Review Article
No access
Published Online: 18 April 2011

Therapeutic Targets for Neuroprotection in Acute Ischemic Stroke: Lost in Translation?

Publication: Antioxidants & Redox Signaling
Volume 14, Issue Number 10

Abstract

The development of a suitable neuroprotective agent to treat ischemic stroke has failed when transitioned to the clinical setting. An understanding of the molecular mechanisms involved in neuronal injury during ischemic stroke is important, but must be placed in the clinical context. Current therapeutic targets have focused on the preservation of the ischemic penumbra in the hope of improving clinical outcomes. Unfortunately, most patients in the ultra-early time windows harbor penumbra but have tremendous variability in the size of the core infarct, the ultimate predictor of prognosis. Understanding this variability may allow for proper patient selection that may better correlate to bench models. Reperfusion therapies are rapidly evolving and have been shown to improve clinical outcomes. The use of neuroprotective agents to prolong time windows prior to reperfusion or to prevent reperfusion injury may present future therapeutic targets for the treatment of ischemic stroke. We review the molecular pathways and the clinical context from which future targets may be identified. Antioxid. Redox Signal. 14, 1841–1851.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Albers GWThijs VNWechsler LKemp SSchlaug GSkalabrin EBammer RKakuda WLansberg MGShuaib ACoplin WHamilton SMoseley MMarks MP. DEFUSE InvestigatorsAnn Neurol60508-5172006. 1. Albers GW, Thijs VN, Wechsler L, Kemp S, Schlaug G, Skalabrin E, Bammer R, Kakuda W, Lansberg MG, Shuaib A, Coplin W, Hamilton S, Moseley M, and Marks MP. DEFUSE Investigators. Ann Neurol 60: 508–517, 2006.
2.
Baron JC. Perfusion thresholds in human cerebral ischemia: Historical perspective and therapeutic implicationsCerbrovasc Dis112-082001. 2. Baron JC. Perfusion thresholds in human cerebral ischemia: Historical perspective and therapeutic implications. Cerbrovasc Dis 11: 2-08, 2001.
3.
Beere HGreen DR. Stress management-heat shock protein-70 and the regulation of apoptosisTrends Cell Biol116-102001. 3. Beere H and Green DR. Stress management-heat shock protein-70 and the regulation of apoptosis. Trends Cell Biol 11: 6–10, 2001.
4.
Beere H. The stress of dying: The role of heat shock proteins in the regulation of apoptosisJ Cell Sci1172641-26512004. 4. Beere H. The stress of dying: The role of heat shock proteins in the regulation of apoptosis. J Cell Sci 117: 2641–2651, 2004.
5.
Beere HM. Death versus survival: Functional interaction between apoptotic and stress-inducible heat shock protein pathwaysJ Clin Invest1152633-26392005. 5. Beere HM. Death versus survival: Functional interaction between apoptotic and stress-inducible heat shock protein pathways. J Clin Invest 115: 2633–2639, 2005.
6.
Bhatt AVora NAThomas AJMajid AKassab MHammer MDUchino KWechsler LJovin TGGupta R. Lower pretreatment cerebral blood volume affects hemorrhagic risks after intra-arterial revascularization in acute strokeNeurosurgery63874-8782008. 6. Bhatt A, Vora NA, Thomas AJ, Majid A, Kassab M, Hammer MD, Uchino K Wechsler L, Jovin TG, and Gupta R. Lower pretreatment cerebral blood volume affects hemorrhagic risks after intra-arterial revascularization in acute stroke. Neurosurgery 63: 874–878, 2008.
7.
Bruno VBattaglia GCopani AD'Onofrio ADi Iorio PDe Blasi AMelchiorri DFlor PJNicoletti F. Metabotropic glutmate receptor subtypes as targets for neuroprotective drugsJ Cereb Blood Flow Metab211013-10332001. 7. Bruno V, Battaglia G, Copani A, D'Onofrio A, Di Iorio P, De Blasi A, Melchiorri D, Flor PJ, and Nicoletti F. Metabotropic glutmate receptor subtypes as targets for neuroprotective drugs. J Cereb Blood Flow Metab 21: 1013–1033, 2001.
8.
