Review Article
No access
Published Online: 17 October 2013

Thioredoxins, Glutaredoxins, and Peroxiredoxins—Molecular Mechanisms and Health Significance: from Cofactors to Antioxidants to Redox Signaling

Publication: Antioxidants & Redox Signaling
Volume 19, Issue Number 13

Abstract

Thioredoxins (Trxs), glutaredoxins (Grxs), and peroxiredoxins (Prxs) have been characterized as electron donors, guards of the intracellular redox state, and “antioxidants”. Today, these redox catalysts are increasingly recognized for their specific role in redox signaling. The number of publications published on the functions of these proteins continues to increase exponentially. The field is experiencing an exciting transformation, from looking at a general redox homeostasis and the pathological oxidative stress model to realizing redox changes as a part of localized, rapid, specific, and reversible redox-regulated signaling events. This review summarizes the almost 50 years of research on these proteins, focusing primarily on data from vertebrates and mammals. The role of Trx fold proteins in redox signaling is discussed by looking at reaction mechanisms, reversible oxidative post-translational modifications of proteins, and characterized interaction partners. On the basis of this analysis, the specific regulatory functions are exemplified for the cellular processes of apoptosis, proliferation, and iron metabolism. The importance of Trxs, Grxs, and Prxs for human health is addressed in the second part of this review, that is, their potential impact and functions in different cell types, tissues, and various pathological conditions. Antioxid. Redox Signal. 19, 1539–1605.

Abstract

I. Introduction
A. Trx family of proteins
1. Structure and reaction mechanisms
2. Trx, Grx, and Prx family proteins in mammals
a. Trx systems
b. Grx systems
c. Peroxiredoxins
d. Trx-like proteins
B. The concept of redox signaling
C. Reversible post-translational redox modifications of protein thiols
1. Sulfenylation
2. Protein disulfides
3. Glutathionylation and cysteinylation
4. S-nitrosylation
5. Other reversible redox modifications
a. Persulfide formation
b. Methionine sulfoxidation
D. Oxidative stress in the concept of redox signaling
II. Mammalian Trx Family Proteins in Health and Disease
A. Specific pathways
1. Apoptosis
a. Cytosolic pathways
b. Mitochondrial pathways
2. Proliferation
3. Iron metabolism
a. Iron sulfur Grxs
b. Biogenesis of iron-sulfur centers
c. Regulation of iron metabolism
d. Intracellular iron distribution
B. Tissues, organ systems, and diseases
1. Development
2. Central nervous system
a. Expression profile of Trxs, Grxs, Prxs, and related proteins in the CNS
b. Trxs, Grxs, Prxs, and pathologies of the CNS
3. Sensory organs
a. Expression profile of Trx-related proteins in sensory organs
b. Pathologies of the eye
c. Pathologies related to tongue, olfactory system, and ear
4. Cardiovascular system
a. Expression pattern of Trxs, Grxs, and Prxs in cardiovascular tissue
b. Trxs, Grxs, and Prxs in pathologies of the cardiovascular system
5. Skin
6. Skeletal muscle
7. Respiratory system
a. Expression of Trx family proteins in the respiratory system
b. Trxs, Grxs, and Prxs in pathologies of the lung—interplay between ROS and inflammation
8. Infection, inflammation, and immune response
a. Expression pattern of Trx-related proteins in lymphoid tissues
b. Immune system
c. Infectious diseases
9. Metabolic and digestive system
a. Diabetes mellitus
10. Urinary tract and reproductive systems
a. Kidney
b. Urinary bladder
c. Male reproductive system
d. Female reproductive system
11. Ischemia and hypoxia
12. Cancer
a. Carcinogenesis
13. Aging
C. Therapeutic approaches
III. Concluding Remarks

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Abate CPatel LRauscher FJ 3rdCurran T. Redox regulation of fos and jun DNA-binding activity in vitroScience2491157-11611990. 1. Abate C, Patel L, Rauscher FJ 3rd, and Curran T. Redox regulation of fos and jun DNA-binding activity in vitro. Science 249: 1157–1161, 1990.
2.
Abdiu ANakamura HSahaf BYodoi JHolmgren ARosén A. Thioredoxin blood level increases after severe burn injuryAntioxid Redox Signal2707-7162000. 2. Abdiu A, Nakamura H, Sahaf B, Yodoi J, Holmgren A, and Rosén A. Thioredoxin blood level increases after severe burn injury. Antioxid Redox Signal 2: 707–716, 2000.
3.
Adelman DMGertsenstein MNagy ASimon MCMaltepe E. Placental cell fates are regulated in vivo by HIF-mediated hypoxia responsesGenes Dev143191-32032000. 3. Adelman DM, Gertsenstein M, Nagy A, Simon MC, and Maltepe E. Placental cell fates are regulated in vivo by HIF-mediated hypoxia responses. Genes Dev 14: 3191–3203, 2000.
4.
Adelman DMMaltepe ESimon MC. Multilineage embryonic hematopoiesis requires hypoxic ARNT activityGenes Dev132478-24831999. 4. Adelman DM, Maltepe E, and Simon MC. Multilineage embryonic hematopoiesis requires hypoxic ARNT activity. Genes Dev 13: 2478–2483, 1999.
