated region mediates iron-dependent regulation of transferrin receptor mRNA stability in the cytoplasm. Cell 53: 815–825, 1988.
212.
Musco GStier GKolmerer BAdinolfi SMartin SFrenkiel TGibson TPastore A. Towards a structural understanding of Friedreich's ataxia: the solution structure of frataxinStructure8695-7072000. 212. Musco G, Stier G, Kolmerer B, Adinolfi S, Martin S, Frenkiel T, Gibson T, and Pastore A. Towards a structural understanding of Friedreich's ataxia: the solution structure of frataxin. Structure 8: 695–707, 2000.
213.
Nemeth EPreza GCJung CLKaplan JWaring AJGanz T. The N-terminus of hepcidin is essential for its interaction with ferroportin: structure-function studyBlood107328-3332006. 213. Nemeth E, Preza GC, Jung CL, Kaplan J, Waring AJ, and Ganz T. The N-terminus of hepcidin is essential for its interaction with ferroportin: structure-function study. Blood 107: 328–333, 2006.
214.
Nemeth ERivera SGabayan VKeller CTaudorf SPedersen BKGanz T. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidinJ Clin Invest1131271-12762004. 214. Nemeth E, Rivera S, Gabayan V, Keller C, Taudorf S, Pedersen BK, and Ganz T. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest 113: 1271–1276, 2004.
215.
Nemeth ETuttle MSPowelson JVaughn MBDonovan AWard DMGanz TKaplan J. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalizationScience3062090-20932004. 215. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T, and Kaplan J. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306: 2090–2093, 2004.
215a.
Nicolas G, Bennoun M, Devaux I, Beaumont C, Grandchamp B, Kahn A, and Vaulont SProc Natl Acad Sci USA988780-87852001. 215a. Nicolas G, Bennoun M, Devaux I, Beaumont C, Grandchamp B, Kahn A, and Vaulont S. Proc Natl Acad Sci USA 98: 8780–8785, 2001.
216.
Nicolas GChauvet CViatte LDanan JLBigard XDevaux IBeaumont CKahn AVaulont S. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammationJ Clin Invest1101037-10442002. 216. Nicolas G, Chauvet C, Viatte L, Danan JL, Bigard X, Devaux I, Beaumont C, Kahn A, and Vaulont S. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest 110: 1037–1044, 2002.
217.
Niederkofler VSalie RArber S. Hemojuvelin is essential for dietary iron sensing, and its mutation leads to severe iron overloadJ Clin Invest1152180-21862005. 217. Niederkofler V, Salie R, and Arber S. Hemojuvelin is essential for dietary iron sensing, and its mutation leads to severe iron overload. J Clin Invest 115: 2180–2186, 2005.
218.
Njajou OTVaessen NJoosse MBerghuis Bvan Dongen JWBreuning MHSnijders PJRutten WPSandkuijl LAOostra BAvan Duijn CMHeutink P. A mutation in SLC11A3 is associated with autosomal dominant hemochromatosisNat Genet28213-2142001. 218. Njajou OT, Vaessen N, Joosse M, Berghuis B, van Dongen JW, Breuning MH, Snijders PJ, Rutten WP, Sandkuijl LA, Oostra BA, van Duijn CM, and Heutink P. A mutation in SLC11A3 is associated with autosomal dominant hemochromatosis. Nat Genet 28: 213–214, 2001.
219.
Nohe AKeating EKnaus PPetersen NO. Signal transduction of bone morphogenetic protein receptorsCell Signal16291-2992004. 219. Nohe A, Keating E, Knaus P, and Petersen NO. Signal transduction of bone morphogenetic protein receptors. Cell Signal 16: 291–299, 2004.
220.
Oakley AECollingwood JFDobson JLove GPerrott HREdwardson JAElstner MMorris CM. Individual dopaminergic neurons show raised iron levels in Parkinson diseaseNeurology681820-18252007. 220. Oakley AE, Collingwood JF, Dobson J, Love G, Perrott HR, Edwardson JA, Elstner M, and Morris CM. Individual dopaminergic neurons show raised iron levels in Parkinson disease. Neurology 68: 1820–1825, 2007.
221.
Ohgami RSCampagna DRAntiochos BWood EBSharp JJBarker JEFleming MD. nm1054: a spontaneous, recessive, hypochromic, microcytic anemia mutation in the mouseBlood1063625-36312005. 221. Ohgami RS, Campagna DR, Antiochos B, Wood EB, Sharp JJ, Barker JE, and Fleming MD. nm1054: a spontaneous, recessive, hypochromic, microcytic anemia mutation in the mouse. Blood 106: 3625–3631, 2005.
222.
Ohgami RSCampagna DRGreer ELAntiochos BMcDonald AChen JSharp JJFujiwara YBarker JEFleming MD. Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cellsNat Genet371264-12692005. 222. Ohgami RS, Campagna DR, Greer EL, Antiochos B, McDonald A, Chen J, Sharp JJ, Fujiwara Y, Barker JE, and Fleming MD. Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat Genet 37: 1264–1269, 2005.
223.
Ohshima KMontermini LWells RDPandolfo M. Inhibitory effects of expanded GAA.TTC triplet repeats from intron I of the Friedreich ataxia gene on transcription and replication in vivoJ Biol Chem27314588-145951998. 223. Ohshima K, Montermini L, Wells RD, and Pandolfo M. Inhibitory effects of expanded GAA.TTC triplet repeats from intron I of the Friedreich ataxia gene on transcription and replication in vivo. J Biol Chem 273: 14588–14595, 1998.
224.
Oktay YDioum EMatsuzaki SDing KYan LJHaller RGSzweda LIGarcia JA. Hypoxia-inducible factor 2alpha regulates expression of the mitochondrial aconitase chaperone protein frataxinJ Biol Chem28211750-117562007. 224. Oktay Y, Dioum E, Matsuzaki S, Ding K, Yan LJ, Haller RG, Szweda LI, and Garcia JA. Hypoxia-inducible factor 2alpha regulates expression of the mitochondrial aconitase chaperone protein frataxin. J Biol Chem 282: 11750–11756, 2007.
225.
Okuda AImagawa MMaeda YSakai MMuramatsu M. Structural and functional analysis of an enhancer GPEI having a phorbol 12-O-tetradecanoate 13-acetate responsive element-like sequence found in the rat glutathione transferase P geneJ Biol Chem26416919-169261989. 225. Okuda A, Imagawa M, Maeda Y, Sakai M, and Muramatsu M. Structural and functional analysis of an enhancer GPEI having a phorbol 12-O-tetradecanoate 13-acetate responsive element-like sequence found in the rat glutathione transferase P gene. J Biol Chem 264: 16919–16926, 1989.
226.
Ollinger KRoberg K. Nutrient deprivation of cultured rat hepatocytes increases the desferrioxamine-available iron pool and augments the sensitivity to hydrogen peroxideJ Biol Chem27223707-237111997. 226. Ollinger K and Roberg K. Nutrient deprivation of cultured rat hepatocytes increases the desferrioxamine-available iron pool and augments the sensitivity to hydrogen peroxide. J Biol Chem 272: 23707–23711, 1997.
227.
Orino KLehman LTsuji YAyaki HTorti SVTorti FM. Ferritin and the response to oxidative stressBiochem J357241-2472001. 227. Orino K, Lehman L, Tsuji Y, Ayaki H, Torti SV, and Torti FM. Ferritin and the response to oxidative stress. Biochem J 357: 241–247, 2001.
228.