Chabrier PEAuguet MSpinnewyn BAuvin SCornet SDemerle–Pallardy CGuilmard–Favre CMarin JGPignol BGillard–Roubert VRoussillot–Charnet CSchulz JViossat IBigg DMoncada S. BN 80933, a dual inhibitor of neuronal nitric oxide synthase and lipid peroxidation: A promising neuroprotective strategyProc Natl Acad Sci USA9610824-108291999. 8. Chabrier PE, Auguet M, Spinnewyn B, Auvin S, Cornet S, Demerle–Pallardy C, Guilmard–Favre C, Marin JG, Pignol B, Gillard–Roubert V, Roussillot–Charnet C, Schulz J, Viossat I, Bigg D, and Moncada S. BN 80933, a dual inhibitor of neuronal nitric oxide synthase and lipid peroxidation: A promising neuroprotective strategy. Proc Natl Acad Sci USA 96: 10824–10829, 1999.
9.
Chaudhry KRogers RGui MLai QGoel GLiebelt BJi XCurry ACarranza AJimenez DFDing Y. Matrix metalloproteinase-9 (MMP-9) expression and extracellular signal-regulated kinase 1 and 2 (ERK1/2) activation in exercise-reduced neuronal apoptosis after strokeNeurosci Lett474109-1142010. 9. Chaudhry K, Rogers R, Gui M, Lai Q, Goel G, Liebelt B, Ji X, Curry A, Carranza A, Jimenez DF, and Ding Y. Matrix metalloproteinase-9 (MMP-9) expression and extracellular signal-regulated kinase 1 and 2 (ERK1/2) activation in exercise-reduced neuronal apoptosis after stroke. Neurosci Lett 474:109–114, 2010.
10.
Chavez JCHurko OBarone FCFeuerstein GZ. Pharmacologic interventions for stroke: Looking beyond the thrombolysis time window into the penumbra with biomarkers, not a stopwatchStroke40e558-e5632009. 10. Chavez JC, Hurko O, Barone FC, and Feuerstein GZ. Pharmacologic interventions for stroke: Looking beyond the thrombolysis time window into the penumbra with biomarkers, not a stopwatch. Stroke 40: e558–e563, 2009.
11.
Chen QChopp MBodzin GChen H. Temperature modulation of cerebral depolarization during focal cerebral ischemia in rats: Correlation with ischemic injuryJ Cereb Blood Flow Metab13389-3941993. 11. Chen Q, Chopp M, Bodzin G, and Chen H. Temperature modulation of cerebral depolarization during focal cerebral ischemia in rats: Correlation with ischemic injury. J Cereb Blood Flow Metab 13: 389–394, 1993.
12.
Crumrine RCBergstrand KCooper ATFaison WLCooper BR. Lamotrigine protects hippocampal CA1 neurons from ischemic damage after cardiac arrestStroke282230-22371997. 12. Crumrine RC, Bergstrand K, Cooper AT, Faison WL, and Cooper BR. Lamotrigine protects hippocampal CA1 neurons from ischemic damage after cardiac arrest. Stroke 28: 2230–2237, 1997.
13.
Damman PHirsch AWindhausen FTijssen JGPde Winter RJICTUS Investigators. 5-year clinical outcomes in the ICTUS (Invasive versus conservative treatment in unstable coronary syndromes) Trial: A randomized comparison of an early invasive versus selective invasive management in patients with non-ST-segment elevation acute coronary syndromeJACC55858-8642010. 13. Damman P, Hirsch A, Windhausen F, Tijssen JGP, de Winter RJ, and ICTUS Investigators. 5-year clinical outcomes in the ICTUS (Invasive versus conservative treatment in unstable coronary syndromes) Trial: A randomized comparison of an early invasive versus selective invasive management in patients with non-ST-segment elevation acute coronary syndrome. JACC 55: 858–864, 2010.
14.
Danielson SRAndersen JK. Oxidative and nitrative protein modifications in Parkinson's diseaseFree Radic Biol Med441787-17942008. 14. Danielson SR and Andersen JK. Oxidative and nitrative protein modifications in Parkinson's disease. Free Radic Biol Med 44: 1787–1794, 2008.
15.