5.
Adlard PABush AI. Metals and Alzheimer's diseaseJ Alzheimers Dis10145-1632006. 5. Adlard PA and Bush AI. Metals and Alzheimer's disease. J Alzheimers Dis 10: 145–163, 2006.
6.
Adluri RSThirunavukkarasu MZhan LAkita YSamuel SMOtani HHo Y-SMaulik GMaulik N. Thioredoxin 1 enhances neovascularization and reduces ventricular remodeling during chronic myocardial infarction: a study using thioredoxin 1 transgenic miceJ Mol Cell Cardiol50239-2472011. 6. Adluri RS, Thirunavukkarasu M, Zhan L, Akita Y, Samuel SM, Otani H, Ho Y-S, Maulik G, and Maulik N. Thioredoxin 1 enhances neovascularization and reduces ventricular remodeling during chronic myocardial infarction: a study using thioredoxin 1 transgenic mice. J Mol Cell Cardiol 50: 239–247, 2011.
7.
Advani AGilbert REThai KGow RMLangham RGCox AJConnelly KAZhang YHerzenberg AMChristensen PKPollock CAQi WTan SMParving H-HKelly DJ. Expression, localization, and function of the thioredoxin system in diabetic nephropathyJ Am Soc Nephrol20730-7412009. 7. Advani A, Gilbert RE, Thai K, Gow RM, Langham RG, Cox AJ, Connelly KA, Zhang Y, Herzenberg AM, Christensen PK, Pollock CA, Qi W, Tan SM, Parving H-H, and Kelly DJ. Expression, localization, and function of the thioredoxin system in diabetic nephropathy. J Am Soc Nephrol 20: 730–741, 2009.
8.
Aesif SWAnathy VKuipers IGuala ASReiss JNHo Y-SJanssen-Heininger YMW. Ablation of glutaredoxin-1 attenuates lipopolysaccharide-induced lung inflammation and alveolar macrophage activationAm J Respir Cell Mol Biol44491-4992011. 8. Aesif SW, Anathy V, Kuipers I, Guala AS, Reiss JN, Ho Y-S, and Janssen-Heininger YMW. Ablation of glutaredoxin-1 attenuates lipopolysaccharide-induced lung inflammation and alveolar macrophage activation. Am J Respir Cell Mol Biol 44: 491–499, 2011.
9.
Ago TSadoshima J. Thioredoxin and ventricular remodelingJ Mol Cell Cardiol41762-7732006. 9. Ago T and Sadoshima J. Thioredoxin and ventricular remodeling. J Mol Cell Cardiol 41: 762–773, 2006.
10.
Agrawal-Singh SIsken FAgelopoulos KKlein H-UThoennissen NHKoehler GHascher ABäumer NBerdel WEThiede CEhninger GBecker ASchlenke PWang YMcClelland MKrug UKoschmieder SBüchner TYu D-YSingh SVHansen KServe HDugas MMüller-Tidow C. Genome-wide analysis of histone H3 acetylation patterns in AML identifies PRDX2 as an epigenetically silenced tumor suppressor geneBlood1192346-23572012. 10. Agrawal-Singh S, Isken F, Agelopoulos K, Klein H-U, Thoennissen NH, Koehler G, Hascher A, Bäumer N, Berdel WE, Thiede C, Ehninger G, Becker A, Schlenke P, Wang Y, McClelland M, Krug U, Koschmieder S, Büchner T, Yu D-Y, Singh SV, Hansen K, Serve H, Dugas M, and Müller-Tidow C. Genome-wide analysis of histone H3 acetylation patterns in AML identifies PRDX2 as an epigenetically silenced tumor suppressor gene. Blood 119: 2346–2357, 2012.
11.
Ahn BYMoss B. Glutaredoxin homolog encoded by vaccinia virus is a virion-associated enzyme with thioltransferase and dehydroascorbate reductase activitiesProc Natl Acad Sci U S A897060-70641992. 11. Ahn BY and Moss B. Glutaredoxin homolog encoded by vaccinia virus is a virion-associated enzyme with thioltransferase and dehydroascorbate reductase activities. Proc Natl Acad Sci U S A 89: 7060–7064, 1992.
12.
Ahsan MKLekli IRay DYodoi JDas DK. Redox regulation of cell survival by the thioredoxin superfamily: an implication of redox gene therapy in the heartAntioxid Redox Signal112741-27582009. 12. Ahsan MK, Lekli I, Ray D, Yodoi J, and Das DK. Redox regulation of cell survival by the thioredoxin superfamily: an implication of redox gene therapy in the heart. Antioxid Redox Signal 11: 2741–2758, 2009.
13.
Aillet FMasutani HElbim CRaoul HChêne LNugeyre MTPaya CBarré-Sinoussi FGougerot-Pocidalo MAIsraël N. Human immunodeficiency virus induces a dual regulation of Bcl-2, resulting in persistent infection of CD4(+) T- or monocytic cell linesJ Virol729698-97051998. 13. Aillet F, Masutani H, Elbim C, Raoul H, Chêne L, Nugeyre MT, Paya C, Barré-Sinoussi F, Gougerot-Pocidalo MA, and Israël N. Human immunodeficiency virus induces a dual regulation of Bcl-2, resulting in persistent infection of CD4(+) T- or monocytic cell lines. J Virol 72: 9698–9705, 1998.
