Review Article
No access
Published Online: 31 October 2011

Anticancer Drugs Targeting the Mitochondrial Electron Transport Chain

Publication: Antioxidants & Redox Signaling
Volume 15, Issue Number 12

Abstract

Significance: Mitochondria are emerging as highly intriguing organelles showing promise but that are yet to be fully exploited as targets for anticancer drugs. Recent Advances: A group of compounds that induce mitochondrial destabilization, thereby affecting the physiology of cancer cells, has been defined and termed ‘mitocans.' Based on their mode of action of targeting in and around mitochondria, we have placed these agents into several groups including hexokinase inhibitors, compounds targeting Bcl-2 family proteins, thiol redox inhibitors, VDAC/ANT targeting drugs, electron transport chain-targeting drugs, lipophilic cations targeting the inner membrane, agents affecting the tricarboxylic acid cycle, drugs targeting mtDNA, and agents targeting other presently unknown sites. Critical Issues: Mitocans have a potential to prove highly efficient in suppressing various malignant diseases in a selective manner. They include compounds that are currently in clinical trial and offer substantial promise to become clinically applied drugs. Here we update and redefine the individual classes of mitocans, providing examples of the various members of these groups with a particular focus on agents targeting the electron transport chain, and indicate their potential application in clinical practice. Future Directions: Even though reactive oxygen species induction is important for the anticancer activity of many mitocans, the precise sequence of events preceding and following this pivotal event are not yet fully clarified, and warrant further investigation. This is imperative for effective deployment of these compounds in the clinic. Antioxid. Redox Signal. 15, 2951–2974.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Adam-Vizi VChinopoulos C. Bioenergetics and the formation of mitochondrial reactive oxygen speciesTrends Pharmacol Sci27639-6452006. 1. Adam-Vizi V and Chinopoulos C. Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci 27: 639–645, 2006.
2.
Akazawa ANishikawa KSuzuki KAsano RKumadaki ISatoh HHagiwara KShin SJYano T. Induction of apoptosis in a human breast cancer cell overexpressing ErbB-2 receptor by alpha-tocopheryloxybutyric acidJpn J Pharmacol89417-4212002. 2. Akazawa A, Nishikawa K, Suzuki K, Asano R, Kumadaki I, Satoh H, Hagiwara K, Shin SJ, and Yano T. Induction of apoptosis in a human breast cancer cell overexpressing ErbB-2 receptor by alpha-tocopheryloxybutyric acid. Jpn J Pharmacol 89: 417–421, 2002.
3.
Albini ADell'Eva RVene RFerrari NBuhler DRNoonan DMFassina G. Mechanisms of the antiangiogenic activity by the hop flavonoid xanthohumol: NF-kappaB and Akt as targetsFASEB J20527-5292006. 3. Albini A, Dell'Eva R, Vene R, Ferrari N, Buhler DR, Noonan DM, and Fassina G. Mechanisms of the antiangiogenic activity by the hop flavonoid xanthohumol: NF-kappaB and Akt as targets. FASEB J 20: 527–529, 2006.
4.
Alleva RBenassi MSTomasetti MGellert NPonticelli FBorghi BPicci PNeuzil J. Alpha-tocopheryl succinate induces cytostasis and apoptosis in osteosarcoma cells: The role of E2F1Biochem Biophys Res Commun3311515-15212005. 4. Alleva R, Benassi MS, Tomasetti M, Gellert N, Ponticelli F, Borghi B, Picci P, and Neuzil J. Alpha-tocopheryl succinate induces cytostasis and apoptosis in osteosarcoma cells: The role of E2F1. Biochem Biophys Res Commun 331: 1515–1521, 2005.
5.
Anderson SBankier ATBarrell BGde Bruijn MHCoulson ARDrouin JEperon ICNierlich DPRoe BASanger FSchreier PHSmith AJStaden RYoung IG. Sequence and organization of the human mitochondrial genomeNature290457-4651981. 5. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, and Young IG. Sequence and organization of the human mitochondrial genome. Nature 290: 457–465, 1981.
6.
Asayama SKawamura ENagaoka SKawakami H. Design of manganese porphyrin modified with mitochondrial signal peptide for a new antioxidantMol Pharm3468-4702006. 6. Asayama S, Kawamura E, Nagaoka S, and Kawakami H. Design of manganese porphyrin modified with mitochondrial signal peptide for a new antioxidant. Mol Pharm 3: 468–470, 2006.
7.
Athar MBack JHTang XKim KHKopelovich LBickers DRKim AL. Resveratrol: A review of preclinical studies for human cancer preventionToxicol Appl Pharmacol224274-2832007. 7. Athar M, Back JH, Tang X, Kim KH, Kopelovich L, Bickers DR, and Kim AL. Resveratrol: A review of preclinical studies for human cancer prevention. Toxicol Appl Pharmacol 224: 274–283, 2007.
8.
Baggetto LGTesta-Parussini R. Role of acetoin on the regulation of intermediate metabolism of Ehrlich ascites tumor mitochondria: Its contribution to membrane cholesterol enrichment modifying passive proton permeabilityArch Biochem Biophys283241-2481990. 8. Baggetto LG and Testa-Parussini R. Role of acetoin on the regulation of intermediate metabolism of Ehrlich ascites tumor mitochondria: Its contribution to membrane cholesterol enrichment modifying passive proton permeability. Arch Biochem Biophys 283: 241–248, 1990.
9.
Ballot CKluza JLancel SMartoriati AHassoun SMMortier LVienne JCBriand GFormstecher PBailly CNeviere RMarchetti P. Inhibition of mitochondrial respiration mediates apoptosis induced by the anti-tumoral alkaloid lamellarin DApoptosis15769-7812010. 9. Ballot C, Kluza J, Lancel S, Martoriati A, Hassoun SM, Mortier L, Vienne JC, Briand G, Formstecher P, Bailly C, Neviere R, and Marchetti P. Inhibition of mitochondrial respiration mediates apoptosis induced by the anti-tumoral alkaloid lamellarin D. Apoptosis 15: 769–781, 2010.
10.
Ballot CKluza JMartoriati ANyman UFormstecher PJoseph BBailly CMarchetti P. Essential role of mitochondria in apoptosis of cancer cells induced by the marine alkaloid lamellarin DMol Cancer Ther83307-33172009. 10. Ballot C, Kluza J, Martoriati A, Nyman U, Formstecher P, Joseph B, Bailly C, and Marchetti P. Essential role of mitochondria in apoptosis of cancer cells induced by the marine alkaloid lamellarin D. Mol Cancer Ther 8: 3307–3317, 2009.
11.
Baracca AChiaradonna FSgarbi GSolaini GAlberghina LLenaz G. Mitochondrial complex I decrease is responsible for bioenergetic dysfunction in K-ras transformed cellsBiochim Biophys Acta1797314-3232010. 11. Baracca A, Chiaradonna F, Sgarbi G, Solaini G, Alberghina L, and Lenaz G. Mitochondrial complex I decrease is responsible for bioenergetic dysfunction in K-ras transformed cells. Biochim Biophys Acta 1797: 314–323, 2010.
12.
Belzacq ASEl Hamel CVieira HLCohen IHaouzi DMetivier DMarchetti PBrenner CKroemer G. Adenine nucleotide translocator mediates the mitochondrial membrane permeabilization induced by lonidamine, arsenite and CD437Oncogene207579-75872001. 12. Belzacq AS, El Hamel C, Vieira HL, Cohen I, Haouzi D, Metivier D, Marchetti P, Brenner C, and Kroemer G. Adenine nucleotide translocator mediates the mitochondrial membrane permeabilization induced by lonidamine, arsenite and CD437. Oncogene 20: 7579–7587, 2001.
13.
Ben Sahra ILaurent KGiuliano SLarbret FPonzio GGounon PLe Marchand-Brustel YGiorgetti-Peraldi SCormont MBertolotto CDeckert MAuberger PTanti JFBost F. Targeting cancer cell metabolism: The combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cellsCancer Res702465-24752010. 13. Ben Sahra I, Laurent K, Giuliano S, Larbret F, Ponzio G, Gounon P, Le Marchand-Brustel Y, Giorgetti-Peraldi S, Cormont M, Bertolotto C, Deckert M, Auberger P, Tanti JF, and Bost F. Targeting cancer cell metabolism: The combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells. Cancer Res 70: 2465–2475, 2010.
14.
Bergan RCReed EMyers CEHeadlee DBrawley OCho HKFigg WDTompkins ALinehan WMKohler DSteinberg SMBlagosklonny MV. A Phase II study of high-dose tamoxifen in patients with hormone-refractory prostate cancerClin Cancer Res52366-23731999. 14. Bergan RC, Reed E, Myers CE, Headlee D, Brawley O, Cho HK, Figg WD, Tompkins A, Linehan WM, Kohler D, Steinberg SM, and Blagosklonny MV. A Phase II study of high-dose tamoxifen in patients with hormone-refractory prostate cancer. Clin Cancer Res 5: 2366–2373, 1999.
15.
Bernal SDLampidis TJMcIsaac RMChen LB. Anticarcinoma activity in vivo of rhodamine 123, a mitochondrial-specific dyeScience222169-1721983. 15. Bernal SD, Lampidis TJ, McIsaac RM, and Chen LB. Anticarcinoma activity in vivo of rhodamine 123, a mitochondrial-specific dye. Science 222: 169–172, 1983.
16.
Bernal SDLampidis TJSummerhayes ICChen LB. Rhodamine-123 selectively reduces clonal growth of carcinoma cells in vitroScience2181117-11191982. 16. Bernal SD, Lampidis TJ, Summerhayes IC, and Chen LB. Rhodamine-123 selectively reduces clonal growth of carcinoma cells in vitro. Science 218: 1117–1119, 1982.
17.
Berrisford JMSazanov LA. Structural basis for the mechanism of respiratory complex IJ Biol Chem28429773-297832009. 17. Berrisford JM and Sazanov LA. Structural basis for the mechanism of respiratory complex I. J Biol Chem 284: 29773–29783, 2009.
18.
Betarbet RSherer TBMacKenzie GGarcia-Osuna MPanov AVGreenamyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson's diseaseNat Neurosci31301-13062000. 18. Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, and Greenamyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci 3: 1301–1306, 2000.
19.
Biasutto LMattarei AMarotta EBradaschia ASassi NGarbisa SZoratti MParadisi C. Development of mitochondria-targeted derivatives of resveratrolBioorg Med Chem Lett185594-55972008. 19. Biasutto L, Mattarei A, Marotta E, Bradaschia A, Sassi N, Garbisa S, Zoratti M, and Paradisi C. Development of mitochondria-targeted derivatives of resveratrol. Bioorg Med Chem Lett 18: 5594–5597, 2008.
20.
Blatt NBBoitano AELyssiotis CAOpipari AW JrGlick GD. Bz-423 superoxide signals apoptosis via selective activation of JNK, Bak, and BaxFree Radic Biol Med451232-12422008. 20. Blatt NB, Boitano AE, Lyssiotis CA, Opipari AW Jr, and Glick GD. Bz-423 superoxide signals apoptosis via selective activation of JNK, Bak, and Bax. Free Radic Biol Med 45: 1232–1242, 2008.
21.
Boitano AEllman JAGlick GDOpipari AW Jr. The proapoptotic benzodiazepine Bz-423 affects the growth and survival of malignant B cellsCancer Res636870-68762003. 21. Boitano A, Ellman JA, Glick GD, and Opipari AW, Jr. The proapoptotic benzodiazepine Bz-423 affects the growth and survival of malignant B cells. Cancer Res 63: 6870–6876, 2003.
22.
Bonnet SArcher SLAllalunis-Turner JHaromy ABeaulieu CThompson RLee CTLopaschuk GDPuttagunta LHarry GHashimoto KPorter CJAndrade MAThebaud BMichelakis ED. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growthCancer Cell1137-512007. 22. Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Harry G, Hashimoto K, Porter CJ, Andrade MA, Thebaud B, and Michelakis ED. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11: 37–51, 2007.
23.
Bonsi PCuomo DMartella GSciamanna GTolu MCalabresi PBernardi GPisani A. Mitochondrial toxins in basal ganglia disorders: From animal models to therapeutic strategiesCurr Neuropharmacol469-752006. 23. Bonsi P, Cuomo D, Martella G, Sciamanna G, Tolu M, Calabresi P, Bernardi G, and Pisani A. Mitochondrial toxins in basal ganglia disorders: From animal models to therapeutic strategies. Curr Neuropharmacol 4: 69–75, 2006.
24.
Brand MD. The sites and topology of mitochondrial superoxide productionExp Gerontol45466-4722010. 24. Brand MD. The sites and topology of mitochondrial superoxide production. Exp Gerontol 45: 466–472, 2010.
25.