Osaki S. Kinetic studies of ferrous ion oxidation with crystalline human ferroxidase (ceruloplasmin)J Biol Chem2415053-50591966. 228. Osaki S. Kinetic studies of ferrous ion oxidation with crystalline human ferroxidase (ceruloplasmin). J Biol Chem 241: 5053–5059, 1966.
229.
Papanikolaou GPantopoulos K. Iron metabolism and toxicityToxicol Appl Pharmacol202199-2112005. 229. Papanikolaou G and Pantopoulos K. Iron metabolism and toxicity. Toxicol Appl Pharmacol 202: 199–211, 2005.
230.
Papanikolaou GSamuels MELudwig EHMacDonald MLFranchini PLDube MPAndres LMacFarlane JSakellaropoulos NPolitou MNemeth EThompson JRisler JKZaborowska CBabakaiff RRadomski CCPape TDDavidas OChristakis JBrissot PLockitch GGanz THayden MRGoldberg YP. Mutations in HFE2 cause iron overload in chromosome 1q-linked juvenile hemochromatosisNat Genet3677-822004. 230. Papanikolaou G, Samuels ME, Ludwig EH, MacDonald ML, Franchini PL, Dube MP, Andres L, MacFarlane J, Sakellaropoulos N, Politou M, Nemeth E, Thompson J, Risler JK, Zaborowska C, Babakaiff R, Radomski CC, Pape TD, Davidas O, Christakis J, Brissot P, Lockitch G, Ganz T, Hayden MR, and Goldberg YP. Mutations in HFE2 cause iron overload in chromosome 1q-linked juvenile hemochromatosis. Nat Genet 36: 77–82, 2004.
231.
Paradkar PNRoth JA. Post-translational and transcriptional regulation of DMT1 during P19 embryonic carcinoma cell differentiation by retinoic acidBiochem J394173-1832006. 231. Paradkar PN and Roth JA. Post-translational and transcriptional regulation of DMT1 during P19 embryonic carcinoma cell differentiation by retinoic acid. Biochem J 394: 173–183, 2006.
232.
Park CHValore EVWaring AJGanz T. Hepcidin, a urinary antimicrobial peptide synthesized in the liverJ Biol Chem2767806-78102001. 232. Park CH, Valore EV, Waring AJ, and Ganz T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 276: 7806–7810, 2001.
233.
Park SGakh OMooney SMIsaya G. The ferroxidase activity of yeast frataxinJ Biol Chem27738589-385952002. 233. Park S, Gakh O, Mooney SM, and Isaya G. The ferroxidase activity of yeast frataxin. J Biol Chem 277: 38589–38595, 2002.
234.
Park SGakh OO'Neill HAMangravita ANichol HFerreira GCIsaya G. Yeast frataxin sequentially chaperones and stores iron by coupling protein assembly with iron oxidationJ Biol Chem27831340-313512003. 234. Park S, Gakh O, O'Neill HA, Mangravita A, Nichol H, Ferreira GC, and Isaya G. Yeast frataxin sequentially chaperones and stores iron by coupling protein assembly with iron oxidation. J Biol Chem 278: 31340–31351, 2003.
235.
Parkkila SWaheed ABritton RSBacon BRZhou XYTomatsu SFleming RESly WS. Association of the transferrin receptor in human placenta with HFE, the protein defective in hereditary hemochromatosisProc Natl Acad Sci U S A9413198-132021997. 235. Parkkila S, Waheed A, Britton RS, Bacon BR, Zhou XY, Tomatsu S, Fleming RE, and Sly WS. Association of the transferrin receptor in human placenta with HFE, the protein defective in hereditary hemochromatosis. Proc Natl Acad Sci U S A 94: 13198–13202, 1997.
236.
Pastore ATozzi GGaeta LMBertini ESerafini VDi Cesare SBonetto VCasoni FCarrozzo RFederici GPiemonte F. Actin glutathionylation increases in fibroblasts of patients with Friedreich's ataxia: a potential role in the pathogenesis of the diseaseJ Biol Chem27842588-425952003. 236. Pastore A, Tozzi G, Gaeta LM, Bertini E, Serafini V, Di Cesare S, Bonetto V, Casoni F, Carrozzo R, Federici G, and Piemonte F. Actin glutathionylation increases in fibroblasts of patients with Friedreich's ataxia: a potential role in the pathogenesis of the disease. J Biol Chem 278: 42588–42595, 2003.
237.
Patel BNDavid S. A novel glycosylphosphatidylinositol-an-chored form of ceruloplasmin is expressed by mammalian astrocytesJ Biol Chem27220185-201901997. 237. Patel BN and David S. A novel glycosylphosphatidylinositol-an-chored form of ceruloplasmin is expressed by mammalian astrocytes. J Biol Chem 272: 20185–20190, 1997.
238.
Patel BNDunn RJDavid S. Alternative RNA splicing generates a glycosylphosphatidylinositol-anchored form of ceruloplasmin in mammalian brainJ Biol Chem2754305-43102000. 238. Patel BN, Dunn RJ, and David S. Alternative RNA splicing generates a glycosylphosphatidylinositol-anchored form of ceruloplasmin in mammalian brain. J Biol Chem 275: 4305–4310, 2000.
239.
Patel BNDunn RJJeong SYZhu QJulien JPDavid S. Ceruloplasmin regulates iron levels in the CNS and prevents free radical injuryJ Neurosci226578-65862002, 239. Patel BN, Dunn RJ, Jeong SY, Zhu Q, Julien JP, and David S. Ceruloplasmin regulates iron levels in the CNS and prevents free radical injury. J Neurosci 22: 6578–6586, 2002,
240.
Perkins ND. Integrating cell-signalling pathways with NF-kap-paB and IKK functionNat Rev Mol Cell Biol849-622007. 240. Perkins ND. Integrating cell-signalling pathways with NF-kap-paB and IKK function. Nat Rev Mol Cell Biol 8: 49–62, 2007.
241.
Perry GCash ADSmith MA. Alzheimer disease and oxidative stressJ Biomed Biotechnol2120-1232002. 241. Perry G, Cash AD, and Smith MA. Alzheimer disease and oxidative stress. J Biomed Biotechnol 2: 120–123, 2002.
242.
Peyssonnaux CZinkernagel ASSchuepbach RARankin EVaulont SHaase VHNizet VJohnson RS. Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs)J Clin Invest1171926-19322007. 242. Peyssonnaux C, Zinkernagel AS, Schuepbach RA, Rankin E, Vaulont S, Haase VH, Nizet V, and Johnson RS. Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). J Clin Invest 117: 1926–1932, 2007.
243.
Pham CGBubici CZazzeroni FPapa SJones JAlvarez KJayawardena SDe Smaele ECong RBeaumont CTorti FMTorti SVFranzoso G. Ferritin heavy chain upregulation by NF-kappaB inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen speciesCell119529-5422004. 243. Pham CG, Bubici C, Zazzeroni F, Papa S, Jones J, Alvarez K, Jayawardena S, De Smaele E, Cong R, Beaumont C, Torti FM, Torti SV, and Franzoso G. Ferritin heavy chain upregulation by NF-kappaB inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen species. Cell 119: 529–542, 2004.
244.
Pietrangelo A. Hereditary hemochromatosis: a new look at an old diseaseN Engl J Med3502383-23972004. 244. Pietrangelo A. Hereditary hemochromatosis: a new look at an old disease. N Engl J Med 350: 2383–2397, 2004.
245.