14.
Akerboom TPSies H. Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samplesMethods Enzymol77373-3821981. 14. Akerboom TP and Sies H. Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods Enzymol 77: 373–382, 1981.
15.
Akif MKhare GTyagi AKMande SCSardesai AA. Functional studies of multiple thioredoxins from Mycobacterium tuberculosisJ Bacteriol1907087-70952008. 15. Akif M, Khare G, Tyagi AK, Mande SC, and Sardesai AA. Functional studies of multiple thioredoxins from Mycobacterium tuberculosis. J Bacteriol 190: 7087–7095, 2008.
16.
Akterin SCowburn RFMiranda-Vizuete AJiménez ABogdanovic NWinblad BCedazo-Minguez A. Involvement of glutaredoxin-1 and thioredoxin-1 in beta-amyloid toxicity and Alzheimer's diseaseCell Death Differ131454-14652006. 16. Akterin S, Cowburn RF, Miranda-Vizuete A, Jiménez A, Bogdanovic N, Winblad B, and Cedazo-Minguez A. Involvement of glutaredoxin-1 and thioredoxin-1 in beta-amyloid toxicity and Alzheimer's disease. Cell Death Differ 13: 1454–1465, 2006.
17.
Alam ZIDaniel SELees AJMarsden DCJenner PHalliwell B. A generalised increase in protein carbonyls in the brain in Parkinson's but not incidental Lewy body diseaseJ Neurochem691326-13291997. 17. Alam ZI, Daniel SE, Lees AJ, Marsden DC, Jenner P, and Halliwell B. A generalised increase in protein carbonyls in the brain in Parkinson's but not incidental Lewy body disease. J Neurochem 69: 1326–1329, 1997.
18.
Albrecht SCBarata AGGrosshans JTeleman AADick TP. In vivo mapping of hydrogen peroxide and oxidized glutathione reveals chemical and regional specificity of redox homeostasisCell Metab14819-8292011. 18. Albrecht SC, Barata AG, Grosshans J, Teleman AA, and Dick TP. In vivo mapping of hydrogen peroxide and oxidized glutathione reveals chemical and regional specificity of redox homeostasis. Cell Metab 14: 819–829, 2011.
19.
Al-Gayyar MMHAbdelsaid MAMatragoon SPillai BAEl-Remessy AB. Thioredoxin interacting protein is a novel mediator of retinal inflammation and neurotoxicityBr J Pharmacol164170-1802011. 19. Al-Gayyar MMH, Abdelsaid MA, Matragoon S, Pillai BA, and El-Remessy AB. Thioredoxin interacting protein is a novel mediator of retinal inflammation and neurotoxicity. Br J Pharmacol 164: 170–180, 2011.
20.
Al-Jawad FHSahib ASAl-Kaisy AA. Role of antioxidants in the treatment of burn lesionsAnn Burns Fire Disasters21186-1912008. 20. Al-Jawad FH, Sahib AS, and Al-Kaisy AA. Role of antioxidants in the treatment of burn lesions. Ann Burns Fire Disasters 21: 186–191, 2008.
21.
Altschmied JHaendeler J. Thioredoxin-1 and endothelial cell aging: role in cardiovascular diseasesAntioxid Redox Signal111733-17402009. 21. Altschmied J and Haendeler J. Thioredoxin-1 and endothelial cell aging: role in cardiovascular diseases. Antioxid Redox Signal 11: 1733–1740, 2009.
22.
Ameisen JC. Programmed cell death (apoptosis) and cell survival regulation: relevance to AIDS and cancerAIDS81197-12131994. 22. Ameisen JC. Programmed cell death (apoptosis) and cell survival regulation: relevance to AIDS and cancer. AIDS 8: 1197–1213, 1994.
23.
Andersson MHolmgren ASpyrou G. NK-lysin, a disulfide-containing effector peptide of T-lymphocytes, is reduced and inactivated by human thioredoxin reductase. Implication for a protective mechanism against NK-lysin cytotoxicityJ Biol Chem27110116-101201996. 23. Andersson M, Holmgren A, and Spyrou G. NK-lysin, a disulfide-containing effector peptide of T-lymphocytes, is reduced and inactivated by human thioredoxin reductase. Implication for a protective mechanism against NK-lysin cytotoxicity. J Biol Chem 271: 10116–10120, 1996.
24.
Andricopulo ADAkoachere MBKrogh RNickel CMcLeish MJKenyon GLArscott LDWilliams CH Jr.Davioud-Charvet EBecker K. Specific inhibitors of Plasmodium falciparum thioredoxin reductase as potential antimalarial agentsBioorg Med Chem Lett162283-22922006. 24. Andricopulo AD, Akoachere MB, Krogh R, Nickel C, McLeish MJ, Kenyon GL, Arscott LD, Williams CH Jr., Davioud-Charvet E, and Becker K. Specific inhibitors of Plasmodium falciparum thioredoxin reductase as potential antimalarial agents. Bioorg Med Chem Lett 16: 2283–2292, 2006.