Davis SMDonnan GAParsons MWLevi CButcher KSPeeters ABarber PABladin CDe Silva DAByrnes GChalk JBFink JNKimber TESchultz DHand PJFrayne JHankey GMuir KGerraty RTress BMDesmond PMEPITHET Investigators. Effects of alteplase beyond 3 hours after stroke in the echoplanar imaging thrombolytic evaluation trial (EPITHET): A placebo-controlled randomised trialLancet Neurol7299-3092008. 15. Davis SM, Donnan GA, Parsons MW, Levi C, Butcher KS, Peeters A, Barber PA, Bladin C, De Silva DA, Byrnes G, Chalk JB, Fink JN, Kimber TE, Schultz D, Hand PJ, Frayne J, Hankey G, Muir K, Gerraty R, Tress BM, Desmond PM, and EPITHET Investigators. Effects of alteplase beyond 3 hours after stroke in the echoplanar imaging thrombolytic evaluation trial (EPITHET): A placebo-controlled randomised trial. Lancet Neurol 7: 299–309, 2008.
16.
Diener HCCortens MFord GGrotta JHacke WKaste MKoudstaal PJWessel Tfor the LUB-INT-13 Investigators. Lubeluzole in acute ischemic stroke treatment. A double-blind study with an 8-hour inclusion window comparing a 10-mg daily dose of lubeluzole with placeboStroke312543-25512000. 16. Diener HC, Cortens M, Ford G, Grotta J, Hacke W, Kaste M, Koudstaal PJ, Wessel T, for the LUB-INT-13 Investigators. Lubeluzole in acute ischemic stroke treatment. A double-blind study with an 8-hour inclusion window comparing a 10-mg daily dose of lubeluzole with placebo. Stroke 31: 2543–2551, 2000.
17.
Doyle KPSimon RPStenzel–Poore MP. Mechanisms of ischemic brain damageNeuropharmacology55310-3182008. 17. Doyle KP, Simon RP, and Stenzel–Poore MP. Mechanisms of ischemic brain damage. Neuropharmacology 55: 310–318, 2008.
18.
Ducruet AFGrobelny BTZacharia BEHickman ZLYeh MLConnolly ES. Pharmacotherapy of cerebral ischemiaExpert Opin Pharmacother101895-19062009. 18. Ducruet AF, Grobelny BT, Zacharia BE, Hickman ZL, Yeh ML, and Connolly ES. Pharmacotherapy of cerebral ischemia. Expert Opin Pharmacother 10: 1895–1906, 2009.
19.
Erecinska MSilver IA. Ions and energy in mammalian brainProg Neurobiol4337-711994. 19. Erecinska M and Silver IA. Ions and energy in mammalian brain. Prog Neurobiol 43: 37–71, 1994.
20.
Fabricius MFuhr SBuatia RBoutelle MHashemi PStrong AJLauritzen M. Cortical spreading depression and peri-infarct depolarization in acutely injured human cerebral cortexBrain129778-7902006. 20. Fabricius M, Fuhr S, Buatia R, Boutelle M, Hashemi P, Strong AJ, and Lauritzen M. Cortical spreading depression and peri-infarct depolarization in acutely injured human cerebral cortex. Brain 129: 778–790, 2006.
21.
Fink JNKumar SHorkan CLinfante ISelim MHCaplan LRSchlaug G. The stroke patient who woke up: Clinical and radiological features, including diffusion and perfusion MRIStroke33988-9932002. 21. Fink JN, Kumar S, Horkan C, Linfante I, Selim MH, Caplan LR, and Schlaug G. The stroke patient who woke up: Clinical and radiological features, including diffusion and perfusion MRI. Stroke 33: 988–993, 2002.
22.
Fujitani TAdachi NMiyazaki HLiu KNakamura YKataoka KArai T. Lidocaine protects hippocampal neurons against ischemic damage by preventing increase of extracellular excitatory amino acids: A microdialysis study in Mongolian gerbilsNeurosci Lett17991-931994. 22. Fujitani T, Adachi N, Miyazaki H, Liu K, Nakamura Y, Kataoka K, and Arai T. Lidocaine protects hippocampal neurons against ischemic damage by preventing increase of extracellular excitatory amino acids: A microdialysis study in Mongolian gerbils. Neurosci Lett 179: 91–93, 1994.
23.
Fujiwara NMurata YArai KEgi YLu JWu OSinghal ABLo EH. Combination therapy with normobaric oxygen (NBO) plus thrombolysis in experimental ischemic strokeBMC Neurosci1079-872009. 23. Fujiwara N, Murata Y, Arai K, Egi Y, Lu J, Wu O, Singhal AB, and Lo EH. Combination therapy with normobaric oxygen (NBO) plus thrombolysis in experimental ischemic stroke. BMCNeurosci 10: 79–87, 2009.
24.