Pietrangelo ADierssen UValli LGaruti CRump ACorradini EErnst MKlein CTrautwein C. STAT3 is required for IL-6-gp130-dependent activation of hepcidin in vivoGastroenterology132294-3002007. 245. Pietrangelo A, Dierssen U, Valli L, Garuti C, Rump A, Corradini E, Ernst M, Klein C, and Trautwein C. STAT3 is required for IL-6-gp130-dependent activation of hepcidin in vivo. Gastroenterology 132: 294–300, 2007.
246.
Pietsch ECChan JYTorti FMTorti SV. Nrf2 mediates the induction of ferritin H in response to xenobiotics and cancer chemopreventive dithiolethionesJ Biol Chem2782361-23692003. 246. Pietsch EC, Chan JY, Torti FM, and Torti SV. Nrf2 mediates the induction of ferritin H in response to xenobiotics and cancer chemopreventive dithiolethiones. J Biol Chem 278: 2361–2369, 2003.
247.
Pigeon CIlyin GCourselaud BLeroyer PTurlin BBrissot PLoreal O. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overloadJ Biol Chem2767811-78192001. 247. Pigeon C, Ilyin G, Courselaud B, Leroyer P, Turlin B, Brissot P, and Loreal O. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem 276: 7811–7819, 2001.
248.
Pilz RB. Impaired erythroid-specific gene expression in cAMP-dependent protein kinase-deficient murine erythroleukemia cellsJ Biol Chem26820252-202581993. 248. Pilz RB. Impaired erythroid-specific gene expression in cAMP-dependent protein kinase-deficient murine erythroleukemia cells. J Biol Chem 268: 20252–20258, 1993.
249.
Ponka PBeaumont CRichardson DR. Function and regulation of transferrin and ferritinSemin Hematol3535-541998. 249. Ponka P, Beaumont C, and Richardson DR. Function and regulation of transferrin and ferritin. Semin Hematol 35: 35–54, 1998.
250.
Prieto JBarry MSherlock S. Serum ferritin in patients with iron overload and with acute and chronic liver diseasesGastroenterology68525-5331975. 250. Prieto J, Barry M, and Sherlock S. Serum ferritin in patients with iron overload and with acute and chronic liver diseases. Gastroenterology 68: 525–533, 1975.
251.
Puccio HSimon DCossee MCriqui-Filipe PTiziano FMelki JHindelang CMatyas RRustin PKoenig M. Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron depositsNat Genet27181-1862001. 251. Puccio H, Simon D, Cossee M, Criqui-Filipe P, Tiziano F, Melki J, Hindelang C, Matyas R, Rustin P, and Koenig M. Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits. Nat Genet 27: 181–186, 2001.
252.
Radisky DCBabcock MCKaplan J. The yeast frataxin homologue mediates mitochondrial iron efflux: evidence for a mitochondrial iron cycleJ Biol Chem2744497-44991999. 252. Radisky DC, Babcock MC, and Kaplan J. The yeast frataxin homologue mediates mitochondrial iron efflux: evidence for a mitochondrial iron cycle. J Biol Chem 274: 4497–4499, 1999.
253.
Rangasamy TCho CYThimmulappa RKZhen LSrisuma SSKensler TWYamamoto MPetrache ITuder RMBiswal S. Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in miceJ Clin Invest1141248-12592004. 253. Rangasamy T, Cho CY, Thimmulappa RK, Zhen L, Srisuma SS, Kensler TW, Yamamoto M, Petrache I, Tuder RM, and Biswal S. Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. J Clin Invest 114: 1248–1259, 2004.
254.
Rangasamy TGuo JMitzner WARoman JSingh AFryer ADYamamoto MKensler TWTuder RMGeoras SNBiswal S. Disruption of Nrf2 enhances susceptibility to severe airway inflammation and asthma in miceJ Exp Med20247-592005. 254. Rangasamy T, Guo J, Mitzner WA, Roman J, Singh A, Fryer AD, Yamamoto M, Kensler TW, Tuder RM, Georas SN, and Biswal S. Disruption of Nrf2 enhances susceptibility to severe airway inflammation and asthma in mice. J Exp Med 202: 47–59, 2005.
255.
Reinheckel TSitte NUllrich OKuckelkorn UDavies KJGrune T. Comparative resistance of the 20S and 26S proteasome to oxidative stressBiochem J335637-6421998. 255. Reinheckel T, Sitte N, Ullrich O, Kuckelkorn U, Davies KJ. and Grune T. Comparative resistance of the 20S and 26S proteasome to oxidative stress. Biochem J 335: 637–642, 1998.
256.
Rennert PDIchimura TSizing IDBailly VLi ZRennard RMcCoon PPablo LMiklasz STarilonte LBonventre JV. T cell, Ig domain, mucin domain-2 gene-deficient mice reveal a novel mechanism for the regulation of Th2 immune responses and airway inflammationJ Immunol1774311-43212006. 256. Rennert PD, Ichimura T, Sizing ID, Bailly V, Li Z, Rennard R, McCoon P, Pablo L, Miklasz S, Tarilonte L, and Bonventre JV. T cell, Ig domain, mucin domain-2 gene-deficient mice reveal a novel mechanism for the regulation of Th2 immune responses and airway inflammation. J Immunol 177: 4311–4321, 2006.
257.
Richardson DRMouralian CPonka PBecker E. Development of potential iron chelators for the treatment of Friedreich's ataxia: ligands that mobilize mitochondrial ironBiochim Biophys Acta1536133-1402001. 257. Richardson DR, Mouralian C, Ponka P, and Becker E. Development of potential iron chelators for the treatment of Friedreich's ataxia: ligands that mobilize mitochondrial iron. Biochim Biophys Acta 1536: 133–140, 2001.
258.
Rivera SNemeth EGabayan VLopez MAFarshidi DGanz T. Synthetic hepcidin causes rapid dose-dependent hypoferremia and is concentrated in ferroportin-containing organsBlood1062196-21992005. 258. Rivera S, Nemeth E, Gabayan V, Lopez MA, Farshidi D, and Ganz T. Synthetic hepcidin causes rapid dose-dependent hypoferremia and is concentrated in ferroportin-containing organs. Blood 106: 2196–2199, 2005.
259.
Roetto APapanikolaou GPolitou MAlberti FGirelli DChristakis JLoukopoulos DCamaschella C. Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosisNat Genet3321-222003. 259. Roetto A, Papanikolaou G, Politou M, Alberti F, Girelli D, Christakis J, Loukopoulos D, and Camaschella C. Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis. Nat Genet 33: 21–22, 2003.
260.
Rogers JTRandall JDCahill CMEder PSHuang XGunshin HLeiter LMcPhee JSarang SSUtsuki TGreig NHLahiri DKTanzi REBush AIGiordano TGullans SR. An iron-responsive element type II in the 5′-untranslated region of the Alzheimer's amyloid precursor protein transcriptJ Biol Chem27745518-455282002. 260. Rogers JT, Randall JD, Cahill CM, Eder PS, Huang X, Gunshin H, Leiter L, McPhee J, Sarang SS, Utsuki T, Greig NH, Lahiri DK, Tanzi RE, Bush AI, Giordano T, and Gullans SR. An iron-responsive element type II in the 5′-untranslated region of the Alzheimer's amyloid precursor protein transcript. J Biol Chem 277: 45518–45528, 2002.
261.
Rotig Ade Lonlay PChretien DFoury FKoenig MSidi DMunnich ARustin P. Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxiaNat Genet17215-2171997. 261. Rotig A, de Lonlay P, Chretien D, Foury F, Koenig M, Sidi D, Munnich A, and Rustin P. Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia. Nat Genet 17: 215–217, 1997.
262.