25.
Angelini GGardella SArdy MCiriolo MRFilomeni GDi Trapani GClarke FSitia RRubartelli A. Antigen-presenting dendritic cells provide the reducing extracellular microenvironment required for T lymphocyte activationProc Natl Acad Sci U S A991491-14962002. 25. Angelini G, Gardella S, Ardy M, Ciriolo MR, Filomeni G, Di Trapani G, Clarke F, Sitia R, and Rubartelli A. Antigen-presenting dendritic cells provide the reducing extracellular microenvironment required for T lymphocyte activation. Proc Natl Acad Sci U S A 99: 1491–1496, 2002.
26.
Aon-Bertolino MLRomero JIGaleano PHolubiec MBadorrey MSSaraceno GEHanschmann E-MLillig CHCapani F. Thioredoxin and glutaredoxin system proteins-immunolocalization in the rat central nervous systemBiochim Biophys Acta181093-1102011. 26. Aon-Bertolino ML, Romero JI, Galeano P, Holubiec M, Badorrey MS, Saraceno GE, Hanschmann E-M, Lillig CH, and Capani F. Thioredoxin and glutaredoxin system proteins-immunolocalization in the rat central nervous system. Biochim Biophys Acta 1810: 93–110, 2011.
27.
Aota MMatsuda KIsowa NWada HYodoi JBan T. Protection against reperfusion-induced arrhythmias by human thioredoxinJ Cardiovasc Pharmacol27727-7321996. 27. Aota M, Matsuda K, Isowa N, Wada H, Yodoi J, and Ban T. Protection against reperfusion-induced arrhythmias by human thioredoxin. J Cardiovasc Pharmacol 27: 727–732, 1996.
28.
Arnér ESJ. Focus on mammalian thioredoxin reductases—Important selenoproteins with versatile functionsBiochim Biophys Acta1790495-5262009. 28. Arnér ESJ. Focus on mammalian thioredoxin reductases—Important selenoproteins with versatile functions. Biochim Biophys Acta 1790: 495–526, 2009.
29.
Arnér ESJHolmgren A. The thioredoxin system in cancerSemin Cancer Biol16420-4262006. 29. Arnér ESJ and Holmgren A. The thioredoxin system in cancer. Semin Cancer Biol 16: 420–426, 2006.
30.
Arrigoni FIHislop AAPollock JSHaworth SGMitchell JA. Birth upregulates nitric oxide synthase activity in the porcine lungLife Sci701609-16202002. 30. Arrigoni FI, Hislop AA, Pollock JS, Haworth SG, and Mitchell JA. Birth upregulates nitric oxide synthase activity in the porcine lung. Life Sci 70: 1609–1620, 2002.
31.
Ashfaq SAbramson JLJones DPRhodes SDWeintraub WSHooper WCVaccarino VHarrison DGQuyyumi AA. The relationship between plasma levels of oxidized and reduced thiols and early atherosclerosis in healthy adultsJ Am Coll Cardiol471005-10112006. 31. Ashfaq S, Abramson JL, Jones DP, Rhodes SD, Weintraub WS, Hooper WC, Vaccarino V, Harrison DG, and Quyyumi AA. The relationship between plasma levels of oxidized and reduced thiols and early atherosclerosis in healthy adults. J Am Coll Cardiol 47: 1005–1011, 2006.
32.
Athar M. Oxidative stress and experimental carcinogenesisIndian J Exp Biol40656-6672002. 32. Athar M. Oxidative stress and experimental carcinogenesis. Indian J Exp Biol 40: 656–667, 2002.
33.
Auwerx JIsacsson OSöderlund JBalzarini JJohansson MLundberg M. Human glutaredoxin-1 catalyzes the reduction of HIV-1 gp120 and CD4 disulfides and its inhibition reduces HIV-1 replicationInt J Biochem Cell Biol411269-12752009. 33. Auwerx J, Isacsson O, Söderlund J, Balzarini J, Johansson M, and Lundberg M. Human glutaredoxin-1 catalyzes the reduction of HIV-1 gp120 and CD4 disulfides and its inhibition reduces HIV-1 replication. Int J Biochem Cell Biol 41: 1269–1275, 2009.
34.
Avila PCKropotov AVKrutilina RKrasnodembskay ATomilin NVSerikov VB. Peroxiredoxin V contributes to antioxidant defense of lung epithelial cellsLung186103-1142008. 34. Avila PC, Kropotov AV, Krutilina R, Krasnodembskay A, Tomilin NV, and Serikov VB. Peroxiredoxin V contributes to antioxidant defense of lung epithelial cells. Lung 186: 103–114, 2008.
35.
Bachschmid MMXu SMaitland-Toolan KAHo Y-SCohen RAMatsui R. Attenuated cardiovascular hypertrophy and oxidant generation in response to angiotensin II infusion in glutaredoxin-1 knockout miceFree Radic Biol Med491221-12292010. 35. Bachschmid MM, Xu S, Maitland-Toolan KA, Ho Y-S, Cohen RA, and Matsui R. Attenuated cardiovascular hypertrophy and oxidant generation in response to angiotensin II infusion in glutaredoxin-1 knockout mice. Free Radic Biol Med 49: 1221–1229, 2010.
