A Role for Protein Disulfide Isomerase in the Early Folding and Assembly of MHC Class I Molecules
Abstract
Proper folding and assembly of major histocompatibility complex (MHC) class I complexes are essential for optimal peptide loading and subsequent antigen presentation. MHC class I folding involves the coordinated formation of multiple disulfide bonds within MHC class I molecules. However, the regulation of disulfide bond formation during the early process of MHC class I folding is uncharacterized. Here, we show that protein disulfide isomerase (PDI) catalyzes the disulfide bond formation of MHC class I molecules and thereby facilitates the assembly of MHC class I heavy chain with β2-microglobulin (β2m). Depletion of PDI but not ERp57 by RNAi interfered with the disulfide bond formation in the MHC class I molecules. In the absence of PDI, the association of free class I heavy chain with calnexin increased, whereas the assembly of MHC class I heavy chain–β2m heterodimers was delayed. These observations suggest that PDI-catalyzed disulfide bond formation of MHC class I molecules is an event downstream of the interaction of class I molecules with calnexin and upstream of their interaction with β2m. Thus, our data establish a critical function for PDI in the early assembly of MHC class I molecules. Antioxid. Redox Signal. 11, 2553–2561.