Rouault TAHentze MWCaughman SWHarford JBKlausner RD. Binding of a cytosolic protein to the iron-responsive element of human ferritin messenger RNAScience2411207-12101988. 262. Rouault TA, Hentze MW, Caughman SW, Harford JB, and Klausner RD. Binding of a cytosolic protein to the iron-responsive element of human ferritin messenger RNA. Science 241: 1207–1210, 1988.
263.
Rouault TAStout CDKaptain SHarford JBKlausner RD. Structural relationship between an iron-regulated RNA-binding protein (IRE-BP) and aconitase: functional implicationsCell64881-8831991. 263. Rouault TA, Stout CD, Kaptain S, Harford JB, and Klausner RD. Structural relationship between an iron-regulated RNA-binding protein (IRE-BP) and aconitase: functional implications. Cell 64: 881–883, 1991.
264.
Rubinsztein DCGestwicki JEMurphy LOKlionsky DJ. Potential therapeutic applications of autophagyNat Rev Drug Discov6304-3122007. 264. Rubinsztein DC, Gestwicki JE, Murphy LO, and Klionsky DJ. Potential therapeutic applications of autophagy. Nat Rev Drug Discov 6: 304–312, 2007.
265.
Rushmore THMorton MRPickett CB. The antioxidant responsive element: activation by oxidative stress and identification of the DNA consensus sequence required for functional activityJ Biol Chem26611632-116391991. 265. Rushmore TH, Morton MR, and Pickett CB. The antioxidant responsive element: activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J Biol Chem 266: 11632–11639, 1991.
266.
Ryu EJHarding HPAngelastro JMVitolo OVRon DGreene LA. Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson's diseaseJ Neurosci2210690-106982002. 266. Ryu EJ, Harding HP, Angelastro JM, Vitolo OV, Ron D, and Greene LA. Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson's disease. J Neurosci 22: 10690–10698, 2002.
267.
Sakamoto NChastain PDParniewski POhshima KPandolfo MGriffith JDWells RD. Sticky DNA: self-association properties of long GAA.TTC repeats in R.R.Y triplex structures from Friedreich's ataxiaMol Cell3465-4751999. 267. Sakamoto N, Chastain PD, Parniewski P, Ohshima K, Pandolfo M, Griffith JD, and Wells RD. Sticky DNA: self-association properties of long GAA.TTC repeats in R.R.Y triplex structures from Friedreich's ataxia. Mol Cell 3: 465–475, 1999.
268.
Sakamoto NOhshima KMontermini LPandolfo MWells RD. Sticky DNA, a self-associated complex formed at long GAA*TTC repeats in intron 1 of the frataxin gene, inhibits transcriptionJ Biol Chem27627171-271772001. 268. Sakamoto N, Ohshima K, Montermini L, Pandolfo M, and Wells RD. Sticky DNA, a self-associated complex formed at long GAA*TTC repeats in intron 1 of the frataxin gene, inhibits transcription. J Biol Chem 276: 27171–27177, 2001.
269.
Schalinske KLEisenstein RS. Phosphorylation and activation of both iron regulatory proteins 1 and 2 in HL-60 cellsJ Biol Chem2717168-71761996. 269. Schalinske KL and Eisenstein RS. Phosphorylation and activation of both iron regulatory proteins 1 and 2 in HL-60 cells. J Biol Chem 271: 7168–7176, 1996.
270.
Schoenfeld RANapoli EWong AZhan SReutenauer LMorin DBuckpitt ARTaroni FLonnerdal BRistow MPuccio HCortopassi GA. Frataxin deficiency alters heme pathway transcripts and decreases mitochondrial heme metabolites in mammalian cellsHum Mol Genet143787-37992005. 270. Schoenfeld RA, Napoli E, Wong A, Zhan S, Reutenauer L, Morin D, Buckpitt AR, Taroni F, Lonnerdal B, Ristow M, Puccio H, and Cortopassi GA. Frataxin deficiency alters heme pathway transcripts and decreases mitochondrial heme metabolites in mammalian cells. Hum Mol Genet 14: 3787–3799, 2005.
271.
Schranzhofer MSchifrer MCabrera JAKopp SChiba PBeug HMullner EW. Remodeling the regulation of iron metabolism during erythroid differentiation to ensure efficient heme biosynthesisBlood1074159-41672006. 271. Schranzhofer M, Schifrer M, Cabrera JA, Kopp S, Chiba P, Beug H, and Mullner EW. Remodeling the regulation of iron metabolism during erythroid differentiation to ensure efficient heme biosynthesis. Blood 107: 4159–4167, 2006.
272.
Semenza GL. HIF-1 and mechanisms of hypoxia sensingCurr Opin Cell Biol13167-1712001. 272. Semenza GL. HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol 13: 167–171, 2001.
273.
Seznec HSimon DBouton CReutenauer LHertzog AGolik PProcaccio VPatel MDrapier JCKoenig MPuccio H. Friedreich ataxia: the oxidative stress paradoxHum Mol Genet14463-4742005. 273. Seznec H, Simon D, Bouton C, Reutenauer L, Hertzog A, Golik P, Procaccio V, Patel M, Drapier JC, Koenig M, and Puccio H. Friedreich ataxia: the oxidative stress paradox. Hum Mol Genet 14: 463–474, 2005.
274.
Seznec HSimon DMonassier LCriqui-Filipe PGansmuller ARustin PKoenig MPuccio H. Idebenone delays the onset of cardiac functional alteration without correction of Fe-S enzymes deficit in a mouse model for Friedreich ataxiaHum Mol Genet131017-10242004. 274. Seznec H, Simon D, Monassier L, Criqui-Filipe P, Gansmuller A, Rustin P, Koenig M, and Puccio H. Idebenone delays the onset of cardiac functional alteration without correction of Fe-S enzymes deficit in a mouse model for Friedreich ataxia. Hum Mol Genet 13: 1017–1024, 2004.
275.
Shalitin SCarmi DWeintrob NPhillip MMiskin HKornreich LZilber RYaniv ITamary H. Serum ferritin level as a predictor of impaired growth and puberty in thalassemia major patientsEur J Haematol7493-1002005. 275. Shalitin S, Carmi D, Weintrob N, Phillip M, Miskin H, Kornreich L, Zilber R, Yaniv I, and Tamary H. Serum ferritin level as a predictor of impaired growth and puberty in thalassemia major patients. Eur J Haematol 74: 93–100, 2005.
275a.
Shan Y, Napoli E, and Cortopassi GHum Mol Genet16929-9412007. 275a. Shan Y, Napoli E, and Cortopassi G. Hum Mol Genet 16: 929–941, 2007.
276.
Shang TKotamraju SKalivendi SVHillard CJKalyanaraman B. 1-Methyl-4-phenylpyridinium-induced apoptosis in cerebellar granule neurons is mediated by transferrin receptor iron-dependent depletion of tetrahydrobiopterin and neuronal nitric-oxide synthase-derived superoxideJ Biol Chem27919099-191122004. 276. Shang T, Kotamraju S, Kalivendi SV, Hillard CJ, and Kalyanaraman B. 1-Methyl-4-phenylpyridinium-induced apoptosis in cerebellar granule neurons is mediated by transferrin receptor iron-dependent depletion of tetrahydrobiopterin and neuronal nitric-oxide synthase-derived superoxide. J Biol Chem 279: 19099–19112, 2004.
277.