36.
Bai JNakamura HHattori ITanito MYodoi J. Thioredoxin suppresses 1-methyl-4-phenylpyridinium-induced neurotoxicity in rat PC12 cellsNeurosci Lett32181-842002. 36. Bai J, Nakamura H, Hattori I, Tanito M, and Yodoi J. Thioredoxin suppresses 1-methyl-4-phenylpyridinium-induced neurotoxicity in rat PC12 cells. Neurosci Lett 321: 81–84, 2002.
37.
Bai X-YMa YDing RFu BShi SChen X-M. miR-335 and miR-34a Promote renal senescence by suppressing mitochondrial antioxidative enzymesJ Am Soc Nephrol221252-12612011. 37. Bai X-Y, Ma Y, Ding R, Fu B, Shi S, and Chen X-M. miR-335 and miR-34a Promote renal senescence by suppressing mitochondrial antioxidative enzymes. J Am Soc Nephrol 22: 1252–1261, 2011.
38.
Ball KANelson AWFoster DGPoyton RO. Nitric oxide produced by cytochrome c oxidase helps stabilize HIF-1α in hypoxic mammalian cellsBiochem Biophys Res Commun420727-7322012. 38. Ball KA, Nelson AW, Foster DG, and Poyton RO. Nitric oxide produced by cytochrome c oxidase helps stabilize HIF-1α in hypoxic mammalian cells. Biochem Biophys Res Commun 420: 727–732, 2012.
39.
Banham HALHaldane JSSavage T. The presence post mortem of nitricoxide-haemoglobinBr Med J2187-1891925. 39. Banham HAL, Haldane JS, and Savage T. The presence post mortem of nitricoxide-haemoglobin. Br Med J 2: 187–189, 1925.
40.
Barber SCMead RJShaw PJ. Oxidative stress in ALS: a mechanism of neurodegeneration and a therapeutic targetBiochim Biophys Acta17621051-10672006. 40. Barber SC, Mead RJ, and Shaw PJ. Oxidative stress in ALS: a mechanism of neurodegeneration and a therapeutic target. Biochim Biophys Acta 1762: 1051–1067, 2006.
41.
Barone ECenini GSultana RDi Domenico FFiorini APerluigi MNoel TWang CMancuso CSt Clair DKButterfield DA. Lack of p53 decreases basal oxidative stress levels in the brain through upregulation of thioredoxin-1, biliverdin reductase-A, manganese superoxide dismutase, and nuclear factor kappa-BAntioxid Redox Signal161407-14202012. 41. Barone E, Cenini G, Sultana R, Di Domenico F, Fiorini A, Perluigi M, Noel T, Wang C, Mancuso C, St Clair DK, and Butterfield DA. Lack of p53 decreases basal oxidative stress levels in the brain through upregulation of thioredoxin-1, biliverdin reductase-A, manganese superoxide dismutase, and nuclear factor kappa-B. Antioxid Redox Signal 16: 1407–1420, 2012.
42.
Barranco-Medina SLázaro J-JDietz K-J. The oligomeric conformation of peroxiredoxins links redox state to functionFEBS Lett5831809-18162009. 42. Barranco-Medina S, Lázaro J-J, and Dietz K-J. The oligomeric conformation of peroxiredoxins links redox state to function. FEBS Lett 583: 1809–1816, 2009.
43.
Baskar RBian J. Hydrogen sulfide gas has cell growth regulatory roleEur J Pharmacol6565-92011. 43. Baskar R and Bian J. Hydrogen sulfide gas has cell growth regulatory role. Eur J Pharmacol 656: 5–9, 2011.
44.
Basso MGiraudo SCorpillo DBergamasco BLopiano LFasano M. Proteome analysis of human substantia nigra in Parkinson's diseaseProteomics43943-39522004. 44. Basso M, Giraudo S, Corpillo D, Bergamasco B, Lopiano L, and Fasano M. Proteome analysis of human substantia nigra in Parkinson's disease. Proteomics 4: 3943–3952, 2004.
45.
Bast AWolf GOberbäumer IWalther R. Oxidative and nitrosative stress induces peroxiredoxins in pancreatic beta cellsDiabetologia45867-8762002. 45. Bast A, Wolf G, Oberbäumer I, and Walther R. Oxidative and nitrosative stress induces peroxiredoxins in pancreatic beta cells. Diabetologia 45: 867–876, 2002.
46.
Basu ABanerjee HRojas HMartinez SRRoy SJia ZLilly MBDe León MCasiano CA. Differential expression of peroxiredoxins in prostate cancer: consistent upregulation of PRDX3 and PRDX4Prostate71755-7652011. 46. Basu A, Banerjee H, Rojas H, Martinez SR, Roy S, Jia Z, Lilly MB, De León M, and Casiano CA. Differential expression of peroxiredoxins in prostate cancer: consistent upregulation of PRDX3 and PRDX4. Prostate 71: 755–765, 2011.
47.