Gilgun–Sherki YRosenbaum ZMelamed EOffen D. Antioxidant therapy in acute central nervous system injury: Current statePharmacol Rev54271-2842002. 24. Gilgun–Sherki Y, Rosenbaum Z, Melamed E, and Offen D. Antioxidant therapy in acute central nervous system injury: Current state. Pharmacol Rev 54: 271–284, 2002.
25.
Gorter JAPetrozzino JJAronica EMRosenbaum DMOpitz TBennett MVLConnor JAZukin RS. Global ischemia induces downregulation of Glur2 mRNA and increases AMPA receptor-mediated Ca2+ influx in hippocampal CA1 neurons of gerbilJ Neurosci176179-61881997. 25. Gorter JA, Petrozzino JJ, Aronica EM, Rosenbaum DM, Opitz T, Bennett MVL, Connor JA, and Zukin RS. Global ischemia induces downregulation of Glur2 mRNA and increases AMPA receptor-mediated Ca2+ influx in hippocampal CA1 neurons of gerbil. J Neurosci 17: 6179–6188, 1997.
26.
Graham SHChen JLan JLeach MJSimon RP. Neuroprotective effects of a use-dependent blocker of voltage-dependent sodium channels, BW619C89 in rat middle cerebral artery occlusionJPET269854-8591994. 26. Graham SH, Chen J, Lan J, Leach MJ, and Simon RP. Neuroprotective effects of a use-dependent blocker of voltage-dependent sodium channels, BW619C89 in rat middle cerebral artery occlusion. JPET 269: 854–859, 1994.
27.
Gu YShrivastava IHAmara SGBahar I. Molecular simulations elucidate the substrate translocation pathway in a glutamate transporterProc Natl Acad Sci USA1062589-25942009. 27. Gu Y, Shrivastava IH, Amara SG, and Bahar I. Molecular simulations elucidate the substrate translocation pathway in a glutamate transporter. Proc Natl Acad Sci USA 106: 2589–2594, 2009.
28.
Guluma KZOh HYu SWMeyer BCRapp KLyden PD. Effect of endovascular hypothermia on acute ischemic edema: Morphometric analysis of the ICTuS trialNeruocrit Care842-472008. 28. Guluma KZ, Oh H, Yu SW, Meyer BC, Rapp K, and Lyden PD. Effect of endovascular hypothermia on acute ischemic edema: Morphometric analysis of the ICTuS trial. Neruocrit Care 8: 42–47, 2008.
29.
Gupta RYonas HGebel JGoldstein SHorowitz MGrahovac SZWechsler LRHammer MDUchino KJovin TG. Reduced pretreatment ipislateral middle cerebral blood flow is predictive of symptomatic hemorrhage post-intra-arterial thrombolysis in patients with middle cerebral artery occlusionStroke372526-25302006. 29. Gupta R, Yonas H, Gebel J, Goldstein S, Horowitz M, Grahovac SZ, Wechsler LR, Hammer MD, Uchino K, and Jovin TG. Reduced pretreatment ipislateral middle cerebral blood flow is predictive of symptomatic hemorrhage post-intra-arterial thrombolysis in patients with middle cerebral artery occlusion. Stroke 37: 2526–2530, 2006.
30.
Hacke WKaste MBluhmki EBrozman MDavalos AGuidetti DLarrue VLees KRMedeghri ZMachnig TSchneider Dvon Kummer RWahlgren NToni DECASS Investigators. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic strokeN Engl J Med3591317-13292008. 30. Hacke W, Kaste M, Bluhmki E, Brozman M, Davalos A, Guidetti D, Larrue V, Lees KR, Medeghri Z, Machnig T, Schneider D, von Kummer R, Wahlgren N, Toni D, and ECASS Investigators. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med 359: 1317–1329, 2008.
31.
Iida HSchmeichel AMWang YSchmelzer JDLow PA. Orchestration of the inflammatory response in ischemia-reperfusion injuryJ Peripher Nerv Syst12131-1382007. 31. Iida H, Schmeichel AM, Wang Y, Schmelzer JD, and Low PA. Orchestration of the inflammatory response in ischemia-reperfusion injury. J Peripher Nerv Syst 12: 131–138, 2007.
32.
Jarvis CRAnderson TRAndrew D. Anoxic depolarization mediates acute damage independent of glutamate in neocortical brain slicesCereb Cortex11249-2592001. 32. Jarvis CR, Anderson TR, and Andrew D. Anoxic depolarization mediates acute damage independent of glutamate in neocortical brain slices. Cereb Cortex 11: 249–259, 2001.