Shayeghi MLatunde-Dada GOOakhill JSLaftah AHTakeuchi KHalliday NKhan YWarley AMcCann FEHider RCFrazer DMAnderson GJVulpe CDSimpson RJMcKie AT. Identification of an intestinal heme transporterCell122789-8012005. 277. Shayeghi M, Latunde-Dada GO, Oakhill JS, Laftah AH, Takeuchi K, Halliday N, Khan Y, Warley A, McCann FE, Hider RC, Frazer DM, Anderson GJ, Vulpe CD, Simpson RJ, and McKie AT. Identification of an intestinal heme transporter. Cell 122: 789–801, 2005.
278.
Silvestri LPagani AFazi CGerardi GLevi SArosio PCamaschella C. Defective targeting of hemojuvelin to plasma membrane is a common pathogenetic mechanism in juvenile hemochromatosisBlood1094503-45102007. 278. Silvestri L, Pagani A, Fazi C, Gerardi G, Levi S, Arosio P, and Camaschella C. Defective targeting of hemojuvelin to plasma membrane is a common pathogenetic mechanism in juvenile hemochromatosis. Blood 109: 4503–4510, 2007.
279.
Simon DSeznec HGansmuller ACarelle NWeber PMetzger DRustin PKoenig MPuccio H. Friedreich ataxia mouse models with progressive cerebellar and sensory ataxia reveal autophagic neurodegeneration in dorsal root gangliaJ Neurosci241987-19952004. 279. Simon D, Seznec H, Gansmuller A, Carelle N, Weber P, Metzger D, Rustin P, Koenig M, and Puccio H. Friedreich ataxia mouse models with progressive cerebellar and sensory ataxia reveal autophagic neurodegeneration in dorsal root ganglia. J Neurosci 24: 1987–1995, 2004.
280.
Smith MAWehr KHarris PLSiedlak SLConnor JRPerry G. Abnormal localization of iron regulatory protein in Alzheimer's diseaseBrain Res788232-2361998. 280. Smith MA, Wehr K, Harris PL, Siedlak SL, Connor JR and Perry G. Abnormal localization of iron regulatory protein in Alzheimer's disease. Brain Res 788: 232–236, 1998.
281.
Stehling OElsasser HPBruckel BMuhlenhoff ULill R. Iron-sulfur protein maturation in human cells: evidence for a function of frataxinHum Mol Genet133007-30152004. 281. Stehling O, Elsasser HP, Bruckel B, Muhlenhoff U, and Lill R. Iron-sulfur protein maturation in human cells: evidence for a function of frataxin. Hum Mol Genet 13: 3007–3015, 2004.
282.
Storch SKubler BHoning SAckmann MZapf JBlum WBraulke T. Transferrin binds insulin-like growth factors and affects binding properties of insulin-like growth factor binding protein-3FEBS Lett509395-3982001. 282. Storch S, Kubler B, Honing S, Ackmann M, Zapf J, Blum W, and Braulke T. Transferrin binds insulin-like growth factors and affects binding properties of insulin-like growth factor binding protein-3. FEBS Lett 509: 395–398, 2001.
283.
Sturm BBistrich USchranzhofer MSarsero JPRauen UScheiber-Mojdehkar Bde Groot HIoannou PPetrat F. Friedreich's ataxia, no changes in mitochondrial labile iron in human lymphoblasts and fibroblasts: a decrease in antioxidative capacity?J Biol Chem2806701-67082005. 283. Sturm B, Bistrich U, Schranzhofer M, Sarsero JP, Rauen U, Scheiber-Mojdehkar B, de Groot H, Ioannou P, and Petrat F. Friedreich's ataxia, no changes in mitochondrial labile iron in human lymphoblasts and fibroblasts: a decrease in antioxidative capacity? J Biol Chem 280: 6701–6708, 2005.
284.
Sturm BStupphann DKaun CBoesch SSchranzhofer MWojta JGoldenberg HScheiber-Mojdehkar B. Recombinant human erythropoietin: effects on frataxin expression in vitroEur J Clin Invest35711-7172005. 284. Sturm B, Stupphann D, Kaun C, Boesch S, Schranzhofer M, Wojta J, Goldenberg H, and Scheiber-Mojdehkar B. Recombinant human erythropoietin: effects on frataxin expression in vitro. Eur J Clin Invest 35: 711–717, 2005.
285.
Surguladze NPatton SCozzi AFried MGConnor JR. Characterization of nuclear ferritin and mechanism of translocationBiochem J388731-7402005. 285. Surguladze N, Patton S, Cozzi A, Fried MG, and Connor JR. Characterization of nuclear ferritin and mechanism of translocation. Biochem J 388: 731–740, 2005.
286.
Tabuchi MTanaka NNishida-Kitayama JOhno HKishi F. Alternative splicing regulates the subcellular localization of divalent metal transporter 1 isoformsMol Biol Cell134371-43872002. 286. Tabuchi M, Tanaka N, Nishida-Kitayama J, Ohno H, and Kishi F. Alternative splicing regulates the subcellular localization of divalent metal transporter 1 isoforms. Mol Biol Cell 13: 4371–4387, 2002.
287.
Tan GChen LSLonnerdal BGellera CTaroni FACortopassi GA. Frataxin expression rescues mitochondrial dysfunctions in FRDA cellsHum Mol Genet102099-21072001. 287. Tan G, Chen LS, Lonnerdal B, Gellera C, Taroni FA, and Cortopassi GA. Frataxin expression rescues mitochondrial dysfunctions in FRDA cells. Hum Mol Genet 10: 2099–2107, 2001.
288.
Tehranchi RInvernizzi RGrandien AZhivotovsky BFadeel BForsblom AMTravaglino ESamuelsson JHast RNilsson LCazzola MWibom RHellstrom-Lindberg E. Aberrant mitochondrial iron distribution and maturation arrest characterize early erythroid precursors in low-risk myelodysplastic syndromesBlood106247-2532005. 288. Tehranchi R, Invernizzi R, Grandien A, Zhivotovsky B, Fadeel B, Forsblom AM, Travaglino E, Samuelsson J, Hast R, Nilsson L, Cazzola M, Wibom R, and Hellstrom-Lindberg E. Aberrant mitochondrial iron distribution and maturation arrest characterize early erythroid precursors in low-risk myelodysplastic syndromes. Blood 106: 247–253, 2005.
289.
Thierbach RSchulz TJIsken FVoigt AMietzner BDrewes Gvon Kleist-Retzow JCWiesner RJMagnuson MAPuccio HPfeiffer AFSteinberg PRistow M. Targeted disruption of hepatic frataxin expression causes impaired mitochondrial function, decreased life span and tumor growth in miceHum Mol Genet143857-38642005. 289. Thierbach R, Schulz TJ, Isken F, Voigt A, Mietzner B, Drewes G, von Kleist-Retzow JC, Wiesner RJ, Magnuson MA, Puccio H, Pfeiffer AF, Steinberg P, and Ristow M. Targeted disruption of hepatic frataxin expression causes impaired mitochondrial function, decreased life span and tumor growth in mice. Hum Mol Genet 14: 3857–3864, 2005.
290.
Thimmulappa RKMai KHSrisuma SKensler TWYamamoto MBiswal S. Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarrayCancer Res625196-52032002. 290. Thimmulappa RK, Mai KH, Srisuma S, Kensler TW, Yamamoto M, and Biswal S. Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res 62: 5196–5203, 2002.
291.
Thompson KMenzies SMuckenthaler MTorti FMWood TTorti SVHentze MWBeard JConnor J. Mouse brains deficient in H-ferritin have normal iron concentration but a protein profile of iron deficiency and increased evidence of oxidative stressJ Neurosci Res7146-632003. 291. Thompson K, Menzies S, Muckenthaler M, Torti FM, Wood T, Torti SV, Hentze MW, Beard J, and Connor J. Mouse brains deficient in H-ferritin have normal iron concentration but a protein profile of iron deficiency and increased evidence of oxidative stress. J Neurosci Res 71: 46–63, 2003.