Bazzichi AIncaprera MGarzelli C. Effect of Escherichia-coli thioredoxin, a homolog to the adult T-cell leukemia-derived factor, on epstein-barr virus-transformed B-lymphocytesInt J Oncol541-461994. 47. Bazzichi A, Incaprera M, and Garzelli C. Effect of Escherichia-coli thioredoxin, a homolog to the adult T-cell leukemia-derived factor, on epstein-barr virus-transformed B-lymphocytes. Int J Oncol 5: 41–46, 1994.
48.
Becker KGromer SSchirmer RHMüller S. Thioredoxin reductase as a pathophysiological factor and drug targetEur J Biochem2676118-61252000. 48. Becker K, Gromer S, Schirmer RH, and Müller S. Thioredoxin reductase as a pathophysiological factor and drug target. Eur J Biochem 267: 6118–6125, 2000.
49.
Beck M. Selenium and viral infectionsSelenium—Its Molecular Biology and Role in Human HealthHatfield DLBerry MJGladyshev VNHeidelberg, GermanySpringer2006287-298. 49. Beck M. Selenium and viral infections. In: Selenium—Its Molecular Biology and Role in Human Health, edited by Hatfield DL, Berry MJ, and Gladyshev VN. Heidelberg, Germany: Springer, 2006, pp. 287–298.
50.
Beckman KBAmes BN. The free radical theory of aging maturesPhysiol Rev78547-5811998. 50. Beckman KB and Ames BN. The free radical theory of aging matures. Physiol Rev 78: 547–581, 1998.
51.
Bedard KKrause K-H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiologyPhysiol Rev87245-3132007. 51. Bedard K and Krause K-H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87: 245–313, 2007.
52.
Benard OBalasubramanian KA. Purification and properties of thioltransferase from monkey small intestinal mucosa: its role in protein-S-thiolationInt J Biochem Cell Biol281051-10591996. 52. Benard O and Balasubramanian KA. Purification and properties of thioltransferase from monkey small intestinal mucosa: its role in protein-S-thiolation. Int J Biochem Cell Biol 28: 1051–1059, 1996.
53.
Benhar MForrester MTHess DTStamler JS. Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxinsScience3201050-10542008. 53. Benhar M, Forrester MT, Hess DT, and Stamler JS. Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins. Science 320: 1050–1054, 2008.
54.
Berggren MGallegos AGasdaska JRGasdaska PYWarneke JPowis G. Thioredoxin and thioredoxin reductase gene expression in human tumors and cell lines, and the effects of serum stimulation and hypoxiaAnticancer Res163459-34661996. 54. Berggren M, Gallegos A, Gasdaska JR, Gasdaska PY, Warneke J, and Powis G. Thioredoxin and thioredoxin reductase gene expression in human tumors and cell lines, and the effects of serum stimulation and hypoxia. Anticancer Res 16: 3459–3466, 1996.
55.
Berggren MIHusbeck BSamulitis BBaker AFGallegos APowis G. Thioredoxin peroxidase-1 (peroxiredoxin-1) is increased in thioredoxin-1 transfected cells and results in enhanced protection against apoptosis caused by hydrogen peroxide but not by other agents including dexamethasone, etoposide, and doxorubicinArch Biochem Biophys392103-1092001. 55. Berggren MI, Husbeck B, Samulitis B, Baker AF, Gallegos A, and Powis G. Thioredoxin peroxidase-1 (peroxiredoxin-1) is increased in thioredoxin-1 transfected cells and results in enhanced protection against apoptosis caused by hydrogen peroxide but not by other agents including dexamethasone, etoposide, and doxorubicin. Arch Biochem Biophys 392: 103–109, 2001.
56.
Berndt CHudemann CHanschmann E-MAxelsson RHolmgren ALillig CH. How does iron-sulfur cluster coordination regulate the activity of human glutaredoxin 2?Antioxid Redox Signal9151-1572007. 56. Berndt C, Hudemann C, Hanschmann E-M, Axelsson R, Holmgren A, and Lillig CH. How does iron-sulfur cluster coordination regulate the activity of human glutaredoxin 2? Antioxid Redox Signal 9: 151–157, 2007.
57.
Berndt CLillig CHHolmgren A. Thioredoxins and glutaredoxins as facilitators of protein foldingBiochim Biophys Acta1783641-6502008. 57. Berndt C, Lillig CH, and Holmgren A. Thioredoxins and glutaredoxins as facilitators of protein folding. Biochim Biophys Acta 1783: 641–650, 2008.
58.
Bertini RHoward OMDong HFOppenheim JJBizzarri CSergi RCaselli GPagliei SRomines BWilshire JAMengozzi MNakamura HYodoi JPekkari KGurunath RHolmgren AHerzenberg LAHerzenberg LAGhezzi P. Thioredoxin, a redox enzyme released in infection and inflammation, is a unique chemoattractant for neutrophils, monocytes, and T cellsJ Exp Med1891783-17891999. 58. Bertini R, Howard OM, Dong HF, Oppenheim JJ, Bizzarri C, Sergi R, Caselli G, Pagliei S, Romines B, Wilshire JA, Mengozzi M, Nakamura H, Yodoi J, Pekkari K, Gurunath R, Holmgren A, Herzenberg LA, Herzenberg LA, and Ghezzi P. Thioredoxin, a redox enzyme released in infection and inflammation, is a unique chemoattractant for neutrophils, monocytes, and T cells. J Exp Med 189: 1783–1789, 1999.