33.
Joshi IAndrew RD. Imaging anoxic depolarization during ischemia-like conditions in the mouse hemi-brain sliceJ Neurophysiol85414-4242001. 33. Joshi I and Andrew RD. Imaging anoxic depolarization during ischemia-like conditions in the mouse hemi-brain slice. J Neurophysiol 85: 414–424, 2001.
34.
Jovin TGYonas HGebel JMKanal EChang YFGahovac SZGoldstein SWechsler LR. The cortical ischemic core and the consistently present penumbra is a determinant of clinical outcome in acute middle cerebral artery occlusionStroke342426-24332003. 34. Jovin TG, Yonas H, Gebel JM, Kanal E, Chang YF, Gahovac SZ, Goldstein S, and Wechsler LR. The cortical ischemic core and the consistently present penumbra is a determinant of clinical outcome in acute middle cerebral artery occlusion. Stroke 34: 2426–2433, 2003.
35.
Kidwell CSAlger JRSaver JL. Evolving paradigms in neuroimaging of the ischemic penumbraStroke352662-26652003. 35. Kidwell CS, Alger JR, and Saver JL. Evolving paradigms in neuroimaging of the ischemic penumbra. Stroke 35: 2662–2665, 2003.
36.
Krieger DWDeGeorgia MAAbou–Chebl AAndrefsky JCSila CAKatzan IL Mayberg MRFurlan AJ. Cooling for acute ischemic brain damage (COOL AID). An open pilot study of induced hypothermia in acute ischemic strokeStroke321847-18542001. 36. Krieger DW, DeGeorgia MA, Abou–Chebl A, Andrefsky JC, Sila CA, Katzan IL Mayberg MR, and Furlan AJ. Cooling for acute ischemic brain damage (COOL AID). An open pilot study of induced hypothermia in acute ischemic stroke. Stroke 32: 1847–1854, 2001.
37.
Latchaw REYonas HHunter GJYuh WTUeda TSorensen AGSunshine JLBiller JWechsler LHigashida R et al. Guidelines and recommendations for perfusion imaging in cerebral ischemia: A scientific statement for healthcare professionals by the writing group on perfusion imaging, from the Council on Cardiovascular Radiology of the American Heart AssociationStroke341084-11042003. 37. Latchaw RE, Yonas H, Hunter GJ, Yuh WT, Ueda T, Sorensen AG, Sunshine JL, Biller J, Wechsler L, Higashida R, et al. Guidelines and recommendations for perfusion imaging in cerebral ischemia: A scientific statement for healthcare professionals by the writing group on perfusion imaging, from the Council on Cardiovascular Radiology of the American Heart Association. Stroke 34: 1084–1104, 2003.
38.
Lekiefre DMeldrum BS. The pyrimidine-derivative, BW 1003C87, protects CA1 and striatal neurons following transient severe forebrain ischaemia in rats. A microdialysis and histological studyNeuroscience5693-991993. 38. Lekiefre D and Meldrum BS. The pyrimidine-derivative, BW 1003C87, protects CA1 and striatal neurons following transient severe forebrain ischaemia in rats. A microdialysis and histological study. Neuroscience 56: 93–99, 1993.
39.
Li JLiu WDing SXu WGuan YZhang JHSun X. Hyperbaric oxygen preconditioning induces tolerance against brain ischemia-reperfusion injury by upregulation of antioxidant enzymes in ratsBrain Res1210223-2292008. 39. Li J, Liu W, Ding S, Xu W, Guan Y, Zhang JH, and Sun X. Hyperbaric oxygen preconditioning induces tolerance against brain ischemia-reperfusion injury by upregulation of antioxidant enzymes in rats. Brain Res 1210: 223–229, 2008.
40.
Liberatore GTSamson ABladin CSchleuning WDMedcalf RL. Vampire bat salivary plasminogen activator (Desmoteplase). A unique fibrinolytic enzyme that does not promote neurodegenerationStroke34537-5432003. 40. Liberatore GT, Samson A, Bladin C, Schleuning WD, and Medcalf RL. Vampire bat salivary plasminogen activator (Desmoteplase). A unique fibrinolytic enzyme that does not promote neurodegeneration. Stroke 34: 537–543, 2003.
41.