292.
Thompson KJFried MGYe ZBoyer PConnor JR. Regulation, mechanisms and proposed function of ferritin translocation to cell nucleiJ Cell Sci1152165-21772002. 292. Thompson KJ, Fried MG, Ye Z, Boyer P, and Connor JR. Regulation, mechanisms and proposed function of ferritin translocation to cell nuclei. J Cell Sci 115: 2165–2177, 2002.
293.
Thorstensen KRomslo I. The role of transferrin in the mechanism of cellular iron uptakeBiochem J2711-91990. 293. Thorstensen K and Romslo I. The role of transferrin in the mechanism of cellular iron uptake. Biochem J 271: 1–9, 1990.
294.
Torti SVKwak ELMiller SCMiller LLRingold GMMyambo KBYoung APTorti FM. The molecular cloning and characterization of murine ferritin heavy chain, a tumor necrosis factor-inducible geneJ Biol Chem26312638-126441988. 294. Torti SV, Kwak EL, Miller SC, Miller LL, Ringold GM, Myambo KB, Young AP, and Torti FM. The molecular cloning and characterization of murine ferritin heavy chain, a tumor necrosis factor-inducible gene. J Biol Chem 263: 12638–12644, 1988.
295.
Toth IYuan LRogers JTBoyce HBridges KR. Hypoxia alters iron-regulatory protein-1 binding capacity and modulates cellular iron homeostasis in human hepatoma and erythroleukemia cellsJ Biol Chem2744467-44731999. 295. Toth I, Yuan L, Rogers JT, Boyce H, and Bridges KR. Hypoxia alters iron-regulatory protein-1 binding capacity and modulates cellular iron homeostasis in human hepatoma and erythroleukemia cells. J Biol Chem 274: 4467–4473, 1999.
296.
Toussaint LBertrand LHue LCrichton RRDeclercq JP. High-resolution X-ray structures of human apoferritin H-chain mutants correlated with their activity and metal-binding sitesJ Mol Biol365440-4522007. 296. Toussaint L, Bertrand L, Hue L, Crichton RR, and Declercq JP. High-resolution X-ray structures of human apoferritin H-chain mutants correlated with their activity and metal-binding sites. J Mol Biol 365: 440–452, 2007.
297.
Tran TNEubanks SKSchaffer KJZhou CYLinder MC. Secretion of ferritin by rat hepatoma cells and its regulation by inflammatory cytokines and ironBlood904979-49861997. 297. Tran TN, Eubanks SK, Schaffer KJ, Zhou CY, and Linder MC. Secretion of ferritin by rat hepatoma cells and its regulation by inflammatory cytokines and iron. Blood 90: 4979–4986, 1997.
298.
Trinder DBaker E. Transferrin receptor 2: a new molecule in iron metabolismInt J Biochem Cell Biol35292-2962003. 298. Trinder D and Baker E. Transferrin receptor 2: a new molecule in iron metabolism. Int J Biochem Cell Biol 35: 292–296, 2003.
299.
Trinder DFox CVautier GOlynyk JK. Molecular pathogenesis of iron overloadGut51290-2952002. 299. Trinder D, Fox C, Vautier G, and Olynyk JK. Molecular pathogenesis of iron overload. Gut 51: 290–295, 2002.
300.
Truksa JPeng HLee PBeutler E. Bone morphogenetic proteins 2, 4, and 9 stimulate murine hepcidin 1 expression independently of Hfe, transferrin receptor 2 (Tfr2), and IL-6Proc Natl Acad Sci U S A10310289-102932006. 300. Truksa J, Peng H, Lee P, and Beutler E. Bone morphogenetic proteins 2, 4, and 9 stimulate murine hepcidin 1 expression independently of Hfe, transferrin receptor 2 (Tfr2), and IL-6. Proc Natl Acad Sci U S A 103: 10289–10293, 2006.
301.
Tsuji Y. JunD activates transcription of the human ferritin H gene through an antioxidant response element during oxidative stressOncogene247567-75782005. 301. Tsuji Y. JunD activates transcription of the human ferritin H gene through an antioxidant response element during oxidative stress. Oncogene 24: 7567–7578, 2005.
302.
Tsuji YAkebi NLam TKNakabeppu YTorti SVTorti FM. FER-1, an enhancer of the ferritin H gene and a target of E1A-mediated transcriptional repressionMol Cell Biol155152-51641995. 302. Tsuji Y, Akebi N, Lam TK, Nakabeppu Y, Torti SV, and Torti FM. FER-1, an enhancer of the ferritin H gene and a target of E1A-mediated transcriptional repression. Mol Cell Biol 15: 5152–5164, 1995.
303.
Tsuji YAyaki HWhitman SPMorrow CSTorti SVTorti FM. Coordinate transcriptional and translational regulation of ferritin in response to oxidative stressMol Cell Biol205818-58272000. 303. Tsuji Y, Ayaki H, Whitman SP, Morrow CS, Torti SV, and Torti FM. Coordinate transcriptional and translational regulation of ferritin in response to oxidative stress. Mol Cell Biol 20: 5818–5827, 2000.
304.
Tsuji YKwak ESaika TTorti SVTorti FM. Preferential repression of the H subunit of ferritin by adenovirus E1A in NIH-3T3 mouse fibroblastsJ Biol Chem2687270-72751993. 304. Tsuji Y, Kwak E, Saika T, Torti SV, and Torti FM. Preferential repression of the H subunit of ferritin by adenovirus E1A in NIH-3T3 mouse fibroblasts. J Biol Chem 268: 7270–7275, 1993.
305.
Tsuji YMiller LLMiller SCTorti SVTorti FM. Tumor necrosis factor-alpha and interleukin 1-alpha regulate transferrin receptor in human diploid fibroblasts: relationship to the induction of ferritin heavy chainJ Biol Chem2667257-72611991. 305. Tsuji Y, Miller LL, Miller SC, Torti SV, and Torti FM. Tumor necrosis factor-alpha and interleukin 1-alpha regulate transferrin receptor in human diploid fibroblasts: relationship to the induction of ferritin heavy chain. J Biol Chem 266: 7257–7261, 1991.
306.
Tsuji YMoran ETorti SVTorti FM. Transcriptional regulation of the mouse ferritin H gene: involvement of p300/CBP adaptor proteins in FER-1 enhancer activityJ Biol Chem2747501-75071999. 306. Tsuji Y, Moran E, Torti SV, and Torti FM. Transcriptional regulation of the mouse ferritin H gene: involvement of p300/CBP adaptor proteins in FER-1 enhancer activity. J Biol Chem 274: 7501–7507, 1999.
307.
Tsuji YTorti SVTorti FM. Activation of the ferritin H enhancer, FER-1, by the cooperative action of members of the AP1 and Sp1 transcription factor familiesJ Biol Chem2732984-29921998. 307. Tsuji Y, Torti SV, and Torti FM. Activation of the ferritin H enhancer, FER-1, by the cooperative action of members of the AP1 and Sp1 transcription factor families. J Biol Chem 273: 2984–2992, 1998.
308.
Turano MTammaro ADe Biase ILo Casale MSRuggiero GMonticelli ACocozza SPianese L. 3-Nitropropionic acid increases frataxin expression in human lymphoblasts and in transgenic rat PC12 cellsNeurosci Lett350184-1862003. 308. Turano M, Tammaro A, De Biase I, Lo Casale MS, Ruggiero G, Monticelli A, Cocozza S, and Pianese L. 3-Nitropropionic acid increases frataxin expression in human lymphoblasts and in transgenic rat PC12 cells. Neurosci Lett 350: 184–186, 2003.