59.
Beutler E. Iron storage disease: facts, fiction and progressBlood Cells Mol Dis39140-1472007. 59. Beutler E. Iron storage disease: facts, fiction and progress. Blood Cells Mol Dis 39: 140–147, 2007.
60.
Bharath SHsu MKaur DRajagopalan SAndersen JK. Glutathione, iron and Parkinson's diseaseBiochem Pharmacol641037-10482002. 60. Bharath S, Hsu M, Kaur D, Rajagopalan S, and Andersen JK. Glutathione, iron and Parkinson's disease. Biochem Pharmacol 64: 1037–1048, 2002.
61.
Bickers DRAthar M. Oxidative stress in the pathogenesis of skin diseaseJ Invest Dermatol1262565-25752006. 61. Bickers DR and Athar M. Oxidative stress in the pathogenesis of skin disease. J Invest Dermatol 126: 2565–2575, 2006.
62.
Bigelow DJSquier TC. Thioredoxin-dependent redox regulation of cellular signaling and stress response through reversible oxidation of methioninesMol Biosyst72101-21092011. 62. Bigelow DJ and Squier TC. Thioredoxin-dependent redox regulation of cellular signaling and stress response through reversible oxidation of methionines. Mol Biosyst 7: 2101–2109, 2011.
63.
Biguet CWakasugi NMishal ZHolmgren AChouaib STursz TWakasugi H. Thioredoxin increases the proliferation of human B-cell lines through a protein kinase C-dependent mechanismJ Biol Chem26928865-288701994. 63. Biguet C, Wakasugi N, Mishal Z, Holmgren A, Chouaib S, Tursz T, and Wakasugi H. Thioredoxin increases the proliferation of human B-cell lines through a protein kinase C-dependent mechanism. J Biol Chem 269: 28865–28870, 1994.
64.
Biteau BLabarre JToledano MB. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxinNature425980-9842003. 64. Biteau B, Labarre J, and Toledano MB. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425: 980–984, 2003.
65.
Bizzarri CHolmgren APekkari KChang GColotta FGhezzi PBertini R. Requirements for the different cysteines in the chemotactic and desensitizing activity of human thioredoxinAntioxid Redox Signal71189-11942005. 65. Bizzarri C, Holmgren A, Pekkari K, Chang G, Colotta F, Ghezzi P, and Bertini R. Requirements for the different cysteines in the chemotactic and desensitizing activity of human thioredoxin. Antioxid Redox Signal 7: 1189–1194, 2005.
66.
Björnstedt MXue JHuang WAkesson BHolmgren A. The thioredoxin and glutaredoxin systems are efficient electron donors to human plasma glutathione peroxidaseJ Biol Chem26929382-293841994. 66. Björnstedt M, Xue J, Huang W, Akesson B, and Holmgren A. The thioredoxin and glutaredoxin systems are efficient electron donors to human plasma glutathione peroxidase. J Biol Chem 269: 29382–29384, 1994.
67.
Blauwkamp MNYu JSchin MABurke KABerry MJCarlson BABrosius FC 3rdKoenig RJ. Podocyte specific knock out of selenoproteins does not enhance nephropathy in streptozotocin diabetic C57BL/6 miceBMC Nephrol972008. 67. Blauwkamp MN, Yu J, Schin MA, Burke KA, Berry MJ, Carlson BA, Brosius FC 3rd, and Koenig RJ. Podocyte specific knock out of selenoproteins does not enhance nephropathy in streptozotocin diabetic C57BL/6 mice. BMC Nephrol 9: 7, 2008.
68.
Bokov AChaudhuri ARichardson A. The role of oxidative damage and stress in agingMech Ageing Dev125811-8262004. 68. Bokov A, Chaudhuri A, and Richardson A. The role of oxidative damage and stress in aging. Mech Ageing Dev 125: 811–826, 2004.
69.
Borisenko GKagan VEBayir HABelikova NAKapralov OTyurina YYTyurin VAJiang JStoyanovsky DAWipf PKochanek PMGreenberger JSPitt BShvedova AA. Cytochrome c/cardiolipin relations in mitochondria: a kiss of deathFree Radic Biol Med461439-14532009. 69. Borisenko G, Kagan VE, Bayir HA, Belikova NA, Kapralov O, Tyurina YY, Tyurin VA, Jiang J, Stoyanovsky DA, Wipf P, Kochanek PM, Greenberger JS, Pitt B, and Shvedova AA. Cytochrome c/cardiolipin relations in mitochondria: a kiss of death. Free Radic Biol Med 46: 1439–1453, 2009.
70.
Boulos SMeloni BPArthur PGBojarski CKnuckey NW. Peroxiredoxin 2 overexpression protects cortical neuronal cultures from ischemic and oxidative injury but not glutamate excitotoxicity, whereas Cu/Zn superoxide dismutase 1 overexpression protects only against oxidative injuryJ Neurosci Res853089-30972007. 70. Boulos S, Meloni BP, Arthur PG, Bojarski C, and Knuckey NW. Peroxiredoxin 2 overexpression protects cortical neuronal cultures from ischemic and oxidative injury but not glutamate excitotoxicity, whereas Cu/Zn superoxide dismutase 1 overexpression protects only against oxidative injury. J Neurosci Res 85: 3089–3097, 2007.