Liu BLiao MMielke JGNing KChen YLi LEl–Hayek YHGomez EZukin RSFehlings MGWan Q. Ischemic insults direct glutamate receptor subunit 2-lacking AMPA receptors to synaptic sitesJ Neurosci265309-53192006. 41. Liu B, Liao M, Mielke JG, Ning K, Chen Y, Li L, El–Hayek YH, Gomez E, Zukin RS, Fehlings MG, and Wan Q. Ischemic insults direct glutamate receptor subunit 2-lacking AMPA receptors to synaptic sites. J Neurosci 26: 5309–5319, 2006.
42.
Lloyd-Jones DAdams RCarnethon MDe Simone G et al. Heart disease and stroke statistics-2009 update. A report from the American Heart Association Statistics Committee and Stroke Statistics SubcommitteeCirculation119e21-e1812009. 42. Lloyd-Jones D, Adams R, Carnethon M, De Simone G, et al. Heart disease and stroke statistics-2009 update. A report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 119: e21–e181, 2009.
43.
Loddick SAMacKenzie ARothwell NJ. An ICE inhibitor, z-VAD-DCB attenuates ischaemic brain damage in the ratNeuroreport71465-14681996. 43. Loddick SA, MacKenzie A, and Rothwell NJ. An ICE inhibitor, z-VAD-DCB attenuates ischaemic brain damage in the rat. Neuroreport 7: 1465–1468, 1996.
44.
Lopez–Atalaya JPRoussel BDLevrat DParcq JNicole OHommet YBenchenane KCastel HLeprince JTo Van DBureau RRault SVaudry HPetersen KUSantos JSVivien D. Toward safer thrombolytic agents in stroke: Molecular requirements for NMDA receptor-mediated neurotoxicityJ Cereb Blood Flow Metab281212-12212008. 44. Lopez–Atalaya JP, Roussel BD, Levrat D, Parcq J, Nicole O, Hommet Y, Benchenane K, Castel H, Leprince J, To Van D, Bureau R, Rault S, Vaudry H, Petersen KU, Santos JS, and Vivien D. Toward safer thrombolytic agents in stroke: Molecular requirements for NMDA receptor-mediated neurotoxicity. J Cereb Blood Flow Metab 28: 1212–1221, 2008.
45.
Lu DZhang XHan YYBurke NAKochanek PMWatkins SCGraham SHCarcillo JASzabo CClark RSB. Intra-mitochondrial poly(ADP-ribosylation) contributes to NAD+ depletion and cell death induced by oxidative stressJ Biol Chem27818426-184332003. 45. Lu D, Zhang X, Han YY, Burke NA, Kochanek PM, Watkins SC, Graham SH, Carcillo JA, SzaboC, and Clark RSB. Intra-mitochondrial poly(ADP-ribosylation) contributes to NAD+ depletion and cell death induced by oxidative stress. J Biol Chem 278: 18426–18433, 2003.
46.
Lysko PGWebb CLYue TLGu JLFeuerstein G. Neuroprotective effects of tetrodotoxin as a Na+ channel modulator and glutamate release inhibitor in cultured rat cerebellar neurons and in gerbil global brain ischemiaStroke252476-24821994. 46. Lysko PG, Webb CL, Yue TL, Gu JL, and Feuerstein G. Neuroprotective effects of tetrodotoxin as a Na+ channel modulator and glutamate release inhibitor in cultured rat cerebellar neurons and in gerbil global brain ischemia. Stroke 25: 2476–2482, 1994.
47.
Martin–Schild SHallevi HShaltoni H Barreto ADGonzales NRAronowski JSavitz S. Combined neuroprotective modalities coupled with thrombolysis in acute ischemic stroke: A pilot study of caffeinol and mild hypothermiaJ Stroke Cerebrovasc Dis1885-962009. 47. Martin–Schild S, Hallevi H, Shaltoni H Barreto AD, Gonzales NR, Aronowski J, and Savitz S. Combined neuroprotective modalities coupled with thrombolysis in acute ischemic stroke: A pilot study of caffeinol and mild hypothermia. J Stroke Cerebrovasc Dis 18: 85–96, 2009.
48.
Mehta SLManhas NRaghubir R. Molecular targets in cerebral ischemia for developing novel therapeuticsBrain Res Rev5434-662007. 48. Mehta SL, Manhas N, and Raghubir R. Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev 54: 34–66, 2007.
49.