Britten CDRowinsky EKBaker SDWeiss GRSmith LStephenson JRothenberg MSmetzer LCramer JCollins WVon Hoff DDEckhardt SG. A phase I and pharmacokinetic study of the mitochondrial-specific rhodacyanine dye analog MKT 077Clin Cancer Res642-492000. 25. Britten CD, Rowinsky EK, Baker SD, Weiss GR, Smith L, Stephenson J, Rothenberg M, Smetzer L, Cramer J, Collins W, Von Hoff DD, and Eckhardt SG. A phase I and pharmacokinetic study of the mitochondrial-specific rhodacyanine dye analog MKT 077. Clin Cancer Res 6: 42–49, 2000.
26.
Brown KKCox AGHampton MB. Mitochondrial respiratory chain involvement in peroxiredoxin 3 oxidation by phenethyl isothiocyanate and auranofinFEBS Lett5841257-12622010. 26. Brown KK, Cox AG, and Hampton MB. Mitochondrial respiratory chain involvement in peroxiredoxin 3 oxidation by phenethyl isothiocyanate and auranofin. FEBS Lett 584: 1257–1262, 2010.
27.
Bullough DACeccarelli EARoise DAllison WS. Inhibition of the bovine-heart mitochondrial F1-ATPase by cationic dyes and amphipathic peptidesBiochim Biophys Acta975377-3831989. 27. Bullough DA, Ceccarelli EA, Roise D, and Allison WS. Inhibition of the bovine-heart mitochondrial F1-ATPase by cationic dyes and amphipathic peptides. Biochim Biophys Acta 975: 377–383, 1989.
28.
Bustamante EMorris HPPedersen PL. Energy metabolism of tumor cells. Requirement for a form of hexokinase with a propensity for mitochondrial bindingJ Biol Chem2568699-87041981. 28. Bustamante E, Morris HP, and Pedersen PL. Energy metabolism of tumor cells. Requirement for a form of hexokinase with a propensity for mitochondrial binding. J Biol Chem 256: 8699–8704, 1981.
29.
Buzzai MJones RGAmaravadi RKLum JJDeBerardinis RJZhao FViollet BThompson CB. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growthCancer Res676745-67522007. 29. Buzzai M, Jones RG, Amaravadi RK, Lum JJ, DeBerardinis RJ, Zhao F, Viollet B, and Thompson CB. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res 67: 6745–6752, 2007.
30.
Caboni PSherer TBZhang NTaylor GNa HMGreenamyre JTCasida JE. Rotenone, deguelin, their metabolites, and the rat model of Parkinson's diseaseChem Res Toxicol171540-15482004. 30. Caboni P, Sherer TB, Zhang N, Taylor G, Na HM, Greenamyre JT, and Casida JE. Rotenone, deguelin, their metabolites, and the rat model of Parkinson's disease. Chem Res Toxicol 17: 1540–1548, 2004.
31.
Chandra JHackbarth JLe SLoegering DBone NBruzek LMNarayanan VLAdjei AAKay NETefferi AKarp JESausville EAKaufmann SH. Involvement of reactive oxygen species in adaphostin-induced cytotoxicity in human leukemia cellsBlood1024512-45192003. 31. Chandra J, Hackbarth J, Le S, Loegering D, Bone N, Bruzek LM, Narayanan VL, Adjei AA, Kay NE, Tefferi A, Karp JE, Sausville EA, and Kaufmann SH. Involvement of reactive oxygen species in adaphostin-induced cytotoxicity in human leukemia cells. Blood 102: 4512–4519, 2003.
32.
Chandra JTracy JLoegering DFlatten KVerstovsek SBeran MGorre MEstrov ZDonato NTalpaz MSawyers CBhalla KKarp JSausville EKaufmann SH. Adaphostin-induced oxidative stress overcomes BCR/ABL mutation-dependent and -independent imatinib resistanceBlood1072501-25062006. 32. Chandra J, Tracy J, Loegering D, Flatten K, Verstovsek S, Beran M, Gorre M, Estrov Z, Donato N, Talpaz M, Sawyers C, Bhalla K, Karp J, Sausville E, and Kaufmann SH. Adaphostin-induced oxidative stress overcomes BCR/ABL mutation-dependent and -independent imatinib resistance. Blood 107: 2501–2506, 2006.
33.
Chandran KAggarwal DMigrino RQJoseph JMcAllister DKonorev EAAntholine WEZielonka JSrinivasan SAvadhani NGKalyanaraman B. Doxorubicin inactivates myocardial cytochrome c oxidase in rats: Cardioprotection by Mito-QBiophys J961388-13982009. 33. Chandran K, Aggarwal D, Migrino RQ, Joseph J, McAllister D, Konorev EA, Antholine WE, Zielonka J, Srinivasan S, Avadhani NG, and Kalyanaraman B. Doxorubicin inactivates myocardial cytochrome c oxidase in rats: Cardioprotection by Mito-Q. Biophys J 96: 1388–1398, 2009.
34.
Check Hayden E. Cancer complexity slows quest for cureNature4551482008. 34. Check Hayden E. Cancer complexity slows quest for cure. Nature 455: 148, 2008.
35.
Chen QVazquez EJMoghaddas SHoppel CLLesnefsky EJ. Production of reactive oxygen species by mitochondria: Central role of complex IIIJ Biol Chem27836027-360312003. 35. Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, and Lesnefsky EJ. Production of reactive oxygen species by mitochondria: Central role of complex III. J Biol Chem 278: 36027–36031, 2003.
36.
Chen ZZhang HLu WHuang P. Role of mitochondria-associated hexokinase II in cancer cell death induced by 3-bromopyruvateBiochim Biophys Acta1787553-5602009. 36. Chen Z, Zhang H, Lu W, and Huang P. Role of mitochondria-associated hexokinase II in cancer cell death induced by 3-bromopyruvate. Biochim Biophys Acta 1787: 553–560, 2009.
37.
Choi WSPalmiter RDXia Z. Loss of mitochondrial complex I activity potentiates dopamine neuron death induced by microtubule dysfunction in a Parkinson's disease modelJ Cell Biol192873-8822011. 37. Choi WS, Palmiter RD, and Xia Z. Loss of mitochondrial complex I activity potentiates dopamine neuron death induced by microtubule dysfunction in a Parkinson's disease model. J Cell Biol 192: 873–882, 2011.
38.
Chong CRChabner BA. Mysterious metforminOncologist141178-11812009. 38. Chong CR and Chabner BA. Mysterious metformin. Oncologist 14: 1178–1181, 2009.
39.
Chun KHKosmeder JW 2ndSun SPezzuto JMLotan RHong WKLee HY. Effects of deguelin on the phosphatidylinositol 3-kinase/Akt pathway and apoptosis in premalignant human bronchial epithelial cellsJ Natl Cancer Inst95291-3022003. 39. Chun KH, Kosmeder JW, 2nd, Sun S, Pezzuto JM, Lotan R, Hong WK, and Lee HY. Effects of deguelin on the phosphatidylinositol 3-kinase/Akt pathway and apoptosis in premalignant human bronchial epithelial cells. J Natl Cancer Inst 95: 291–302, 2003.
40.
Crofts AR. The cytochrome bc1 complex: Function in the context of structureAnnu Rev Physiol66689-7332004. 40. Crofts AR. The cytochrome bc1 complex: Function in the context of structure. Annu Rev Physiol 66: 689–733, 2004.
41.
Croxtall JDEmmas CWhite JOChoudhary QFlower RJ. Tamoxifen inhibits growth of oestrogen receptor-negative A549 cellsBiochem Pharmacol47197-2021994. 41. Croxtall JD, Emmas C, White JO, Choudhary Q, and Flower RJ. Tamoxifen inhibits growth of oestrogen receptor-negative A549 cells. Biochem Pharmacol 47: 197–202, 1994.
42.
Cuchelkar VKopeckova PKopecek J. Novel HPMA copolymer-bound constructs for combined tumor and mitochondrial targetingMol Pharm5776-7862008. 42. Cuchelkar V, Kopeckova P, and Kopecek J. Novel HPMA copolymer-bound constructs for combined tumor and mitochondrial targeting. Mol Pharm 5: 776–786, 2008.
43.
Cuezva JMSanchez-Arago MSala SBlanco-Rivero AOrtega AD. A message emerging from development: The repression of mitochondrial beta-F1-ATPase expression in cancerJ Bioenerg Biomembr39259-2652007. 43. Cuezva JM, Sanchez-Arago M, Sala S, Blanco-Rivero A, and Ortega AD. A message emerging from development: The repression of mitochondrial beta-F1-ATPase expression in cancer. J Bioenerg Biomembr 39: 259–265, 2007.
44.
D'Alessio MDe Nicola MCoppola SGualandi GPugliese LCerella CCristofanon SCivitareale PCiriolo MRBergamaschi AMagrini AGhibelli L. Oxidative Bax dimerization promotes its translocation to mitochondria independently of apoptosisFASEB J191504-15062005. 44. D'Alessio M, De Nicola M, Coppola S, Gualandi G, Pugliese L, Cerella C, Cristofanon S, Civitareale P, Ciriolo MR, Bergamaschi A, Magrini A, and Ghibelli L. Oxidative Bax dimerization promotes its translocation to mitochondria independently of apoptosis. FASEB J 19: 1504–1506, 2005.
45.
Dang CVKim JWGao PYustein J. The interplay between MYC and HIF in cancerNat Rev Cancer851-562008. 45. Dang CV, Kim JW, Gao P, and Yustein J. The interplay between MYC and HIF in cancer. Nat Rev Cancer 8: 51–56, 2008.
46.
Dang LWhite DWGross SBennett BDBittinger MADriggers EMFantin VRJang HGJin SKeenan MCMarks KMPrins RMWard PSYen KELiau LMRabinowitz JDCantley LCThompson CBVander Heiden MGSu SM. Cancer-associated IDH1 mutations produce 2-hydroxyglutarateNature462739-7442009. 46. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC, Marks KM, Prins RM, Ward PS, Yen KE, Liau LM, Rabinowitz JD, Cantley LC, Thompson CB, Vander Heiden MG, and Su SM. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462: 739–744, 2009.
47.
Dasmahapatra GNguyen TKDent PGrant S. Adaphostin and bortezomib induce oxidative injury and apoptosis in imatinib mesylate-resistant hematopoietic cells expressing mutant forms of Bcr/AblLeuk Res301263-12722006. 47. Dasmahapatra G, Nguyen TK, Dent P, and Grant S. Adaphostin and bortezomib induce oxidative injury and apoptosis in imatinib mesylate-resistant hematopoietic cells expressing mutant forms of Bcr/Abl. Leuk Res 30: 1263–1272, 2006.
48.
Davis RACarroll ARPierens GKQuinn RJ. New lamellarin alkaloids from the australian ascidian, didemnum chartaceumJ Nat Prod62419-4241999. 48. Davis RA, Carroll AR, Pierens GK, and Quinn RJ. New lamellarin alkaloids from the australian ascidian, didemnum chartaceum. J Nat Prod 62: 419–424, 1999.
49.
Davis SWeiss MJWong JRLampidis TJChen LB. Mitochondrial and plasma membrane potentials cause unusual accumulation and retention of rhodamine 123 by human breast adenocarcinoma-derived MCF-7 cellsJ Biol Chem26013844-138501985. 49. Davis S, Weiss MJ, Wong JR, Lampidis TJ, and Chen LB. Mitochondrial and plasma membrane potentials cause unusual accumulation and retention of rhodamine 123 by human breast adenocarcinoma-derived MCF-7 cells. J Biol Chem 260: 13844–13850, 1985.
50.
Degli Esposti M. Inhibitors of NADH-ubiquinone reductase: An overviewBiochim Biophys Acta1364222-2351998. 50. Degli Esposti M. Inhibitors of NADH-ubiquinone reductase: An overview. Biochim Biophys Acta 1364: 222–235, 1998.
51.
Dell'Eva RAmbrosini CMinghelli SNoonan DMAlbini AFerrari N. The Akt inhibitor deguelin, is an angiopreventive agent also acting on the NF-kappaB pathwayCarcinogenesis28404-4132007. 51. Dell'Eva R, Ambrosini C, Minghelli S, Noonan DM, Albini A, and Ferrari N. The Akt inhibitor deguelin, is an angiopreventive agent also acting on the NF-kappaB pathway. Carcinogenesis 28: 404–413, 2007.
52.
Devenish RJPrescott MRodgers AJ. The structure and function of mitochondrial F1F0-ATP synthasesInt Rev Cell Mol Biol2671-582008. 52. Devenish RJ, Prescott M, and Rodgers AJ. The structure and function of mitochondrial F1F0-ATP synthases. Int Rev Cell Mol Biol 267: 1–58, 2008.
53.
Di Monte DA. The environment and Parkinson's disease: Is the nigrostriatal system preferentially targeted by neurotoxins?Lancet Neurol2531-5382003. 53. Di Monte DA. The environment and Parkinson's disease: Is the nigrostriatal system preferentially targeted by neurotoxins? Lancet Neurol 2: 531–538, 2003.
54.
Don ASKisker ODilda PDonoghue NZhao XDecollogne SCreighton BFlynn EFolkman JHogg PJ. A peptide trivalent arsenical inhibits tumor angiogenesis by perturbing mitochondrial function in angiogenic endothelial cellsCancer Cell3497-5092003. 54. Don AS, Kisker O, Dilda P, Donoghue N, Zhao X, Decollogne S, Creighton B, Flynn E, Folkman J, and Hogg PJ. A peptide trivalent arsenical inhibits tumor angiogenesis by perturbing mitochondrial function in angiogenic endothelial cells. Cancer Cell 3: 497–509, 2003.
55.
Donapaty SLouis SHorvath EKun JSebti SMMalafa MP. RRR-alpha-tocopherol succinate down-regulates oncogenic Ras signalingMol Cancer Ther5309-3162006. 55. Donapaty S, Louis S, Horvath E, Kun J, Sebti SM, and Malafa MP. RRR-alpha-tocopherol succinate down-regulates oncogenic Ras signaling. Mol Cancer Ther 5: 309–316, 2006.
56.