309.
Vahdat Shariatpanaahi MVahdat Shariatpanaahi ZMoshtaaghi MShahbaazi SHAbadi A. The relationship between depression and serum ferritin levelEur J Clin Nutr61532-5352007. 309. Vahdat Shariatpanaahi M, Vahdat Shariatpanaahi Z, Moshtaaghi M, Shahbaazi SH, and Abadi A. The relationship between depression and serum ferritin level. Eur J Clin Nutr 61: 532–535, 2007.
310.
Verga Falzacappa MVVujic Spasic MKessler RStolte JHentze MWMuckenthaler MU. STAT3 mediates hepatic hepcidin expression and its inflammatory stimulationBlood109353-3582007. 310. Verga Falzacappa MV, Vujic Spasic M, Kessler R, Stolte J, Hentze MW, and Muckenthaler MU. STAT3 mediates hepatic hepcidin expression and its inflammatory stimulation. Blood 109: 353–358, 2007.
311.
Vidal RGhetti BTakao MBrefel-Courbon CUro-Coste EGlazier BSSiani VBenson MDCalvas PMiravalle LRascol ODelisle MB. Intracellular ferritin accumulation in neural and extraneural tissue characterizes a neurodegenerative disease associated with a mutation in the ferritin light polypeptide geneJ Neuropathol Exp Neurol63363-3802004. 311. Vidal R, Ghetti B, Takao M, Brefel-Courbon C, Uro-Coste E, Glazier BS, Siani V, Benson MD, Calvas P, Miravalle L, Rascol O, and Delisle MB. Intracellular ferritin accumulation in neural and extraneural tissue characterizes a neurodegenerative disease associated with a mutation in the ferritin light polypeptide gene. J Neuropathol Exp Neurol 63: 363–380, 2004.
312.
Voisine CSchilke BOhlson MBeinert HMarszalek JCraig EA. Role of the mitochondrial Hsp70s, Ssc1 and Ssq1, in the maturation of Yfh1Mol Cell Biol203677-36842000. 312. Voisine C, Schilke B, Ohlson M, Beinert H, Marszalek J, and Craig EA. Role of the mitochondrial Hsp70s, Ssc1 and Ssq1, in the maturation of Yfh1. Mol Cell Biol 20: 3677–3684, 2000.
313.
Vulpe CDKuo YMMurphy TLCowley LAskwith CLibina NGitschier JAnderson GJ. Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouseNat Genet21195-1991999. 313. Vulpe CD, Kuo YM, Murphy TL, Cowley L, Askwith C, Libina N, Gitschier J and Anderson GJ. Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat Genet 21: 195–199, 1999.
314.
Waheed AGrubb JHZhou XYTomatsu SFleming RECostaldi MEBritton RSBacon BRSly WS. Regulation of transferrin-mediated iron uptake by HFE, the protein defective in hereditary hemochromatosisProc Natl Acad Sci U S A993117-31222002. 314. Waheed A, Grubb JH, Zhou XY, Tomatsu S, Fleming RE, Costaldi ME, Britton RS, Bacon BR, and Sly WS. Regulation of transferrin-mediated iron uptake by HFE, the protein defective in hereditary hemochromatosis. Proc Natl Acad Sci U S A 99: 3117–3122, 2002.
315.
Waheed AParkkila SSaarnio JFleming REZhou XYTomatsu SBritton RSBacon BRSly WS. Association of HFE protein with transferrin receptor in crypt enterocytes of human duodenumProc Natl Acad Sci U S A961579-15841999. 315. Waheed A, Parkkila S, Saarnio J, Fleming RE, Zhou XY, Tomatsu S, Britton RS, Bacon BR and Sly WS. Association of HFE protein with transferrin receptor in crypt enterocytes of human duodenum. Proc Natl Acad Sci U S A 96: 1579–1584, 1999.
316.
Waheed AParkkila SZhou XYTomatsu STsuchihashi ZFeder JNSchatzman RCBritton RSBacon BRSly WS. Hereditary hemochromatosis: effects of C282Y and H63D mutations on association with beta2-microglobulin, intracellular processing, and cell surface expression of the HFE protein in COS-7 cellsProc Natl Acad Sci U S A9412384-123891997. 316. Waheed A, Parkkila S, Zhou XY, Tomatsu S, Tsuchihashi Z, Feder JN, Schatzman RC, Britton RS, Bacon BR, and Sly WS. Hereditary hemochromatosis: effects of C282Y and H63D mutations on association with beta2-microglobulin, intracellular processing, and cell surface expression of the HFE protein in COS-7 cells. Proc Natl Acad Sci U S A 94: 12384–12389, 1997.
317.
Walden WESelezneva AIDupuy JVolbeda AFontecilla-Camps JCTheil ECVolz K. Structure of dual function iron regulatory protein 1 complexed with ferritin IRE-RNAScience3141903-19082006. 317. Walden WE, Selezneva AI, Dupuy J, Volbeda A, Fontecilla-Camps JC, Theil EC, and Volz K. Structure of dual function iron regulatory protein 1 complexed with ferritin IRE-RNA. Science 314: 1903–1908, 2006.
317a.
Wallace DFSummerville LLusby PESubramaniam VNGut54980-9862005. 317a. Wallace DF, Summerville L, Lusby PE, and Subramaniam VN. Gut 54: 980–986, 2005.
318.
Weinzimer SAGibson TBCollett-Solberg PFKhare ALiu BCohen P. Transferrin is an insulin-like growth factor-binding protein-3 binding proteinJ Clin Endocrinol Metab861806-18132001. 318. Weinzimer SA, Gibson TB, Collett-Solberg PF, Khare A, Liu B, and Cohen P. Transferrin is an insulin-like growth factor-binding protein-3 binding protein. J Clin Endocrinol Metab 86: 1806–1813, 2001.
319.
Wenger RHStiehl DPCamenisch G. Integration of oxygen signaling at the consensus HRESci STKE2005re122005. 319. Wenger RH, Stiehl DP, and Camenisch G. Integration of oxygen signaling at the consensus HRE. Sci STKE 2005: re12, 2005.
320.
West AP JrBennett MJSellers VMAndrews NCEnns CABjorkman PJ. Comparison of the interactions of transferrin receptor and transferrin receptor 2 with transferrin and the hereditary hemochromatosis protein HFEJ Biol Chem27538135-381382000. 320. West AP Jr, Bennett MJ, Sellers VM, Andrews NC, Enns CA, and Bjorkman PJ. Comparison of the interactions of transferrin receptor and transferrin receptor 2 with transferrin and the hereditary hemochromatosis protein HFE. J Biol Chem 275: 38135–38138, 2000.
321.
Wong AYang JCavadini PGellera CLonnerdal BTaroni FCortopassi G. The Friedreich's ataxia mutation confers cellular sensitivity to oxidant stress which is rescued by chelators of iron and calcium and inhibitors of apoptosisHum Mol Genet8425-4301999. 321. Wong A, Yang J, Cavadini P, Gellera C, Lonnerdal B, Taroni F, and Cortopassi G. The Friedreich's ataxia mutation confers cellular sensitivity to oxidant stress which is rescued by chelators of iron and calcium and inhibitors of apoptosis. Hum Mol Genet 8: 425–430, 1999.
322.