Mishra NKAlbers GWDavis SMDonnan GAFurlan AJHacke WLees KR. Mismatch-based delayed thrombolysis: A meta-analysisStroke41e25-e332010. 49. Mishra NK, Albers GW, Davis SM, Donnan GA, Furlan AJ, Hacke W, and Lees KR. Mismatch-based delayed thrombolysis: A meta-analysis. Stroke 41: e25–e33, 2010.
50.
Noh KMYokota HMashiko TCastillo PEZukin RSBennett MVL. Blockade of calcium-permeable AMPA receptors protects hippocampal neurons against global ischemia-induced deathProc Natl Acad Sci USA10212230-122352005. 50. Noh KM, Yokota H, Mashiko T, Castillo PE, Zukin RS, and Bennett MVL. Blockade of calcium-permeable AMPA receptors protects hippocampal neurons against global ischemia-induced death. Proc Natl Acad Sci USA 102: 12230–12235, 2005.
51.
Onteniente BRasika SBenchoua AGuegan C. Molecular pathways in cerebral ischemia. Cues to novel therapeutic strategiesMol Neurobiol2733-722003. 51. Onteniente B, Rasika S, Benchoua A, and Guegan C. Molecular pathways in cerebral ischemia. Cues to novel therapeutic strategies. Mol Neurobiol 27: 33–72, 2003.
52.
Pellegrini–Giampietro DEZukin RSBennet MVCho SPulsinelli WA. Switch in glutamate receptor subunit gene expression in CA1 subfield of hippocampus following global ischemia in ratsProc Natl Acad Sci USA8910499-105031992. 52. Pellegrini–Giampietro DE, Zukin RS, Bennet MV, Cho S, and Pulsinelli WA. Switch in glutamate receptor subunit gene expression in CA1 subfield of hippocampus following global ischemia in rats. Proc Natl Acad Sci USA 89: 10499–10503, 1992.
53.
Rami AAgarwal RBotez GWinckler J. μ-Calpain activation, DNA fragmentation, and synergistic effects of caspase and calpain inhibitors in protecting hippocampal neurons from ischemic damageBrain Res866299-3122000. 53. Rami A, Agarwal R, Botez G, and Winckler J. μ-Calpain activation, DNA fragmentation, and synergistic effects of caspase and calpain inhibitors in protecting hippocampal neurons from ischemic damage. Brain Res 866: 299–312, 2000.
54.
Rha JHSaver JL. The impact of recanalization on ischemic stroke outcome: A meta-analysisStroke38967-9732007. 54. Rha JH and Saver JL. The impact of recanalization on ischemic stroke outcome: A meta-analysis. Stroke 38:967–973, 2007.
55.
Robinson MB. The family of sodium-dependent glutamate transporters: A focus on the GLT-1/EAAT2 subtypeNeurochem Int33479-4911998. 55. Robinson MB. The family of sodium-dependent glutamate transporters: A focus on the GLT-1/EAAT2 subtype. Neurochem Int 33: 479–491, 1998.
56.
Savitz SIFisher M. Future of neuroprotection for acute stroke: In the aftermath of the SAINT trialsAnn Neurol61396-4022007. 56. Savitz SI and Fisher M. Future of neuroprotection for acute stroke: In the aftermath of the SAINT trials. Ann Neurol 61: 396–402, 2007.
57.
Singhal AB. Oxygen therapy in stroke: Past, present and futureInt J Stroke1191-2002006. 57. Singhal AB. Oxygen therapy in stroke: Past, present and future. Int J Stroke 1: 191–200, 2006.
58.
Smith SEMeldrum BS. Cerebroprotective effect of lamotrigine after focal ischemia in ratsStroke26117-1221995. 58. Smith SE and Meldrum BS. Cerebroprotective effect of lamotrigine after focal ischemia in rats. Stroke 26: 117–122, 1995.
59.
Tapuria NKumar YHabib MMAmara MASeifalian AMDavidson BR. Remote ischemic preconditioning: A novel protective method from ischemia reperfusion injury. A reviewJ Surg Res150304-3302008. 59. Tapuria N, Kumar Y, Habib MM, Amara MA, Seifalian AM, and Davidson BR. Remote ischemic preconditioning: A novel protective method from ischemia reperfusion injury. A review. J Surg Res 150: 304-330, 2008.
60.
Traystman RJKirsch JRKoehler RC. Oxygen radical mechanisms of brain injury following ischemia and reperfusionJ Appl Physiol711185-11951991. 60. Traystman RJ, Kirsch JR, and Koehler RC. Oxygen radical mechanisms of brain injury following ischemia and reperfusion. J Appl Physiol 71: 1185–1195, 1991.