Dong LFFreeman RLiu JZobalova RMarin-Hernandez AStantic MRohlena JValis KRodriguez-Enriquez SButcher BGoodwin JBrunk UTWitting PKMoreno-Sanchez RScheffler IERalph SJNeuzil J. Suppression of tumor growth in vivo by the mitocan alpha-tocopheryl succinate requires respiratory complex IIClin Cancer Res151593-16002009. 56. Dong LF, Freeman R, Liu J, Zobalova R, Marin-Hernandez A, Stantic M, Rohlena J, Valis K, Rodriguez-Enriquez S, Butcher B, Goodwin J, Brunk UT, Witting PK, Moreno-Sanchez R, Scheffler IE, Ralph SJ, and Neuzil J. Suppression of tumor growth in vivo by the mitocan alpha-tocopheryl succinate requires respiratory complex II. Clin Cancer Res 15: 1593–1600, 2009.
57.
Dong LFJameson VJTilly DCerny JMahdavian EMarin-Hernandez AHernandez-Esquivel LRodriguez-Enriquez SStursa JWitting PKStantic BRohlena JTruksa JKluckova KDyason JCLedvina MSalvatore BAMoreno-Sanchez RCoster MJRalph SJSmith RANeuzil J. Mitochondrial targeting of vitamin E succinate enhances its pro-apoptotic and anticancer activity via mitochondrial complex IIJ Biol Chem2863717-37282011. 57. Dong LF, Jameson VJ, Tilly D, Cerny J, Mahdavian E, Marin-Hernandez A, Hernandez-Esquivel L, Rodriguez-Enriquez S, Stursa J, Witting PK, Stantic B, Rohlena J, Truksa J, Kluckova K, Dyason JC, Ledvina M, Salvatore BA, Moreno-Sanchez R, Coster MJ, Ralph SJ, Smith RA, and Neuzil J. Mitochondrial targeting of vitamin E succinate enhances its pro-apoptotic and anticancer activity via mitochondrial complex II. J Biol Chem 286: 3717–3728, 2011.
58.
Dong LFJameson VJTilly DProchazka LRohlena JValis KTruksa JZobalova RMahdavian EKluckova KStantic MStursa JFreeman RWitting PKNorberg EGoodwin JSalvatore BANovotna JTuranek JLedvina MHozak PZhivotovsky BCoster MJRalph SJSmith RANeuzil J. Mitochondrial targeting of alpha-tocopheryl succinate enhances its pro-apoptotic efficacy: A new paradigm of efficient cancer therapyFree Radic Biol Med501546-15552011. 58. Dong LF, Jameson VJ, Tilly D, Prochazka L, Rohlena J, Valis K, Truksa J, Zobalova R, Mahdavian E, Kluckova K, Stantic M, Stursa J, Freeman R, Witting PK, Norberg E, Goodwin J, Salvatore BA, Novotna J, Turanek J, Ledvina M, Hozak P, Zhivotovsky B, Coster MJ, Ralph SJ, Smith RA, and Neuzil J. Mitochondrial targeting of alpha-tocopheryl succinate enhances its pro-apoptotic efficacy: A new paradigm of efficient cancer therapy. Free Radic Biol Med 50: 1546–1555, 2011.
59.
Dong LFLow PDyason JCWang XFProchazka LWitting PKFreeman RSwettenham EValis KLiu JZobalova RTuranek JSpitz DRDomann FEScheffler IERalph SJNeuzil J. Alpha-tocopheryl succinate induces apoptosis by targeting ubiquinone-binding sites in mitochondrial respiratory complex IIOncogene274324-43352008. 59. Dong LF, Low P, Dyason JC, Wang XF, Prochazka L, Witting PK, Freeman R, Swettenham E, Valis K, Liu J, Zobalova R, Turanek J, Spitz DR, Domann FE, Scheffler IE, Ralph SJ, and Neuzil J. Alpha-tocopheryl succinate induces apoptosis by targeting ubiquinone-binding sites in mitochondrial respiratory complex II. Oncogene 27: 4324–4335, 2008.
60.
Drechsel DAPatel M. Role of reactive oxygen species in the neurotoxicity of environmental agents implicated in Parkinson's diseaseFree Radic Biol Med441873-18862008. 60. Drechsel DA and Patel M. Role of reactive oxygen species in the neurotoxicity of environmental agents implicated in Parkinson's disease. Free Radic Biol Med 44: 1873–1886, 2008.
61.
Drose SBrandt U. The mechanism of mitochondrial superoxide production by the cytochrome bc1 complexJ Biol Chem28321649-216542008. 61. Drose S and Brandt U. The mechanism of mitochondrial superoxide production by the cytochrome bc1 complex. J Biol Chem 283: 21649–21654, 2008.
62.
Efremov RGBaradaran RSazanov LA. The architecture of respiratory complex INature465441-4452010. 62. Efremov RG, Baradaran R, and Sazanov LA. The architecture of respiratory complex I. Nature 465: 441–445, 2010.
63.
Eguchi YShimizu STsujimoto Y. Intracellular ATP levels determine cell death fate by apoptosis or necrosisCancer Res571835-18401997. 63. Eguchi Y, Shimizu S, and Tsujimoto Y. Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res 57: 1835–1840, 1997.
64.
Ellerby HMArap WEllerby LMKain RAndrusiak RRio GDKrajewski SLombardo CRRao RRuoslahti EBredesen DEPasqualini R. Anticancer activity of targeted pro-apoptotic peptidesNature Medicine51032-10381999. 64. Ellerby HM, Arap W, Ellerby LM, Kain R, Andrusiak R, Rio GD, Krajewski S, Lombardo CR, Rao R, Ruoslahti E, Bredesen DE, and Pasqualini R. Anticancer activity of targeted pro-apoptotic peptides. Nature Medicine 5: 1032–1038, 1999.
65.
Facompre MTardy CBal-Mahieu CColson PPerez CManzanares ICuevas CBailly C. Lamellarin D: A novel potent inhibitor of topoisomerase ICancer Res637392-73992003. 65. Facompre M, Tardy C, Bal-Mahieu C, Colson P, Perez C, Manzanares I, Cuevas C, and Bailly C. Lamellarin D: A novel potent inhibitor of topoisomerase I. Cancer Res 63: 7392–7399, 2003.
66.
Fantin VRBerardi MJScorrano LKorsmeyer SJLeder P. A novel mitochondriotoxic small molecule that selectively inhibits tumor cell growthCancer Cell229-422002. 66. Fantin VR, Berardi MJ, Scorrano L, Korsmeyer SJ, and Leder P. A novel mitochondriotoxic small molecule that selectively inhibits tumor cell growth. Cancer Cell 2: 29–42, 2002.
67.
Fato RBergamini CBortolus MManiero ALLeoni SOhnishi TLenaz G. Differential effects of mitochondrial complex I inhibitors on production of reactive oxygen speciesBiochim Biophys Acta1787384-3922009. 67. Fato R, Bergamini C, Bortolus M, Maniero AL, Leoni S, Ohnishi T, and Lenaz G. Differential effects of mitochondrial complex I inhibitors on production of reactive oxygen species. Biochim Biophys Acta 1787: 384–392, 2009.
68.
Fato RBergamini CLeoni SStrocchi PLenaz G. Generation of reactive oxygen species by mitochondrial complex I: Implications in neurodegenerationNeurochem Res332487-25012008. 68. Fato R, Bergamini C, Leoni S, Strocchi P, and Lenaz G. Generation of reactive oxygen species by mitochondrial complex I: Implications in neurodegeneration. Neurochem Res 33: 2487–2501, 2008.
69.
Festjens NKalai MSmet JMeeus AVan Coster RSaelens XVandenabeele P. Butylated hydroxyanisole is more than a reactive oxygen species scavengerCell Death Differ13166-1692006. 69. Festjens N, Kalai M, Smet J, Meeus A, Van Coster R, Saelens X, and Vandenabeele P. Butylated hydroxyanisole is more than a reactive oxygen species scavenger. Cell Death Differ 13: 166–169, 2006.
70.
Fruehauf JPMeyskens FL Jr. Reactive oxygen species: A breath of life or death?Clin Cancer Res13789-7942007. 70. Fruehauf JP and Meyskens FL, Jr. Reactive oxygen species: A breath of life or death? Clin Cancer Res 13: 789–794, 2007.
71.
Fukuda RZhang HKim JWShimoda LDang CVSemenza GL. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cellsCell129111-1222007. 71. Fukuda R, Zhang H, Kim JW, Shimoda L, Dang CV, and Semenza GL. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129: 111–122, 2007.
72.
Fulda SGalluzzi LKroemer G. Targeting mitochondria for cancer therapyNat Rev Drug Discov9447-4642010. 72. Fulda S, Galluzzi L, and Kroemer G. Targeting mitochondria for cancer therapy. Nat Rev Drug Discov 9: 447–464, 2010.
73.
Fulda SScaffidi CSusin SAKrammer PHKroemer GPeter MEDebatin KM. Activation of mitochondria and release of mitochondrial apoptogenic factors by betulinic acidJ Biol Chem27333942-339481998. 73. Fulda S, Scaffidi C, Susin SA, Krammer PH, Kroemer G, Peter ME, and Debatin KM. Activation of mitochondria and release of mitochondrial apoptogenic factors by betulinic acid. J Biol Chem 273: 33942–33948, 1998.
74.
Gallego MABallot CKluza JHajji NMartoriati ACastera LCuevas CFormstecher PJoseph BKroemer GBailly CMarchetti P. Overcoming chemoresistance of non-small cell lung carcinoma through restoration of an AIF-dependent apoptotic pathwayOncogene271981-19922008. 74. Gallego MA, Ballot C, Kluza J, Hajji N, Martoriati A, Castera L, Cuevas C, Formstecher P, Joseph B, Kroemer G, Bailly C, and Marchetti P. Overcoming chemoresistance of non-small cell lung carcinoma through restoration of an AIF-dependent apoptotic pathway. Oncogene 27: 1981–1992, 2008.
75.
Galluzzi LLarochette NZamzami NKroemer G. Mitochondria as therapeutic targets for cancer chemotherapyOncogene254812-48302006. 75. Galluzzi L, Larochette N, Zamzami N, and Kroemer G. Mitochondria as therapeutic targets for cancer chemotherapy. Oncogene 25: 4812–4830, 2006.
76.
Garrido CGalluzzi LBrunet MPuig PEDidelot CKroemer G. Mechanisms of cytochrome c release from mitochondriaCell Death Differ131423-14332006. 76. Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C, and Kroemer G. Mechanisms of cytochrome c release from mitochondria. Cell Death Differ 13: 1423–1433, 2006.
77.
Gledhill JRMontgomery MGLeslie AGWalker JE. Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenolsProc Natl Acad Sci USA10413632-136372007. 77. Gledhill JR, Montgomery MG, Leslie AG, and Walker JE. Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenols. Proc Natl Acad Sci USA 104: 13632–13637, 2007.
78.
Gogvadze VNorberg EOrrenius SZhivotovsky B. Involvement of Ca(2+) and ROS in alpha-tocopheryl succinate-induced mitochondrial permeabilizationInt J Cancer1271823-18322010. 78. Gogvadze V, Norberg E, Orrenius S, and Zhivotovsky B. Involvement of Ca(2+) and ROS in alpha-tocopheryl succinate-induced mitochondrial permeabilization. Int J Cancer 127: 1823–1832, 2010.
79.
Gogvadze VOrrenius SZhivotovsky B. Mitochondria in cancer cells: What is so special about them?Trends Cell Biol18165-1732008. 79. Gogvadze V, Orrenius S, and Zhivotovsky B. Mitochondria in cancer cells: What is so special about them? Trends Cell Biol 18: 165–173, 2008.
80.
Gogvadze VOrrenius SZhivotovsky B. Mitochondria as targets for cancer chemotherapySemin Cancer Biol1957-662009. 80. Gogvadze V, Orrenius S,and Zhivotovsky B. Mitochondria as targets for cancer chemotherapy. Semin Cancer Biol 19: 57–66, 2009.
81.
Gomez-Lazaro MGalindo MFMelero-Fernandez de Mera RMFernandez-Gomez FJConcannon CGSegura MFComella JXPrehn JHJordan J. Reactive oxygen species and p38 mitogen-activated protein kinase activate Bax to induce mitochondrial cytochrome c release and apoptosis in response to malonateMol Pharmacol71736-7432007. 81. Gomez-Lazaro M, Galindo MF, Melero-Fernandez de Mera RM, Fernandez-Gomez FJ, Concannon CG, Segura MF, Comella JX, Prehn JH, and Jordan J. Reactive oxygen species and p38 mitogen-activated protein kinase activate Bax to induce mitochondrial cytochrome c release and apoptosis in response to malonate. Mol Pharmacol 71: 736–743, 2007.
82.
Gong YSohn HXue LFirestone GLBjeldanes LF. 3,3'-Diindolylmethane is a novel mitochondrial H(+)-ATP synthase inhibitor that can induce p21(Cip1/Waf1) expression by induction of oxidative stress in human breast cancer cellsCancer Res664880-48872006. 82. Gong Y, Sohn H, Xue L, Firestone GL, and Bjeldanes LF. 3,3'-Diindolylmethane is a novel mitochondrial H(+)-ATP synthase inhibitor that can induce p21(Cip1/Waf1) expression by induction of oxidative stress in human breast cancer cells. Cancer Res 66: 4880–4887, 2006.
83.
Gottlieb ETomlinson IP. Mitochondrial tumour suppressors: A genetic and biochemical updateNat Rev Cancer5857-8662005. 83. Gottlieb E and Tomlinson IP. Mitochondrial tumour suppressors: A genetic and biochemical update. Nat Rev Cancer 5: 857–866, 2005.
84.
Gough DJCorlett ASchlessinger KWegrzyn JLarner ACLevy DE. Mitochondrial STAT3 supports Ras-dependent oncogenic transformationScience3241713-17162009. 84. Gough DJ, Corlett A, Schlessinger K, Wegrzyn J, Larner AC, and Levy DE. Mitochondrial STAT3 supports Ras-dependent oncogenic transformation. Science 324: 1713–1716, 2009.
85.
Graham DJGreen LSenior JRNourjah P. Troglitazone-induced liver failure: A case studyAm J Med114299-3062003. 85. Graham DJ, Green L, Senior JR, and Nourjah P. Troglitazone-induced liver failure: A case study. Am J Med 114: 299–306, 2003.
86.