Worwood MBrook JDCragg SJHellkuhl BJones BMPerera PRoberts SHShaw DJ. Assignment of human ferritin genes to chromosomes 11 and 19q13.3–––19qterHum Genet69371-3741985. 322. Worwood M, Brook JD, Cragg SJ, Hellkuhl B, Jones BM, Perera P, Roberts SH, and Shaw DJ. Assignment of human ferritin genes to chromosomes 11 and 19q13.3–––19qter. Hum Genet 69: 371–374, 1985.
323.
Worwood MDawkins SWagstaff MJacobs A. The purification and properties of ferritin from human serumBiochem J15797-1031976. 323. Worwood M, Dawkins S, Wagstaff M, and Jacobs A. The purification and properties of ferritin from human serum. Biochem J 157: 97–103, 1976.
324.
Wrighting DMAndrews NC. Interleukin-6 induces hepcidin expression through STAT3Blood1083204-32092006. 324. Wrighting DM and Andrews NC. Interleukin-6 induces hepcidin expression through STAT3. Blood 108: 3204–3209, 2006.
325.
Xanthoudakis SCurran T. Redox regulation of AP-1: a link between transcription factor signaling and DNA repairAdv Exp Med Biol38769-751996. 325. Xanthoudakis S and Curran T. Redox regulation of AP-1: a link between transcription factor signaling and DNA repair. Adv Exp Med Biol 387: 69–75, 1996.
326.
Xu XPin SGathinji MFuchs RHarris ZL. Aceruloplasminemia: an inherited neurodegenerative disease with impairment of iron homeostasisAnn N Y Acad Sci1012299-3052004. 326. Xu X, Pin S, Gathinji M, Fuchs R, and Harris ZL. Aceruloplasminemia: an inherited neurodegenerative disease with impairment of iron homeostasis. Ann N Y Acad Sci 1012: 299–305, 2004.
327.
Yamamuro AYoshioka YOgita KMaeda S. Involvement of endoplasmic reticulum stress on the cell death induced by 6-hydroxydopamine in human neuroblastoma SH-SY5Y cellsNeurochem Res31657-6642006. 327. Yamamuro A, Yoshioka Y, Ogita K, and Maeda S. Involvement of endoplasmic reticulum stress on the cell death induced by 6-hydroxydopamine in human neuroblastoma SH-SY5Y cells. Neurochem Res 31: 657–664, 2006.
328.
Yamanaka KIshikawa HMegumi YTokunaga FKanie MRouault TAMorishima IMinato NIshimori KIwai K. Identification of the ubiquitin-protein ligase that recognizes oxidized IRP2Nat Cell Biol5336-3402003. 328. Yamanaka K, Ishikawa H, Megumi Y, Tokunaga F, Kanie M, Rouault TA, Morishima I, Minato N, Ishimori K, and Iwai K. Identification of the ubiquitin-protein ligase that recognizes oxidized IRP2. Nat Cell Biol 5: 336–340, 2003.
329.
Yang FLiu XBQuinones MMelby PCGhio AHaile DJ. Regulation of reticuloendothelial iron transporter MTP1 (Slc11a3) by inflammationJ Biol Chem27739786-397912002. 329. Yang F, Liu XB, Quinones M, Melby PC, Ghio A, and Haile DJ. Regulation of reticuloendothelial iron transporter MTP1 (Slc11a3) by inflammation. J Biol Chem 277: 39786–39791, 2002.
330.
Yang FLum JBMcGill JRMoore CMNaylor SLvan Bragt PHBaldwin WDBowman BH. Human transferrin: cDNA characterization and chromosomal localizationProc Natl Acad Sci U S A812752-27561984. 330. Yang F, Lum JB, McGill JR, Moore CM, Naylor SL, van Bragt PH, Baldwin WD, and Bowman BH. Human transferrin: cDNA characterization and chromosomal localization. Proc Natl Acad Sci U S A 81: 2752–2756, 1984.
331.
Yoon TCowan JA. Frataxin-mediated iron delivery to ferrochelatase in the final step of heme biosynthesisJ Biol Chem27925943-259462004. 331. Yoon T and Cowan JA. Frataxin-mediated iron delivery to ferrochelatase in the final step of heme biosynthesis. J Biol Chem 279: 25943–25946, 2004.
332.
Zancani MPeresson CBiroccio AFederici GUrbani AMurgia ISoave CMicali FVianello AMacri F. Evidence for the presence of ferritin in plant mitochondriaEur J Biochem2713657-36642004. 332. Zancani M, Peresson C, Biroccio A, Federici G, Urbani A, Murgia I, Soave C, Micali F, Vianello A, and Macri F. Evidence for the presence of ferritin in plant mitochondria. Eur J Biochem 271: 3657–3664, 2004.
333.
Zecca LStroppolo AGatti ATampellini DToscani MGallorini MGiaveri GArosio PSantambrogio PFariello RGKaratekin EKleinman MHTurro NHornykiewicz OZucca FA. The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during agingProc Natl Acad Sci U S A1019843-98482004. 333. Zecca L, Stroppolo A, Gatti A, Tampellini D, Toscani M, Gallorini M, Giaveri G, Arosio P, Santambrogio P, Fariello RG, Karatekin E, Kleinman MH, Turro N, Hornykiewicz O, and Zucca FA. The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Proc Natl Acad Sci U S A 101: 9843–9848, 2004.
334.
Zecca LYoudim MBRiederer PConnor JRCrichton RR. Iron, brain ageing and neurodegenerative disordersNat Rev Neurosci5863-8732004. 334. Zecca L, Youdim MB, Riederer P, Connor JR, and Crichton RR. Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5: 863–873, 2004.
335.
Zhang YLyver ERKnight SALesuisse EDancis A. Frataxin and mitochondrial carrier proteins, Mrs3p and Mrs4p, cooperate in providing iron for heme synthesisJ Biol Chem28019794-198072005. 335. Zhang Y, Lyver ER, Knight SA, Lesuisse E, and Dancis A. Frataxin and mitochondrial carrier proteins, Mrs3p and Mrs4p, cooperate in providing iron for heme synthesis. J Biol Chem 280: 19794–19807, 2005.
336.
Zhou XYTomatsu SFleming REParkkila SWaheed AJiang JFei YBrunt EMRuddy DAPrass CESchatzman RCO'Neill RBritton RSBacon BRSly WS. HFE gene knockout produces mouse model of hereditary hemochromatosisProc Natl Acad Sci U S A952492-24971998. 336. Zhou XY, Tomatsu S, Fleming RE, Parkkila S, Waheed A, Jiang J, Fei Y, Brunt EM, Ruddy DA, Prass CE, Schatzman RC, O'Neill R, Britton RS, Bacon BR, and Sly WS. HFE gene knockout produces mouse model of hereditary hemochromatosis. Proc Natl Acad Sci U SA 95: 2492–2497, 1998.

Information & Authors

Information

Published In

cover image Antioxidants & Redox Signaling
Antioxidants & Redox Signaling
Volume 10Issue Number 6June 2008
Pages: 997 - 1030
PubMed: 18327971

History

Published online: 30 September 2010
Published in print: June 2008
Published ahead of print: 7 March 2008
Accepted: 4 December 2007
Revision received: 3 December 2007
Received: 29 August 2007

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Elizabeth L. Mackenzie
Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina.
Kenta Iwasaki
Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina.
Yoshiaki Tsuji
Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina.

Notes

Address reprint requests to:Yoshiaki TsujiDepartment of Environmental and Molecular ToxicologyNorth Carolina State UniversityCampus Box 7633Raleigh, NC 27695E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top