61.
Wang QSun AYSimonyi AKalogeris TJMiller DK Sun GYKorthius RJ. Ethanol preconditioning protects against ischemia/reperfusion-induced brain damage: Role of NADPH oxidase derived ROSFree Radic Biol Med431048-10602007. 61. Wang Q, Sun AY, Simonyi A, Kalogeris TJ, Miller DK Sun GY, and Korthius RJ. Ethanol preconditioning protects against ischemia/reperfusion-induced brain damage: Role of NADPH oxidase derived ROS. Free Radic Biol Med 43: 1048–1060, 2007.
62.
Wang YDawson VLDawson TM. Poly (ADP-ribose) signals to mitochontrial AIF: A key event in parthanatosExp Neurol218193-2022009. 62. Wang Y, Dawson VL, and Dawson TM. Poly (ADP-ribose) signals to mitochontrial AIF: A key event in parthanatos. Exp Neurol 218: 193–202, 2009.
63.
White BCSullivan JMDegracia DJO'Neil BJNeumar RWGrossman LIRaflos JAKrause GS. Brain ischemia and reperfusion: Molecular mechanisms of neuronal injuryJ Neurol Sci1791-332000. 63. White BC, Sullivan JM, Degracia DJ, O'Neil BJ, Neumar RW, Grossman LI, Raflos JA, and Krause GS. Brain ischemia and reperfusion: Molecular mechanisms of neuronal injury. J Neurol Sci 179: 1–33, 2000.
64.
Yu SWAndrabi SAWang HKim NSPoirier GGDawson TMDawson VL. Apoptosis-inducing factors mediates poly(ADP-ribose) (PAR) polymer-induced cell deathProc Nat Acad Sci USA10318314-183192006. 64. Yu SW, Andrabi SA, Wang H, Kim NS, Poirier GG, Dawson TM, and Dawson VL. Apoptosis-inducing factors mediates poly(ADP-ribose) (PAR) polymer-induced cell death. Proc Nat Acad Sci USA 103:18314–18319, 2006.
65.
Zhao HYenari MACheng DSapolsky RMSteinberg GK. Bcl-2 overexpression protects against neuron loss within the ischemic margin following experimental stroke and inhibits cytochrome c translocation and caspase-3 activityJ Neurochem851026-10362003. 65. Zhao H, Yenari MA, Cheng D, Sapolsky RM, and Steinberg GK. Bcl-2 overexpression protects against neuron loss within the ischemic margin following experimental stroke and inhibits cytochrome c translocation and caspase-3 activity. J Neurochem 85: 1026-1036, 2003.
66.
Zhao XStrong RPiriyawa PPalusinski RGrotta JCAronowski J. Caffeinol at the receptor level. Anti-ischemic effect of N-methyl-D-Aspartate receptor blockade is potentiated by caffeineStroke41363-3672010. 66. Zhao X, Strong R, Piriyawa P, Palusinski R, Grotta JC, and Aronowski J. Caffeinol at the receptor level. Anti-ischemic effect of N-methyl-D-Aspartate receptor blockade is potentiated by caffeine. Stroke 41: 363–367, 2010.

Information & Authors

Information

Published In

cover image Antioxidants & Redox Signaling
Antioxidants & Redox Signaling
Volume 14Issue Number 10May 15, 2011
Pages: 1841 - 1851
PubMed: 20626319

History

Published in print: May 15, 2011
Published online: 18 April 2011
Published ahead of print: 25 October 2010
Published ahead of production: 14 July 2010
Accepted: 10 July 2010
Revision received: 13 June 2010
Received: 10 May 2010

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Jeannette N. Stankowski
Neuroscience Graduate Program, Vanderbilt University, Nashville, Tennessee.
Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee.
Rishi Gupta
*
Department of Neurology, Vanderbilt University, Nashville, Tennessee.
Department of Neurosurgery, Vanderbilt University, Nashville, Tennessee.
Department of Radiology, Vanderbilt University, Nashville, Tennessee.

Notes

Address correspondence to:Dr. Rishi GuptaDepartments of Neurology, Neurosurgery, and RadiologyEmory University School of Medicine49 Jesse Hill Jr. Drive, SEFaculty Office Building #393Atlanta, GA 30303E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top