Grivennikova VGVinogradov AD. Generation of superoxide by the mitochondrial Complex IBiochim Biophys Acta1757553-5612006. 86. Grivennikova VG and Vinogradov AD. Generation of superoxide by the mitochondrial Complex I. Biochim Biophys Acta 1757: 553–561, 2006.
87.
Hail N Jr. and Lotan R. Apoptosis induction by the natural product cancer chemopreventive agent deguelin is mediated through the inhibition of mitochondrial bioenergeticsApoptosis9437-4472004. 87. Hail N, Jr. and Lotan R. Apoptosis induction by the natural product cancer chemopreventive agent deguelin is mediated through the inhibition of mitochondrial bioenergetics. Apoptosis 9: 437–447, 2004.
88.
Harikumar KBAggarwal BB. Resveratrol: A multitargeted agent for age-associated chronic diseasesCell Cycle71020-10352008. 88. Harikumar KB and Aggarwal BB. Resveratrol: A multitargeted agent for age-associated chronic diseases. Cell Cycle 7: 1020–1035, 2008.
89.
Harikumar KBKunnumakkara ABAhn KSAnand PKrishnan SGuha SAggarwal BB. Modification of the cysteine residues in IkappaBalpha kinase and NF-kappaB (p65) by xanthohumol leads to suppression of NF-kappaB-regulated gene products and potentiation of apoptosis in leukemia cellsBlood1132003-20132009. 89. Harikumar KB, Kunnumakkara AB, Ahn KS, Anand P, Krishnan S, Guha S, and Aggarwal BB. Modification of the cysteine residues in IkappaBalpha kinase and NF-kappaB (p65) by xanthohumol leads to suppression of NF-kappaB-regulated gene products and potentiation of apoptosis in leukemia cells. Blood 113: 2003–2013, 2009.
90.
Herr HWHuffman JLHuryk RHeston WDMelamed MRWhitmore WF Jr. Anticarcinoma activity of rhodamine 123 against a murine renal adenocarcinomaCancer Res482061-20631988. 90. Herr HW, Huffman JL, Huryk R, Heston WD, Melamed MR, and Whitmore WF, Jr. Anticarcinoma activity of rhodamine 123 against a murine renal adenocarcinoma. Cancer Res 48: 2061–2063, 1988.
91.
Hilf R. Mitochondria are targets of photodynamic therapyJ Bioenerg Biomembr3985-892007. 91. Hilf R. Mitochondria are targets of photodynamic therapy. J Bioenerg Biomembr 39: 85–89, 2007.
92.
Huang LSSun GCobessi DWang ACShen JTTung EYAnderson VEBerry EA. 3-nitropropionic acid is a suicide inhibitor of mitochondrial respiration that, upon oxidation by complex II, forms a covalent adduct with a catalytic base arginine in the active site of the enzymeJ Biol Chem2815965-59722006. 92. Huang LS, Sun G, Cobessi D, Wang AC, Shen JT, Tung EY, Anderson VE, and Berry EA. 3-nitropropionic acid is a suicide inhibitor of mitochondrial respiration that, upon oxidation by complex II, forms a covalent adduct with a catalytic base arginine in the active site of the enzyme. J Biol Chem 281: 5965–5972, 2006.
93.
Huang PFeng LOldham EAKeating MJPlunkett W. Superoxide dismutase as a target for the selective killing of cancer cellsNature407390-3952000. 93. Huang P, Feng L, Oldham EA, Keating MJ, and Plunkett W. Superoxide dismutase as a target for the selective killing of cancer cells. Nature 407: 390–395, 2000.
94.
Iwata SLee JWOkada KLee JKIwata MRasmussen BLink TARamaswamy SJap BK. Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complexScience28164-711998. 94. Iwata S, Lee JW, Okada K, Lee JK, Iwata M, Rasmussen B, Link TA, Ramaswamy S, and Jap BK. Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. Science 281: 64–71, 1998.
95.
Jemal ABray FCenter MMFerlay JWard EForman D. Global cancer statisticsCA: Cancer J Clin6169-902011. 95. Jemal A, Bray F, Center MM, Ferlay J, Ward E, and Forman D. Global cancer statistics. CA: Cancer J Clin 61: 69–90, 2011.
96.
Jemal ASiegel RXu JWard E. Cancer statistics, 2010CA Cancer J Clin60277-3002010. 96. Jemal A, Siegel R, Xu J, and Ward E. Cancer statistics, 2010. CA Cancer J Clin 60: 277–300, 2010.
97.
Johnson KMCleary JFierke CAOpipari AW Jr.Glick GD. Mechanistic basis for therapeutic targeting of the mitochondrial F1F0-ATPaseACS Chem Biol1304-3082006. 97. Johnson KM, Cleary J, Fierke CA, Opipari AW, Jr., and Glick GD. Mechanistic basis for therapeutic targeting of the mitochondrial F1F0-ATPase. ACS Chem Biol 1: 304–308, 2006.
98.
Johnson LVWalsh MLChen LB. Localization of mitochondria in living cells with rhodamine 123Proc Natl Acad Sci USA77990-9941980. 98. Johnson LV, Walsh ML, and Chen LB. Localization of mitochondria in living cells with rhodamine 123. Proc Natl Acad Sci USA 77: 990–994, 1980.
99.
Jones LWNarayan KSShapiro CESweatman TW. Rhodamine-123: Therapy for hormone refractory prostate cancer, a phase I clinical trialJ Chemother17435-4402005. 99. Jones LW, Narayan KS, Shapiro CE, and Sweatman TW. Rhodamine-123: Therapy for hormone refractory prostate cancer, a phase I clinical trial. J Chemother 17: 435–440, 2005.
100.
Jones SZhang XParsons DWLin JCLeary RJAngenendt PMankoo PCarter HKamiyama HJimeno AHong SMFu BLin MTCalhoun ESKamiyama MWalter KNikolskaya TNikolsky YHartigan JSmith DRHidalgo MLeach SDKlein APJaffee EMGoggins MMaitra AIacobuzio-Donahue CEshleman JRKern SEHruban RHKarchin RPapadopoulos NParmigiani GVogelstein BVelculescu VEKinzler KW. Core signaling pathways in human pancreatic cancers revealed by global genomic analysesScience3211801-18062008. 100. Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, Hong SM, Fu B, Lin MT, Calhoun ES, Kamiyama M, Walter K, Nikolskaya T, Nikolsky Y, Hartigan J, Smith DR, Hidalgo M, Leach SD, Klein AP, Jaffee EM, Goggins M, Maitra A, Iacobuzio-Donahue C, Eshleman JR, Kern SE, Hruban RH, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, and Kinzler KW. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321: 1801–1806, 2008.
101.
Junge WSielaff HEngelbrecht S. Torque generation and elastic power transmission in the rotary F(O)F(1)-ATPaseNature459364-3702009. 101. Junge W, Sielaff H, and Engelbrecht S. Torque generation and elastic power transmission in the rotary F(O)F(1)-ATPase. Nature 459: 364–370, 2009.
102.
Kang MHReynolds CP. Bcl-2 inhibitors: Targeting mitochondrial apoptotic pathways in cancer therapyClin Cancer Res151126-11322009. 102. Kang MH and Reynolds CP. Bcl-2 inhibitors: Targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res 15: 1126–1132, 2009.
103.
Kelso GFPorteous CMCoulter CVHughes GPorteous WKLedgerwood ECSmith RAMurphy MP. Selective targeting of a redox-active ubiquinone to mitochondria within cells: Antioxidant and antiapoptotic propertiesJ Biol Chem2764588-45962001. 103. Kelso GF, Porteous CM, Coulter CV, Hughes G, Porteous WK, Ledgerwood EC, Smith RA, and Murphy MP. Selective targeting of a redox-active ubiquinone to mitochondria within cells: Antioxidant and antiapoptotic properties. J Biol Chem 276: 4588–4596, 2001.
104.
Kim WYOh SHWoo JKHong WKLee HY. Targeting heat shock protein 90 overrides the resistance of lung cancer cells by blocking radiation-induced stabilization of hypoxia-inducible factor-1alphaCancer Res691624-16322009. 104. Kim WY, Oh SH, Woo JK, Hong WK, and Lee HY. Targeting heat shock protein 90 overrides the resistance of lung cancer cells by blocking radiation-induced stabilization of hypoxia-inducible factor-1alpha. Cancer Res 69: 1624–1632, 2009.
105.
Kluza JGallego MALoyens ABeauvillain JCSousa-Faro JMCuevas CMarchetti PBailly C. Cancer cell mitochondria are direct proapoptotic targets for the marine antitumor drug lamellarin DCancer Res663177-31872006. 105. Kluza J, Gallego MA, Loyens A, Beauvillain JC, Sousa-Faro JM, Cuevas C, Marchetti P, and Bailly C. Cancer cell mitochondria are direct proapoptotic targets for the marine antitumor drug lamellarin D. Cancer Res 66: 3177–3187, 2006.
106.
Ko YHSmith BLWang YPomper MGRini DATorbenson MSHullihen JPedersen PL. Advanced cancers: Eradication in all cases using 3-bromopyruvate therapy to deplete ATPBiochem Biophys Res Comm324269-2752004. 106. Ko YH, Smith BL, Wang Y, Pomper MG, Rini DA, Torbenson MS, Hullihen J, and Pedersen PL. Advanced cancers: Eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem Biophys Res Comm 324: 269–275, 2004.
107.
Koobs DH. Phosphate mediation of the Crabtree and Pasteur effectsScience178127-1331972. 107. Koobs DH. Phosphate mediation of the Crabtree and Pasteur effects. Science 178: 127–133, 1972.
108.
Koppenol WHBounds PLDang CV. Otto Warburg's contributions to current concepts of cancer metabolismNat Rev Cancer11325-3372011. 108. Koppenol WH, Bounds PL, and Dang CV. Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer 11: 325–337, 2011.
109.
Kroemer GGalluzzi LBrenner C. Mitochondrial membrane permeabilization in cell deathPhysiol Rev8799-1632007. 109. Kroemer G, Galluzzi L, and Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev 87: 99–163, 2007.
110.
Kudin APBimpong-Buta NYVielhaber SElger CEKunz WS. Characterization of superoxide-producing sites in isolated brain mitochondriaJ Biol Chem2794127-41352004. 110. Kudin AP, Bimpong-Buta NY, Vielhaber S, Elger CE, and Kunz WS. Characterization of superoxide-producing sites in isolated brain mitochondria. J Biol Chem 279: 4127–4135, 2004.
111.
Kussmaul LHirst J. The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondriaProc Natl Acad Sci USA1037607-76122006. 111. Kussmaul L and Hirst J. The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc Natl Acad Sci USA 103: 7607–7612, 2006.
112.
Kwong JQHenning MSStarkov AAManfredi G. The mitochondrial respiratory chain is a modulator of apoptosisJ Cell Biol1791163-11772007. 112. Kwong JQ, Henning MS, Starkov AA, and Manfredi G. The mitochondrial respiratory chain is a modulator of apoptosis. J Cell Biol 179: 1163–1177, 2007.
113.
Lambert AJBrand MD. Inhibitors of the quinone-binding site allow rapid superoxide production from mitochondrial NADH:ubiquinone oxidoreductase (complex I)J Biol Chem27939414-394202004. 113. Lambert AJ and Brand MD. Inhibitors of the quinone-binding site allow rapid superoxide production from mitochondrial NADH:ubiquinone oxidoreductase (complex I). J Biol Chem 279: 39414–39420, 2004.
114.
Lampidis TJBernal SDSummerhayes ICChen LB. Selective toxicity of rhodamine 123 in carcinoma cells in vitroCancer Res43716-7201983. 114. Lampidis TJ, Bernal SD, Summerhayes IC, and Chen LB. Selective toxicity of rhodamine 123 in carcinoma cells in vitro. Cancer Res 43: 716–720, 1983.
115.
Le SBHailer MKBuhrow SWang QFlatten KPediaditakis PBible KCLewis LDSausville EAPang YPAmes MMLemasters JJHolmuhamedov ELKaufmann SH. Inhibition of mitochondrial respiration as a source of adaphostin-induced reactive oxygen species and cytotoxicityJ Biol Chem2828860-88722007. 115. Le SB, Hailer MK, Buhrow S, Wang Q, Flatten K, Pediaditakis P, Bible KC, Lewis LD, Sausville EA, Pang YP, Ames MM, Lemasters JJ, Holmuhamedov EL, and Kaufmann SH. Inhibition of mitochondrial respiration as a source of adaphostin-induced reactive oxygen species and cytotoxicity. J Biol Chem 282: 8860–8872, 2007.
116.
Lee HCChang CMChi CW. Somatic mutations of mitochondrial DNA in aging and cancer progressionAgeing Res Rev9Suppl 1S47-582010. 116. Lee HC, Chang CM, and Chi CW. Somatic mutations of mitochondrial DNA in aging and cancer progression. Ageing Res Rev 9 Suppl 1: S47–58, 2010.
117.
Lee HYOh SHWoo JKKim WYVan Pelt CSPrice RECody DTran HPezzuto JMMoriarty RMHong WK. Chemopreventive effects of deguelin, a novel Akt inhibitor, on tobacco-induced lung tumorigenesisJ Natl Cancer Inst971695-16992005. 117. Lee HY, Oh SH, Woo JK, Kim WY, Van Pelt CS, Price RE, Cody D, Tran H, Pezzuto JM, Moriarty RM, and Hong WK. Chemopreventive effects of deguelin, a novel Akt inhibitor, on tobacco-induced lung tumorigenesis. J Natl Cancer Inst 97: 1695–1699, 2005.
118.
Lei WXie JHou YJiang GZhang HWang PWang XZhang B. Mitochondria-targeting properties and photodynamic activities of porphyrin derivatives bearing cationic pendantJ Photochem Photobiol B98167-1712010. 118. Lei W, Xie J, Hou Y, Jiang G, Zhang H, Wang P, Wang X, and Zhang B. Mitochondria-targeting properties and photodynamic activities of porphyrin derivatives bearing cationic pendant. J Photochem Photobiol B 98: 167–171, 2010.
119.
Leist MSingle BCastoldi AFKuhnle SNicotera P. Intracellular adenosine triphosphate (ATP) concentration: A switch in the decision between apoptosis and necrosisJ Exp Med1851481-14861997. 119. Leist M, Single B, Castoldi AF, Kuhnle S, and Nicotera P. Intracellular adenosine triphosphate (ATP) concentration: A switch in the decision between apoptosis and necrosis. J Exp Med 185: 1481–1486, 1997.
120.
Lemarie AGrimm S. Mitochondrial respiratory chain complexes: Apoptosis sensors mutated in cancer?Oncogene2011. 120. Lemarie A and Grimm S. Mitochondrial respiratory chain complexes: Apoptosis sensors mutated in cancer? Oncogene, 2011.
121.
Lemarie AHuc LPazarentzos EMahul-Mellier ALGrimm S. Specific disintegration of complex II succinate:ubiquinone oxidoreductase links pH changes to oxidative stress for apoptosis inductionCell Death Differ18338-3492011. 121. Lemarie A, Huc L, Pazarentzos E, Mahul-Mellier AL, and Grimm S. Specific disintegration of complex II succinate:ubiquinone oxidoreductase links pH changes to oxidative stress for apoptosis induction. Cell Death Differ 18: 338–349, 2011.
122.
Lessene GCzabotar PEColman PM. BCL-2 family antagonists for cancer therapyNat Rev Drug Discov7989-10002008. 122. Lessene G, Czabotar PE, and Colman PM. BCL-2 family antagonists for cancer therapy. Nat Rev Drug Discov 7: 989–1000, 2008.
123.
Lewis WLevine ESGriniuviene BTankersley KOColacino JMSommadossi JPWatanabe KAPerrino FW. Fialuridine and its metabolites inhibit DNA polymerase gamma at sites of multiple adjacent analog incorporation, decrease mtDNA abundance, and cause mitochondrial structural defects in cultured hepatoblastsProc Natl Acad Sci USA933592-35971996. 123. Lewis W, Levine ES, Griniuviene B, Tankersley KO, Colacino JM, Sommadossi JP, Watanabe KA, and Perrino FW. Fialuridine and its metabolites inhibit DNA polymerase gamma at sites of multiple adjacent analog incorporation, decrease mtDNA abundance, and cause mitochondrial structural defects in cultured hepatoblasts. Proc Natl Acad Sci USA 93: 3592–3597, 1996.
124.
Li NRagheb KLawler GSturgis JRajwa BMelendez JARobinson JP. Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species productionJ Biol Chem2788516-85252003. 124. Li N, Ragheb K, Lawler G, Sturgis J, Rajwa B, Melendez JA, and Robinson JP. Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem 278: 8516–8525, 2003.
125.
Liot GBossy BLubitz SKushnareva YSejbuk NBossy-Wetzel E. Complex II inhibition by 3-NP causes mitochondrial fragmentation and neuronal cell death via an NMDA- and ROS-dependent pathwayCell Death Differ16899-9092009. 125. Liot G, Bossy B, Lubitz S, Kushnareva Y, Sejbuk N, and Bossy-Wetzel E. Complex II inhibition by 3-NP causes mitochondrial fragmentation and neuronal cell death via an NMDA- and ROS-dependent pathway. Cell Death Differ 16: 899–909, 2009.
126.
Liu XLuo XShi YZhu GDPenning TGiranda VLLuo Y. Poly (ADP-ribose) polymerase activity regulates apoptosis in HeLa cells after alkylating DNA damageCancer Biol Ther7934-9412008. 126. Liu X, Luo X, Shi Y, Zhu GD, Penning T, Giranda VL, and Luo Y. Poly (ADP-ribose) polymerase activity regulates apoptosis in HeLa cells after alkylating DNA damage. Cancer Biol Ther 7: 934–941, 2008.
127.
Lust SVanhoecke BM VANGBoelens JH VANMKaileh MVanden Berghe WHaegeman GPhilippe JBracke MOffner F. Xanthohumol activates the proapoptotic arm of the unfolded protein response in chronic lymphocytic leukemiaAnticancer Res293797-38052009. 127. Lust S, Vanhoecke B, M VANG, Boelens J, H VANM, Kaileh M, Vanden Berghe W, Haegeman G, Philippe J, Bracke M, and Offner F. Xanthohumol activates the proapoptotic arm of the unfolded protein response in chronic lymphocytic leukemia. Anticancer Res 29: 3797–3805, 2009.
128.
Madesh MHajnoczky G. VDAC-dependent permeabilization of the outer mitochondrial membrane by superoxide induces rapid and massive cytochrome c releaseJ Cell Biol1551003-10152001. 128. Madesh M and Hajnoczky G. VDAC-dependent permeabilization of the outer mitochondrial membrane by superoxide induces rapid and massive cytochrome c release. J Cell Biol 155: 1003–1015, 2001.
129.
Maklashina ECecchini G. The quinone-binding and catalytic site of complex IIBiochim Biophys Acta17973047-30562010. 129. Maklashina E and Cecchini G. The quinone-binding and catalytic site of complex II. Biochim Biophys Acta 1797: 3047–3056, 2010.
130.
Mathupala SPKo YHPedersen PL. Hexokinase II: Cancer's double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondriaOncogene254777-47862006. 130. Mathupala SP, Ko YH, and Pedersen PL. Hexokinase II: Cancer's double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene 25: 4777–4786, 2006.
131.
Matsuzawa AIchijo H. Redox control of cell fate by MAP kinase: Physiological roles of ASK1-MAP kinase pathway in stress signalingBiochim Biophys Acta17801325-13362008. 131. Matsuzawa A and Ichijo H. Redox control of cell fate by MAP kinase: Physiological roles of ASK1-MAP kinase pathway in stress signaling. Biochim Biophys Acta 1780: 1325–1336, 2008.
132.
Mattarei ABiasutto LMarotta EDe Marchi USassi NGarbisa SZoratti MParadisi C. A mitochondriotropic derivative of quercetin: A strategy to increase the effectiveness of polyphenolsChembiochem92633-26422008. 132. Mattarei A, Biasutto L, Marotta E, De Marchi U, Sassi N, Garbisa S, Zoratti M, and Paradisi C. A mitochondriotropic derivative of quercetin: A strategy to increase the effectiveness of polyphenols. Chembiochem 9: 2633–2642, 2008.
133.
Mehta AShaha C. Apoptotic death in Leishmania donovani promastigotes in response to respiratory chain inhibition: Complex II inhibition results in increased pentamidine cytotoxicityJ Biol Chem27911798-118132004. 133. Mehta A and Shaha C. Apoptotic death in Leishmania donovani promastigotes in response to respiratory chain inhibition: Complex II inhibition results in increased pentamidine cytotoxicity. J Biol Chem 279: 11798–11813, 2004.
134.
Miller WH Jr. Molecular targets of arsenic trioxide in malignant cellsOncologist714-192002. 134. Miller WH, Jr. Molecular targets of arsenic trioxide in malignant cells. Oncologist 7: 14–19, 2002.
135.
Miranda CLStevens JFHelmrich AHenderson MCRodriguez RJYang YHDeinzer MLBarnes DWBuhler DR. Antiproliferative and cytotoxic effects of prenylated flavonoids from hops (Humulus lupulus) in human cancer cell linesFood Chem Toxicol37271-2851999. 135. Miranda CL, Stevens JF, Helmrich A, Henderson MC, Rodriguez RJ, Yang YH, Deinzer ML, Barnes DW, and Buhler DR. Antiproliferative and cytotoxic effects of prenylated flavonoids from hops (Humulus lupulus) in human cancer cell lines. Food Chem Toxicol 37: 271–285, 1999.
136.
Miyadera HShiomi KUi HYamaguchi YMasuma RTomoda HMiyoshi HOsanai AKita KOmura S. Atpenins, potent and specific inhibitors of mitochondrial complex II (succinate-ubiquinone oxidoreductase)Proc Natl Acad Sci USA100473-4772003. 136. Miyadera H, Shiomi K, Ui H, Yamaguchi Y, Masuma R, Tomoda H, Miyoshi H, Osanai A, Kita K, and Omura S. Atpenins, potent and specific inhibitors of mitochondrial complex II (succinate-ubiquinone oxidoreductase). Proc Natl Acad Sci USA 100: 473–477, 2003.
137.
Miyako KKai YIrie TTakeshige KKang D. The content of intracellular mitochondrial DNA is decreased by 1-methyl-4-phenylpyridinium ion (MPP+)J Biol Chem2729605-96081997. 137. Miyako K, Kai Y, Irie T, Takeshige K, and Kang D. The content of intracellular mitochondrial DNA is decreased by 1-methyl-4-phenylpyridinium ion (MPP+). J Biol Chem 272: 9605–9608, 1997.
138.
Modica-Napolitano JSAprille JR. Basis for the selective cytotoxicity of rhodamine 123Cancer Res474361-43651987. 138. Modica-Napolitano JS and Aprille JR. Basis for the selective cytotoxicity of rhodamine 123. Cancer Res 47: 4361–4365, 1987.
139.
Modica-Napolitano JSAprille JR. Delocalized lipophilic cations selectively target the mitochondria of carcinoma cellsAdv Drug Deliv Rev4963-702001. 139. Modica-Napolitano JS and Aprille JR. Delocalized lipophilic cations selectively target the mitochondria of carcinoma cells. Adv Drug Deliv Rev 49: 63–70, 2001.
140.
Moncada SErusalimsky JD. Does nitric oxide modulate mitochondrial energy generation and apoptosis?Nat Rev Mol Cell Biol3214-2202002. 140. Moncada S and Erusalimsky JD. Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat Rev Mol Cell Biol 3: 214–220, 2002.
141.
Monteiro RCalhau CSilva AOPinheiro-Silva SGuerreiro SGartner FAzevedo ISoares R. Xanthohumol inhibits inflammatory factor production and angiogenesis in breast cancer xenograftsJ Cell Biochem1041699-17072008. 141. Monteiro R, Calhau C, Silva AO, Pinheiro-Silva S, Guerreiro S, Gartner F, Azevedo I, and Soares R. Xanthohumol inhibits inflammatory factor production and angiogenesis in breast cancer xenografts. J Cell Biochem 104: 1699–1707, 2008.
142.
Moreira PICustodio JMoreno AOliveira CRSantos MS. Tamoxifen and estradiol interact with the flavin mononucleotide site of complex I leading to mitochondrial failureJ Biol Chem28110143-101522006. 142. Moreira PI, Custodio J, Moreno A, Oliveira CR, and Santos MS. Tamoxifen and estradiol interact with the flavin mononucleotide site of complex I leading to mitochondrial failure. J Biol Chem 281: 10143–10152, 2006.
143.
Mukhopadhyay ISausville EADoroshow JHRoy KK. Molecular mechanism of adaphostin-mediated G1 arrest in prostate cancer (PC-3) cells: Signaling events mediated by hepatocyte growth factor receptor, c-Met, and p38 MAPK pathwaysJ Biol Chem28137330-373442006. 143. Mukhopadhyay I, Sausville EA, Doroshow JH, and Roy KK. Molecular mechanism of adaphostin-mediated G1 arrest in prostate cancer (PC-3) cells: Signaling events mediated by hepatocyte growth factor receptor, c-Met, and p38 MAPK pathways. J Biol Chem 281: 37330–37344, 2006.
144.
Murphy MP. How mitochondria produce reactive oxygen speciesBiochem J4171-132009. 144. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J 417: 1–13, 2009.
145.
Murphy MPSmith RA. Targeting antioxidants to mitochondria by conjugation to lipophilic cationsAnn Rev Pharmacol Toxicol47629-6562007. 145. Murphy MP and Smith RA. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Ann Rev Pharmacol Toxicol 47: 629–656, 2007.
146.
Nadanaciva SBernal AAggeler RCapaldi RWill Y. Target identification of drug induced mitochondrial toxicity using immunocapture based OXPHOS activity assaysToxicol In Vitro21902-9112007. 146. Nadanaciva S, Bernal A, Aggeler R, Capaldi R, and Will Y. Target identification of drug induced mitochondrial toxicity using immunocapture based OXPHOS activity assays. Toxicol In Vitro 21: 902–911, 2007.
147.
Nair ASShishodia SAhn KSKunnumakkara ABSethi GAggarwal BB. Deguelin, an Akt inhibitor, suppresses IkappaBalpha kinase activation leading to suppression of NF-kappaB-regulated gene expression, potentiation of apoptosis, and inhibition of cellular invasionJ Immunol1775612-56222006. 147. Nair AS, Shishodia S, Ahn KS, Kunnumakkara AB, Sethi G, and Aggarwal BB. Deguelin, an Akt inhibitor, suppresses IkappaBalpha kinase activation leading to suppression of NF-kappaB-regulated gene expression, potentiation of apoptosis, and inhibition of cellular invasion. J Immunol 177: 5612–5622, 2006.
148.
Nakamura YKawakami MYoshihiro AMiyoshi NOhigashi HKawai KOsawa TUchida K. Involvement of the mitochondrial death pathway in chemopreventive benzyl isothiocyanate-induced apoptosisJ Biol Chem2778492-84992002. 148. Nakamura Y, Kawakami M, Yoshihiro A, Miyoshi N, Ohigashi H, Kawai K, Osawa T, and Uchida K. Involvement of the mitochondrial death pathway in chemopreventive benzyl isothiocyanate-induced apoptosis. J Biol Chem 277: 8492–8499, 2002.
149.
Neuzil JDong LFRamanathapuram LHahn TChladova MWang XFZobalova RProchazka LGold MFreeman RTuranek JAkporiaye ETDyason JCRalph SJ. Vitamin E analogues as a novel group of mitocans: Anticancer agents that act by targeting mitochondriaMol Aspects Med28607-6452007. 149. Neuzil J, Dong LF, Ramanathapuram L, Hahn T, Chladova M, Wang XF, Zobalova R, Prochazka L, Gold M, Freeman R, Turanek J, Akporiaye ET, Dyason JC, and Ralph SJ. Vitamin E analogues as a novel group of mitocans: Anticancer agents that act by targeting mitochondria. Mol Aspects Med 28: 607–645, 2007.
150.
Neuzil JMassa H. Hepatic processing determines dual activity of alpha-tocopheryl succinate: A novel paradigm for a shift in biological activity due to pro-vitamin-to-vitamin conversionBiochem Biophys Res Commun3271024-10272005. 150. Neuzil J and Massa H. Hepatic processing determines dual activity of alpha-tocopheryl succinate: A novel paradigm for a shift in biological activity due to pro-vitamin-to-vitamin conversion. Biochem Biophys Res Commun 327: 1024–1027, 2005.
151.
Neuzil JSwettenham EWang XFDong LFStapelberg M. alpha-Tocopheryl succinate inhibits angiogenesis by disrupting paracrine FGF2 signalingFEBS Lett5814611-46152007. 151. Neuzil J, Swettenham E, Wang XF, Dong LF, and Stapelberg M. alpha-Tocopheryl succinate inhibits angiogenesis by disrupting paracrine FGF2 signaling. FEBS Lett 581: 4611–4615, 2007.
152.
Neuzil JTomasetti MMellick ASAlleva RSalvatore BABirringer MFariss MW. Vitamin E analogues: A new class of inducers of apoptosis with selective anticancer effectsCurr Cancer Drug Targets4355-3722004. 152. Neuzil J, Tomasetti M, Mellick AS, Alleva R, Salvatore BA, Birringer M, and Fariss MW. Vitamin E analogues: A new class of inducers of apoptosis with selective anticancer effects. Curr Cancer Drug Targets 4: 355–372, 2004.
153.
Neuzil JTomasetti MZhao YDong LFBirringer MWang XFLow PWu KSalvatore BARalph SJ. Vitamin E analogs, a novel group of "mitocans," as anticancer agents: The importance of being redox-silentMol Pharmacol711185-11992007. 153. Neuzil J, Tomasetti M, Zhao Y, Dong LF, Birringer M, Wang XF, Low P, Wu K, Salvatore BA, and Ralph SJ. Vitamin E analogs, a novel group of "mitocans," as anticancer agents: The importance of being redox-silent. Mol Pharmacol 71: 1185–1199, 2007.
154.
Neuzil JWeber TGellert NWeber C. Selective cancer cell killing by alpha-tocopheryl succinateBr J Cancer8487-892001. 154. Neuzil J, Weber T, Gellert N, and Weber C. Selective cancer cell killing by alpha-tocopheryl succinate. Br J Cancer 84: 87–89, 2001.
155.
Neuzil JWeber TSchroder ALu MOstermann GGellert NMayne GCOlejnicka BNegre-Salvayre ASticha MCoffey RJWeber C. Induction of cancer cell apoptosis by alpha-tocopheryl succinate: Molecular pathways and structural requirementsFASEB J15403-4152001. 155. Neuzil J, Weber T, Schroder A, Lu M, Ostermann G, Gellert N, Mayne GC, Olejnicka B, Negre-Salvayre A, Sticha M, Coffey RJ, and Weber C. Induction of cancer cell apoptosis by alpha-tocopheryl succinate: Molecular pathways and structural requirements. FASEB J 15: 403–415, 2001.
156.
Oh SHWoo JKJin QKang HJJeong JWKim KWHong WKLee HY. Identification of novel antiangiogenic anticancer activities of deguelin targeting hypoxia-inducible factor-1 alphaInt J Cancer1225-142008. 156. Oh SH, Woo JK, Jin Q, Kang HJ, Jeong JW, Kim KW, Hong WK, and Lee HY. Identification of novel antiangiogenic anticancer activities of deguelin targeting hypoxia-inducible factor-1 alpha. Int J Cancer 122: 5–14, 2008.
157.
Oh SHWoo JKYazici YDMyers JNKim WYJin QHong SSPark HJSuh YGKim KWHong WKLee HY. Structural basis for depletion of heat shock protein 90 client proteins by deguelinJ Natl Cancer Inst99949-9612007. 157. Oh SH, Woo JK, Yazici YD, Myers JN, Kim WY, Jin Q, Hong SS, Park HJ, Suh YG, Kim KW, Hong WK, and Lee HY. Structural basis for depletion of heat shock protein 90 client proteins by deguelin. J Natl Cancer Inst 99: 949–961, 2007.
158.
Okubo TYokoyama YKano KKano I. Molecular mechanism of cell death induced by the antioxidant tert-butylhydroxyanisole in human monocytic leukemia U937 cellsBiol Pharm Bull27295-3022004. 158. Okubo T, Yokoyama Y, Kano K, and Kano I. Molecular mechanism of cell death induced by the antioxidant tert-butylhydroxyanisole in human monocytic leukemia U937 cells. Biol Pharm Bull 27: 295–302, 2004.
159.
Okun JGLummen PBrandt U. Three classes of inhibitors share a common binding domain in mitochondrial complex I (NADH:ubiquinone oxidoreductase)J Biol Chem2742625-26301999. 159. Okun JG, Lummen P, and Brandt U. Three classes of inhibitors share a common binding domain in mitochondrial complex I (NADH:ubiquinone oxidoreductase). J Biol Chem 274: 2625–2630, 1999.
160.
Oliver CLMiranda MBShangary SLand SWang SJohnson DE. (-)-Gossypol acts directly on the mitochondria to overcome Bcl-2- and Bcl-X(L)-mediated apoptosis resistanceMol Cancer Ther423-312005. 160. Oliver CL, Miranda MB, Shangary S, Land S, Wang S, and Johnson DE. (-)-Gossypol acts directly on the mitochondria to overcome Bcl-2- and Bcl-X(L)-mediated apoptosis resistance. Mol Cancer Ther 4: 23–31, 2005.
161.
Osipo CGajdos CCheng DJordan VC. Reversal of tamoxifen resistant breast cancer by low dose estrogen therapyJ Steroid Biochem Mol Biol93249-2562005. 161. Osipo C, Gajdos C, Cheng D, and Jordan VC. Reversal of tamoxifen resistant breast cancer by low dose estrogen therapy. J Steroid Biochem Mol Biol 93: 249–256, 2005.
162.
Pan-Montojo FAnichtchik ODening YKnels LPursche SJung RJackson SGille GSpillantini MGReichmann HFunk RH. Progression of Parkinson's disease pathology is reproduced by intragastric administration of rotenone in micePLoS One5e87622010. 162. Pan-Montojo F, Anichtchik O, Dening Y, Knels L, Pursche S, Jung R, Jackson S, Gille G, Spillantini MG, Reichmann H, and Funk RH. Progression of Parkinson's disease pathology is reproduced by intragastric administration of rotenone in mice. PLoS One 5: e8762, 2010.
163.
Papadopoulou LCTsiftsoglou AS. Mitochondrial cytochrome c oxidase as a target site for daunomycin in K-562 cells and heart tissueCancer Res531072-10781993. 163. Papadopoulou LC and Tsiftsoglou AS. Mitochondrial cytochrome c oxidase as a target site for daunomycin in K-562 cells and heart tissue. Cancer Res 53: 1072–1078, 1993.
164.
Parsons DWJones SZhang XLin JCLeary RJAngenendt PMankoo PCarter HSiu IMGallia GLOlivi AMcLendon RRasheed BAKeir SNikolskaya TNikolsky YBusam DATekleab HDiaz LA Jr.Hartigan JSmith DRStrausberg RLMarie SKShinjo SMYan HRiggins GJBigner DDKarchin RPapadopoulos NParmigiani GVogelstein BVelculescu VEKinzler KW. An integrated genomic analysis of human glioblastoma multiformeScience3211807-18122008. 164. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LA, Jr., Hartigan J, Smith DR, Strausberg RL, Marie SK, Shinjo SM, Yan H, Riggins GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, and Kinzler KW. An integrated genomic analysis of human glioblastoma multiforme. Science 321: 1807–1812, 2008.
165.
Peczkowska MCascon APrejbisz AKubaszek ACwikla BJFurmanek MErlic ZEng CJanuszewicz ANeumann HP. Extra-adrenal and adrenal pheochromocytomas associated with a germline SDHC mutationNat Clin Pract Endocrinol Metab4111-1152008. 165. Peczkowska M, Cascon A, Prejbisz A, Kubaszek A, Cwikla BJ, Furmanek M, Erlic Z, Eng C, Januszewicz A, and Neumann HP. Extra-adrenal and adrenal pheochromocytomas associated with a germline SDHC mutation. Nat Clin Pract Endocrinol Metab 4: 111–115, 2008.
166.
Pelicano HFeng LZhou YCarew JSHileman EOPlunkett WKeating MJHuang P. Inhibition of mitochondrial respiration: A novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanismJ Biol Chem27837832-378392003. 166. Pelicano H, Feng L, Zhou Y, Carew JS, Hileman EO, Plunkett W, Keating MJ, and Huang P. Inhibition of mitochondrial respiration: A novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism. J Biol Chem 278: 37832–37839, 2003.
167.
Prochazka LDong LFValis KFreeman RRalph SJTuranek JNeuzil J. alpha-Tocopheryl succinate causes mitochondrial permeabilization by preferential formation of Bak channelsApoptosis15782-7942010. 167. Prochazka L, Dong LF, Valis K, Freeman R, Ralph SJ, Turanek J, and Neuzil J. alpha-Tocopheryl succinate causes mitochondrial permeabilization by preferential formation of Bak channels. Apoptosis 15: 782–794, 2010.
168.
Propper DJBraybrooke JPTaylor DJLodi RStyles PCramer JACollins WCLevitt NCTalbot DCGanesan TSHarris AL. Phase I trial of the selective mitochondrial toxin MKT077 in chemo-resistant solid tumoursAnn Oncol10923-9271999. 168. Propper DJ, Braybrooke JP, Taylor DJ, Lodi R, Styles P, Cramer JA, Collins WC, Levitt NC, Talbot DC, Ganesan TS, and Harris AL. Phase I trial of the selective mitochondrial toxin MKT077 in chemo-resistant solid tumours. Ann Oncol 10: 923–927, 1999.
169.
Ralph SJNeuzil J. Mitochondria as targets for cancer therapyMol Nutr Food Res539-282009. 169. Ralph SJ and Neuzil J. Mitochondria as targets for cancer therapy. Mol Nutr Food Res 53: 9–28, 2009.
170.
Ralph SJRodriguez-Enriquez SNeuzil JMoreno-Sanchez R. Bioenergetic pathways in tumor mitochondria as targets for cancer therapy and the importance of the ROS-induced apoptotic triggerMol Aspects Med3129-592010. 170. Ralph SJ, Rodriguez-Enriquez S, Neuzil J, and Moreno-Sanchez R. Bioenergetic pathways in tumor mitochondria as targets for cancer therapy and the importance of the ROS-induced apoptotic trigger. Mol Aspects Med 31: 29–59, 2010.
171.
Reed GASunega JMSullivan DKGray JCMayo MSCrowell JAHurwitz A. Single-dose pharmacokinetics and tolerability of absorption-enhanced 3,3'-diindolylmethane in healthy subjectsCancer Epidemiol Biomarkers Prev172619-26242008. 171. Reed GA, Sunega JM, Sullivan DK, Gray JC, Mayo MS, Crowell JA, and Hurwitz A. Single-dose pharmacokinetics and tolerability of absorption-enhanced 3,3'-diindolylmethane in healthy subjects. Cancer Epidemiol Biomarkers Prev 17: 2619–2624, 2008.
172.
Safe SPapineni SChintharlapalli S. Cancer chemotherapy with indole-3-carbinol, bis(3'-indolyl)methane and synthetic analogsCancer Lett269326-3382008. 172. Safe S, Papineni S, and Chintharlapalli S. Cancer chemotherapy with indole-3-carbinol, bis(3'-indolyl)methane and synthetic analogs. Cancer Lett 269: 326–338, 2008.
173.
Sahu RPZhang RBatra SShi YSrivastava SK. Benzyl isothiocyanate-mediated generation of reactive oxygen species causes cell cycle arrest and induces apoptosis via activation of MAPK in human pancreatic cancer cellsCarcinogenesis301744-17532009. 173. Sahu RP, Zhang R, Batra S, Shi Y, and Srivastava SK. Benzyl isothiocyanate-mediated generation of reactive oxygen species causes cell cycle arrest and induces apoptosis via activation of MAPK in human pancreatic cancer cells. Carcinogenesis 30: 1744–1753, 2009.
174.
Salomon ARVoehringer DWHerzenberg LAKhosla C. Understanding and exploiting the mechanistic basis for selectivity of polyketide inhibitors of F(0)F(1)-ATPaseProc Natl Acad Sci USA9714766-147712000. 174. Salomon AR, Voehringer DW, Herzenberg LA, and Khosla C. Understanding and exploiting the mechanistic basis for selectivity of polyketide inhibitors of F(0)F(1)-ATPase. Proc Natl Acad Sci USA 97: 14766–14771, 2000.
175.
Salomon ARVoehringer DWHerzenberg LAKhosla C. Apoptolidin, a selective cytotoxic agent, is an inhibitor of F0F1-ATPaseChem Biol871-802001. 175. Salomon AR, Voehringer DW, Herzenberg LA, and Khosla C. Apoptolidin, a selective cytotoxic agent, is an inhibitor of F0F1-ATPase. Chem Biol 8: 71–80, 2001.
176.
Saraste M. Oxidative phosphorylation at the fin de siecleScience2831488-14931999. 176. Saraste M. Oxidative phosphorylation at the fin de siecle. Science 283: 1488–1493, 1999.
177.
Sasaki RSuzuki YYonezawa YOta YOkamoto YDemizu YHuang PYoshida HSugimura KMizushina Y. DNA polymerase gamma inhibition by vitamin K3 induces mitochondria-mediated cytotoxicity in human cancer cellsCancer Sci991040-10482008. 177. Sasaki R, Suzuki Y, Yonezawa Y, Ota Y, Okamoto Y, Demizu Y, Huang P, Yoshida H, Sugimura K, and Mizushina Y. DNA polymerase gamma inhibition by vitamin K3 induces mitochondria-mediated cytotoxicity in human cancer cells. Cancer Sci 99: 1040–1048, 2008.
178.
Scheffler IMitochondria, Second Edition HobokenNew Jersey, USAJohn Wiley & Sons, Inc.2008. 178. Scheffler I. Mitochondria, Second Edition Hoboken, New Jersey, USA: John Wiley & Sons, Inc.; 2008.
179.
Schiavi FBoedeker CCBausch BPeczkowska MGomez CFStrassburg TPawlu CBuchta MSalzmann MHoffmann MMBerlis ABrink ICybulla MMuresan MWalter MAForrer FValimaki MKawecki ASzutkowski ZSchipper JWalz MKPigny PBauters CWillet-Brozick JEBaysal BEJanuszewicz AEng COpocher GNeumann HP. Predictors and prevalence of paraganglioma syndrome associated with mutations of the SDHC geneJAMA2942057-20632005. 179. Schiavi F, Boedeker CC, Bausch B, Peczkowska M, Gomez CF, Strassburg T, Pawlu C, Buchta M, Salzmann M, Hoffmann MM, Berlis A, Brink I, Cybulla M, Muresan M, Walter MA, Forrer F, Valimaki M, Kawecki A, Szutkowski Z, Schipper J, Walz MK, Pigny P, Bauters C, Willet-Brozick JE, Baysal BE, Januszewicz A, Eng C, Opocher G, and Neumann HP. Predictors and prevalence of paraganglioma syndrome associated with mutations of the SDHC gene. JAMA 294: 2057–2063, 2005.
180.
Shaban HGazzotti PRichter C. Cytochrome c oxidase inhibition by N-retinyl-N-retinylidene ethanolamine, a compound suspected to cause age-related macula degenerationArch Biochem Biophys394111-1162001. 180. Shaban H, Gazzotti P, and Richter C. Cytochrome c oxidase inhibition by N-retinyl-N-retinylidene ethanolamine, a compound suspected to cause age-related macula degeneration. Arch Biochem Biophys 394: 111–116, 2001.
181.
Shiau CWHuang JWWang DSWeng JRYang CCLin CHLi CChen CS. alpha-Tocopheryl succinate induces apoptosis in prostate cancer cells in part through inhibition of Bcl-xL/Bcl-2 functionJ Biol Chem28111819-118252006. 181. Shiau CW, Huang JW, Wang DS, Weng JR, Yang CC, Lin CH, Li C, and Chen CS. alpha-Tocopheryl succinate induces apoptosis in prostate cancer cells in part through inhibition of Bcl-xL/Bcl-2 function. J Biol Chem 281: 11819–11825, 2006.
182.
Shun MCYu WPark SKSanders BGKline K. Downregulation of epidermal growth factor receptor expression contributes to alpha-TEA's proapoptotic effects in human ovarian cancer cell linesJ Oncol20108245712010. 182. Shun MC, Yu W, Park SK, Sanders BG, and Kline K. Downregulation of epidermal growth factor receptor expression contributes to alpha-TEA's proapoptotic effects in human ovarian cancer cell lines. J Oncol 2010: 824571, 2010.
183.
Sibrian-Vazquez MNesterova IVJensen TJVicente MG. Mitochondria targeting by guanidine- and biguanidine-porphyrin photosensitizersBioconjug Chem19705-7132008. 183. Sibrian-Vazquez M, Nesterova IV, Jensen TJ, and Vicente MG. Mitochondria targeting by guanidine- and biguanidine-porphyrin photosensitizers. Bioconjug Chem 19: 705–713, 2008.
184.
Simons ALAhmad IMMattson DMDornfeld KJSpitz DR. 2-Deoxy-D-glucose combined with cisplatin enhances cytotoxicity via metabolic oxidative stress in human head and neck cancer cellsCancer Res673364-33702007. 184. Simons AL, Ahmad IM, Mattson DM, Dornfeld KJ, and Spitz DR. 2-Deoxy-D-glucose combined with cisplatin enhances cytotoxicity via metabolic oxidative stress in human head and neck cancer cells. Cancer Res 67: 3364–3370, 2007.
185.
Slapke JSchewe THummel SWinkler JKopf M. Lung strips from guinea pigs as test system for lipoxygenase inhibitors. Inhibition of arachidonic acid-induced contractions by 3-t-butyl-4-hydroxyanisole and nordihydroguaiaretic acidBiomed Biochim Acta421309-13181983. 185. Slapke J, Schewe T, Hummel S, Winkler J, and Kopf M. Lung strips from guinea pigs as test system for lipoxygenase inhibitors. Inhibition of arachidonic acid-induced contractions by 3-t-butyl-4-hydroxyanisole and nordihydroguaiaretic acid. Biomed Biochim Acta 42: 1309–1318, 1983.
186.
Soller MDrose SBrandt UBrune Bvon Knethen A. Mechanism of thiazolidinedione-dependent cell death in Jurkat T cellsMol Pharmacol711535-15442007. 186. Soller M, Drose S, Brandt U, Brune B, and von Knethen A. Mechanism of thiazolidinedione-dependent cell death in Jurkat T cells. Mol Pharmacol 71: 1535–1544, 2007.
187.
Stapelberg MGellert NSwettenham ETomasetti MWitting PKProcopio ANeuzil J. Alpha-tocopheryl succinate inhibits malignant mesothelioma by disrupting the fibroblast growth factor autocrine loop: Mechanism and the role of oxidative stressJ Biol Chem28025369-253762005. 187. Stapelberg M, Gellert N, Swettenham E, Tomasetti M, Witting PK, Procopio A, and Neuzil J. Alpha-tocopheryl succinate inhibits malignant mesothelioma by disrupting the fibroblast growth factor autocrine loop: Mechanism and the role of oxidative stress. J Biol Chem 280: 25369–25376, 2005.
188.
Strathmann JKlimo KSauer SWOkun JGPrehn JHGerhauser C. Xanthohumol-induced transient superoxide anion radical formation triggers cancer cells into apoptosis via a mitochondria-mediated mechanismFASEB J242938-29502010. 188. Strathmann J, Klimo K, Sauer SW, Okun JG, Prehn JH, and Gerhauser C. Xanthohumol-induced transient superoxide anion radical formation triggers cancer cells into apoptosis via a mitochondria-mediated mechanism. FASEB J 24: 2938–2950, 2010.
189.
Suen DFNorris KLYoule RJ. Mitochondrial dynamics and apoptosisGenes Dev221577-15902008. 189. Suen DF, Norris KL, and Youle RJ. Mitochondrial dynamics and apoptosis. Genes Dev 22: 1577–1590, 2008.
190.
Summerhayes ICLampidis TJBernal SDNadakavukaren JJNadakavukaren KKShepherd ELChen LB. Unusual retention of rhodamine 123 by mitochondria in muscle and carcinoma cellsProc Natl Acad Sci USA795292-52961982. 190. Summerhayes IC, Lampidis TJ, Bernal SD, Nadakavukaren JJ, Nadakavukaren KK, Shepherd EL, and Chen LB. Unusual retention of rhodamine 123 by mitochondria in muscle and carcinoma cells. Proc Natl Acad Sci USA 79: 5292–5296, 1982.
191.
Sun FHuo XZhai YWang AXu JSu DBartlam MRao Z. Crystal structure of mitochondrial respiratory membrane protein complex IICell1211043-10572005. 191. Sun F, Huo X, Zhai Y, Wang A, Xu J, Su D, Bartlam M, and Rao Z. Crystal structure of mitochondrial respiratory membrane protein complex II. Cell 121: 1043–1057, 2005.
192.
Suter MReme CGrimm CWenzel AJaattela MEsser PKociok NLeist MRichter C. Age-related macular degeneration. The lipofusion component N-retinyl-N-retinylidene ethanolamine detaches proapoptotic proteins from mitochondria and induces apoptosis in mammalian retinal pigment epithelial cellsJ Biol Chem27539625-396302000. 192. Suter M, Reme C, Grimm C, Wenzel A, Jaattela M, Esser P, Kociok N, Leist M, and Richter C. Age-related macular degeneration. The lipofusion component N-retinyl-N-retinylidene ethanolamine detaches proapoptotic proteins from mitochondria and induces apoptosis in mammalian retinal pigment epithelial cells. J Biol Chem 275: 39625–39630, 2000.
193.
Szatrowski TPNathan CF. Production of large amounts of hydrogen peroxide by human tumor cellsCancer Res51794-7981991. 193. Szatrowski TP and Nathan CF. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51: 794–798, 1991.
194.
Tinhofer IBernhard DSenfter MAnether GLoeffler MKroemer GKofler RCsordas AGreil R. Resveratrol, a tumor-suppressive compound from grapes, induces apoptosis via a novel mitochondrial pathway controlled by Bcl-2FASEB J151613-16152001. 194. Tinhofer I, Bernhard D, Senfter M, Anether G, Loeffler M, Kroemer G, Kofler R, Csordas A, and Greil R. Resveratrol, a tumor-suppressive compound from grapes, induces apoptosis via a novel mitochondrial pathway controlled by Bcl-2. FASEB J 15: 1613–1615, 2001.
195.
Tocilescu MAFendel UZwicker KKerscher SBrandt U. Exploring the ubiquinone binding cavity of respiratory complex IJ Biol Chem28229514-295202007. 195. Tocilescu MA, Fendel U, Zwicker K, Kerscher S, and Brandt U. Exploring the ubiquinone binding cavity of respiratory complex I. J Biol Chem 282: 29514–29520, 2007.
196.
Trachootham DAlexandre JHuang P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach?Nat Rev Drug Discov8579-5912009. 196. Trachootham D, Alexandre J, and Huang P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat Rev Drug Discov 8: 579–591, 2009.
197.
Trachootham DZhang HZhang WFeng LDu MZhou YChen ZPelicano HPlunkett WWierda WGKeating MJHuang P. Effective elimination of fludarabine-resistant CLL cells by PEITC through a redox-mediated mechanismBlood1121912-19222008. 197. Trachootham D, Zhang H, Zhang W, Feng L, Du M, Zhou Y, Chen Z, Pelicano H, Plunkett W, Wierda WG, Keating MJ, and Huang P. Effective elimination of fludarabine-resistant CLL cells by PEITC through a redox-mediated mechanism. Blood 112: 1912–1922, 2008.
198.
Trachootham DZhou YZhang HDemizu YChen ZPelicano HChiao PJAchanta GArlinghaus RBLiu JHuang P. Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanateCancer Cell10241-2522006. 198. Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H, Chiao PJ, Achanta G, Arlinghaus RB, Liu J, and Huang P. Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell 10: 241–252, 2006.
199.
Tse CShoemaker ARAdickes JAnderson MGChen JJin SJohnson EFMarsh KCMitten MJNimmer PRoberts LTahir SKXiao YYang XZhang HFesik SRosenberg SHElmore SW. ABT-263: A potent and orally bioavailable Bcl-2 family inhibitorCancer Res683421-34282008. 199. Tse C, Shoemaker AR, Adickes J, Anderson MG, Chen J, Jin S, Johnson EF, Marsh KC, Mitten MJ, Nimmer P, Roberts L, Tahir SK, Xiao Y, Yang X, Zhang H, Fesik S, Rosenberg SH, and Elmore SW. ABT-263: A potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res 68: 3421–3428, 2008.
200.
Twombly R. Cancer surpasses heart disease as leading cause of death for all but the very elderlyJ Natl Cancer Inst97330-3312005. 200. Twombly R. Cancer surpasses heart disease as leading cause of death for all but the very elderly. J Natl Cancer Inst 97: 330–331, 2005.
201.
Tzung SPKim KMBasanez GGiedt CDSimon JZimmerberg JZhang KYHockenbery DM. Antimycin A mimics a cell-death-inducing Bcl-2 homology domain 3Nat Cell Biol3183-1912001. 201. Tzung SP, Kim KM, Basanez G, Giedt CD, Simon J, Zimmerberg J, Zhang KY, and Hockenbery DM. Antimycin A mimics a cell-death-inducing Bcl-2 homology domain 3. Nat Cell Biol 3: 183–191, 2001.
202.
Udeani GOGerhauser CThomas CFMoon RCKosmeder JWKinghorn ADMoriarty RMPezzuto JM. Cancer chemopreventive activity mediated by deguelin, a naturally occurring rotenoidCancer Res573424-34281997. 202. Udeani GO, Gerhauser C, Thomas CF, Moon RC, Kosmeder JW, Kinghorn AD, Moriarty RM, and Pezzuto JM. Cancer chemopreventive activity mediated by deguelin, a naturally occurring rotenoid. Cancer Res 57: 3424–3428, 1997.
203.
Umeda SMuta TOhsato TTakamatsu CHamasaki NKang D. The D-loop structure of human mtDNA is destabilized directly by 1-methyl-4-phenylpyridinium ion (MPP+), a parkinsonism-causing toxinEur J Biochem267200-2062000. 203. Umeda S, Muta T, Ohsato T, Takamatsu C, Hamasaki N, and Kang D. The D-loop structure of human mtDNA is destabilized directly by 1-methyl-4-phenylpyridinium ion (MPP+), a parkinsonism-causing toxin. Eur J Biochem 267: 200–206, 2000.
204.
Valis KProchazka LBoura EChladova JObsil TRohlena JTruksa JDong LFRalph SJNeuzil J. Hippo/Mst1 stimulates transcription of the proapoptotic mediator NOXA in a FoxO1-dependent mannerCancer Res71946-9542011. 204. Valis K, Prochazka L, Boura E, Chladova J, Obsil T, Rohlena J, Truksa J, Dong LF, Ralph SJ, and Neuzil J. Hippo/Mst1 stimulates transcription of the proapoptotic mediator NOXA in a FoxO1-dependent manner. Cancer Res 71: 946–954, 2011.
205.
van Delft MFWei AHMason KDVandenberg CJChen LCzabotar PEWillis SNScott CLDay CLCory SAdams JMRoberts AWHuang DC. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralizedCancer Cell10389-3992006. 205. van Delft MF, Wei AH, Mason KD, Vandenberg CJ, Chen L, Czabotar PE, Willis SN, Scott CL, Day CL, Cory S, Adams JM, Roberts AW, and Huang DC. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 10: 389–399, 2006.
206.
Vander Heiden MGCantley LCThompson CB. Understanding the Warburg effect: The metabolic requirements of cell proliferationScience3241029-10332009. 206. Vander Heiden MG, Cantley LC, and Thompson CB. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 324: 1029–1033, 2009.
207.
Wang FOgasawara MAHuang P. Small mitochondria-targeting molecules as anticancer agentsMol Aspects Med3175-922010. 207. Wang F, Ogasawara MA, and Huang P. Small mitochondria-targeting molecules as anticancer agents. Mol Aspects Med 31: 75–92, 2010.
208.
Wang XFDong LZhao YTomasetti MWu KNeuzil J. Vitamin E analogues as anticancer agents: Lessons from studies with alpha-tocopheryl succinateMol Nutr Food Res50675-6852006. 208. Wang XF, Dong L, Zhao Y, Tomasetti M, Wu K, and Neuzil J. Vitamin E analogues as anticancer agents: Lessons from studies with alpha-tocopheryl succinate. Mol Nutr Food Res 50: 675–685, 2006.
209.
Warin RChambers WHPotter DMSingh SV. Prevention of mammary carcinogenesis in MMTV-neu mice by cruciferous vegetable constituent benzyl isothiocyanateCancer Res699473-94802009. 209. Warin R, Chambers WH, Potter DM, and Singh SV. Prevention of mammary carcinogenesis in MMTV-neu mice by cruciferous vegetable constituent benzyl isothiocyanate. Cancer Res 69: 9473–9480, 2009.
210.
Warin RXiao DArlotti JABommareddy ASingh SV. Inhibition of human breast cancer xenograft growth by cruciferous vegetable constituent benzyl isothiocyanateMol Carcinog49500-5072010. 210. Warin R, Xiao D, Arlotti JA, Bommareddy A, and Singh SV. Inhibition of human breast cancer xenograft growth by cruciferous vegetable constituent benzyl isothiocyanate. Mol Carcinog 49: 500–507, 2010.
211.
Weber TDalen HAndera LNegre-Salvayre AAuge NSticha MLloret ATerman AWitting PKHiguchi MPlasilova MZivny JGellert NWeber CNeuzil J. Mitochondria play a central role in apoptosis induced by alpha-tocopheryl succinate, an agent with antineoplastic activity: Comparison with receptor-mediated pro-apoptotic signalingBiochemistry424277-42912003. 211. Weber T, Dalen H, Andera L, Negre-Salvayre A, Auge N, Sticha M, Lloret A, Terman A, Witting PK, Higuchi M, Plasilova M, Zivny J, Gellert N, Weber C, and Neuzil J. Mitochondria play a central role in apoptosis induced by alpha-tocopheryl succinate, an agent with antineoplastic activity: Comparison with receptor-mediated pro-apoptotic signaling. Biochemistry 42: 4277–4291, 2003.
212.
Wiatrak BJ. Overview of recurrent respiratory papillomatosisCurr Opin Otolaryngol Head Neck Surg11433-4412003. 212. Wiatrak BJ. Overview of recurrent respiratory papillomatosis. Curr Opin Otolaryngol Head Neck Surg 11: 433–441, 2003.
213.
Wijayaratne ALNagel SCPaige LAChristensen DJNorris JDFowlkes DMMcDonnell DP. Comparative analyses of mechanistic differences among antiestrogensEndocrinology1405828-58401999. 213. Wijayaratne AL, Nagel SC, Paige LA, Christensen DJ, Norris JD, Fowlkes DM, and McDonnell DP. Comparative analyses of mechanistic differences among antiestrogens. Endocrinology 140: 5828–5840, 1999.
214.
Wolvetang EJJohnson KLKrauer KRalph SJLinnane AW. Mitochondrial respiratory chain inhibitors induce apoptosisFEBS Lett33940-441994. 214. Wolvetang EJ, Johnson KL, Krauer K, Ralph SJ, and Linnane AW. Mitochondrial respiratory chain inhibitors induce apoptosis. FEBS Lett 339: 40–44, 1994.
215.
Xia DYu CAKim HXia JZKachurin AMZhang LYu LDeisenhofer J. Crystal structure of the cytochrome bc1 complex from bovine heart mitochondriaScience27760-661997. 215. Xia D, Yu CA, Kim H, Xia JZ, Kachurin AM, Zhang L, Yu L, and Deisenhofer J. Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. Science 277: 60–66, 1997.
216.
Xiao DPowolny AASingh SV. Benzyl isothiocyanate targets mitochondrial respiratory chain to trigger reactive oxygen species-dependent apoptosis in human breast cancer cellsJ Biol Chem28330151-301632008. 216. Xiao D, Powolny AA, and Singh SV. Benzyl isothiocyanate targets mitochondrial respiratory chain to trigger reactive oxygen species-dependent apoptosis in human breast cancer cells. J Biol Chem 283: 30151–30163, 2008.
217.
Xu KThornalley PJ. Involvement of glutathione metabolism in the cytotoxicity of the phenethyl isothiocyanate and its cysteine conjugate to human leukaemia cells in vitroBiochem Pharmacol61165-1772001. 217. Xu K and Thornalley PJ. Involvement of glutathione metabolism in the cytotoxicity of the phenethyl isothiocyanate and its cysteine conjugate to human leukaemia cells in vitro. Biochem Pharmacol 61: 165–177, 2001.
218.
Yang YMConaway CCChiao JWWang CXAmin SWhysner JDai WReinhardt JChung FL. Inhibition of benzo(a)pyrene-induced lung tumorigenesis in A/J mice by dietary N-acetylcysteine conjugates of benzyl and phenethyl isothiocyanates during the postinitiation phase is associated with activation of mitogen-activated protein kinases and p53 activity and induction of apoptosisCancer Res622-72002. 218. Yang YM, Conaway CC, Chiao JW, Wang CX, Amin S, Whysner J, Dai W, Reinhardt J, and Chung FL. Inhibition of benzo(a)pyrene-induced lung tumorigenesis in A/J mice by dietary N-acetylcysteine conjugates of benzyl and phenethyl isothiocyanates during the postinitiation phase is associated with activation of mitogen-activated protein kinases and p53 activity and induction of apoptosis. Cancer Res 62: 2–7, 2002.
219.
Yankovskaya VHorsefield RTornroth SLuna-Chavez CMiyoshi HLeger CByrne BCecchini GIwata S. Architecture of succinate dehydrogenase and reactive oxygen species generationScience299700-7042003. 219. Yankovskaya V, Horsefield R, Tornroth S, Luna-Chavez C, Miyoshi H, Leger C, Byrne B, Cecchini G, and Iwata S. Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299: 700–704, 2003.
220.
You KRWen JLee STKim DG. Cytochrome c oxidase subunit III: A molecular marker for N-(4-hydroxyphenyl)retinamise-induced oxidative stress in hepatoma cellsJ Biol Chem2773870-38772002. 220. You KR, Wen J, Lee ST, and Kim DG. Cytochrome c oxidase subunit III: A molecular marker for N-(4-hydroxyphenyl)retinamise-induced oxidative stress in hepatoma cells. J Biol Chem 277: 3870–3877, 2002.
221.
Youle RJStrasser A. The BCL-2 protein family: Opposing activities that mediate cell deathNat Rev Mol Cell Biol947-592008. 221. Youle RJ and Strasser A. The BCL-2 protein family: Opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9: 47–59, 2008.
222.
Yu CRahmani MAlmenara JSausville EADent PGrant S. Induction of apoptosis in human leukemia cells by the tyrosine kinase inhibitor adaphostin proceeds through a RAF-1/MEK/ERK- and AKT-dependent processOncogene231364-13762004. 222. Yu C, Rahmani M, Almenara J, Sausville EA, Dent P, and Grant S. Induction of apoptosis in human leukemia cells by the tyrosine kinase inhibitor adaphostin proceeds through a RAF-1/MEK/ERK- and AKT-dependent process. Oncogene 23: 1364–1376, 2004.
223.
Zamaraeva MVSabirov RZMaeno EAndo-Akatsuka YBessonova SVOkada Y. Cells die with increased cytosolic ATP during apoptosis: A bioluminescence study with intracellular luciferaseCell Death Differ121390-13972005. 223. Zamaraeva MV, Sabirov RZ, Maeno E, Ando-Akatsuka Y, Bessonova SV, and Okada Y. Cells die with increased cytosolic ATP during apoptosis: A bioluminescence study with intracellular luciferase. Cell Death Differ 12: 1390–1397, 2005.
224.
Zeitlin BDZeitlin IJNor JE. Expanding circle of inhibition: Small-molecule inhibitors of Bcl-2 as anticancer cell and antiangiogenic agentsJ Clin Oncol264180-41882008. 224. Zeitlin BD, Zeitlin IJ, and Nor JE. Expanding circle of inhibition: Small-molecule inhibitors of Bcl-2 as anticancer cell and antiangiogenic agents. J Clin Oncol 26: 4180–4188, 2008.
225.
Zhang JGNicholls-Grzemski FATirmenstein MAFariss MW. Vitamin E succinate protects hepatocytes against the toxic effect of reactive oxygen species generated at mitochondrial complexes I and III by alkylating agentsChem Biol Interact138267-2842001. 225. Zhang JG, Nicholls-Grzemski FA, Tirmenstein MA, and Fariss MW. Vitamin E succinate protects hepatocytes against the toxic effect of reactive oxygen species generated at mitochondrial complexes I and III by alkylating agents. Chem Biol Interact 138: 267–284, 2001.
226.
Zhang JGTirmenstein MANicholls-Grzemski FAFariss MW. Mitochondrial electron transport inhibitors cause lipid peroxidation-dependent and -independent cell death: protective role of antioxidantsArch Biochem Biophys39387-962001. 226. Zhang JG, Tirmenstein MA, Nicholls-Grzemski FA, and Fariss MW. Mitochondrial electron transport inhibitors cause lipid peroxidation-dependent and -independent cell death: protective role of antioxidants. Arch Biochem Biophys 393: 87–96, 2001.
227.
Zheng JRamirez VD. Piceatannol, a stilbene phytochemical, inhibits mitochondrial F0F1-ATPase activity by targeting the F1 complexBiochem Biophys Res Commun261499-5031999. 227. Zheng J and Ramirez VD. Piceatannol, a stilbene phytochemical, inhibits mitochondrial F0F1-ATPase activity by targeting the F1 complex. Biochem Biophys Res Commun 261: 499–503, 1999.
228.
Zhivotovsky BGalluzzi LKepp OKroemer G. Adenine nucleotide translocase: A component of the phylogenetically conserved cell death machineryCell Death and Differentiation161419-14252009. 228. Zhivotovsky B, Galluzzi L, Kepp O, and Kroemer G. Adenine nucleotide translocase: A component of the phylogenetically conserved cell death machinery. Cell Death and Differentiation 16: 1419–1425, 2009.
229.
Zini RMorin CBertelli ABertelli AATillement JP. Effects of resveratrol on the rat brain respiratory chainDrugs Exp Clin Res2587-971999. 229. Zini R, Morin C, Bertelli A, Bertelli AA, and Tillement JP. Effects of resveratrol on the rat brain respiratory chain. Drugs Exp Clin Res 25: 87–97, 1999.

Information & Authors

Information

Published In

cover image Antioxidants & Redox Signaling
Antioxidants & Redox Signaling
Volume 15Issue Number 12December 15, 2011
Pages: 2951 - 2974
PubMed: 21777145

History

Published in print: December 15, 2011
Published online: 31 October 2011
Published ahead of print: 1 September 2011
Published ahead of production: 21 July 2011
Accepted: 21 July 2011
Revision received: 1 July 2011
Received: 13 March 2011

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Jakub Rohlena
Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
Lan-Feng Dong
School of Medical Science and Griffith Health Institute, Griffith University, Southport, Queensland, Australia.
Stephen J. Ralph
School of Medical Science and Griffith Health Institute, Griffith University, Southport, Queensland, Australia.
Jiri Neuzil
Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
School of Medical Science and Griffith Health Institute, Griffith University, Southport, Queensland, Australia.

Notes

Address correspondence to:Prof. Jiri NeuzilApoptosis Research GroupSchool of Medical Science and Griffith Health InstituteGriffith UniversitySouthport QLD 4222Australia
E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/EPUB

Full Text

View Full Text

Figures

Tables

Media

Share

Share

Copy the content Link

Share on social media

Back to Top