71.
Bowler RPCrapo JD. Oxidative stress in allergic respiratory diseasesJ Allergy Clin Immunol110349-3562002. 71. Bowler RP and Crapo JD. Oxidative stress in allergic respiratory diseases. J Allergy Clin Immunol 110: 349–356, 2002.
72.
Brady KDGiegel DAGrinnell CLunney ETalanian RVWong WWalker N. A catalytic mechanism for caspase-1 and for bimodal inhibition of caspase-1 by activated aspartic ketonesBioorg Med Chem7621-6311999. 72. Brady KD, Giegel DA, Grinnell C, Lunney E, Talanian RV, Wong W, and Walker N. A catalytic mechanism for caspase-1 and for bimodal inhibition of caspase-1 by activated aspartic ketones. Bioorg Med Chem 7: 621–631, 1999.
73.
Brand MD. The sites and topology of mitochondrial superoxide productionExp Gerontol45466-4722010. 73. Brand MD. The sites and topology of mitochondrial superoxide production. Exp Gerontol 45: 466–472, 2010.
74.
Braskett MRiedl MA. Novel antioxidant approaches to the treatment of upper airway inflammationCurr Opin Allergy Clin Immunol1034-412010. 74. Braskett M and Riedl MA. Novel antioxidant approaches to the treatment of upper airway inflammation. Curr Opin Allergy Clin Immunol 10: 34–41, 2010.
75.
Bräutigam LSchütte LDGodoy JRProzorovski TGellert MHauptmann GHolmgren ALillig CHBerndt C. Vertebrate-specific glutaredoxin is essential for brain developmentProc Natl Acad Sci U S A10820532-205372011. 75. Bräutigam L, Schütte LD, Godoy JR, Prozorovski T, Gellert M, Hauptmann G, Holmgren A, Lillig CH, and Berndt C. Vertebrate-specific glutaredoxin is essential for brain development. Proc Natl Acad Sci U S A 108: 20532–20537, 2011.
76.
Brea DRodríguez-González RSobrino TRodríguez-Yañez MBlanco MCastillo J. Proteomic analysis shows differential protein expression in endothelial progenitor cells between healthy subjects and ischemic stroke patientsNeurol Res331057-10632011. 76. Brea D, Rodríguez-González R, Sobrino T, Rodríguez-Yañez M, Blanco M, and Castillo J. Proteomic analysis shows differential protein expression in endothelial progenitor cells between healthy subjects and ischemic stroke patients. Neurol Res 33: 1057–1063, 2011.
77.
Brigelius-Flohé RFlohé L. Basic principles and emerging concepts in the redox control of transcription factorsAntioxid Redox Signal152335-23812011. 77. Brigelius-Flohé R and Flohé L. Basic principles and emerging concepts in the redox control of transcription factors. Antioxid Redox Signal 15: 2335–2381, 2011.
78.
Brownlee M. Biochemistry and molecular cell biology of diabetic complicationsNature414813-8202001. 78. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 414: 813–820, 2001.
79.
Brunton TLExperimental Investigation of the Action of MedicinesLondonJ. and A. Churchill1875. 79. Brunton TL. Experimental Investigation of the Action of Medicines. London: J. and A. Churchill, 1875.
80.
Buchanan BBAdamidi CLozano RMYee BCMomma MKobrehel KErmel RFrick OL. Thioredoxin-linked mitigation of allergic responses to wheatProc Natl Acad Sci U S A945372-53771997. 80. Buchanan BB, Adamidi C, Lozano RM, Yee BC, Momma M, Kobrehel K, Ermel R, and Frick OL. Thioredoxin-linked mitigation of allergic responses to wheat. Proc Natl Acad Sci U S A 94: 5372–5377, 1997.
81.
Buchanan BBBalmer Y. Redox regulation: a broadening horizonAnnu Rev Plant Biol56187-2202005. 81. Buchanan BB and Balmer Y. Redox regulation: a broadening horizon. Annu Rev Plant Biol 56: 187–220, 2005.
82.
Buchanan BBWolosiuk RA. Photosynthetic regulatory protein found in animal and bacterial cellsNature264669-6701976. 82. Buchanan BB and Wolosiuk RA. Photosynthetic regulatory protein found in animal and bacterial cells. Nature 264: 669–670, 1976.
83.
Buhl RJaffe HAHolroyd KJWells FBMastrangeli ASaltini CCantin AMCrystal RG. Systemic glutathione deficiency in symptom-free HIV-seropositive individualsLancet21294-12981989. 83. Buhl R, Jaffe HA, Holroyd KJ, Wells FB, Mastrangeli A, Saltini C, Cantin AM, and Crystal RG. Systemic glutathione deficiency in symptom-free HIV-seropositive individuals. Lancet 2: 1294–1298, 1989.
84.
Burke-Gaffney ACallister MEJNakamura H. Thioredoxin: friend or foe in human disease?Trends Pharmacol Sci26398-4042005. 84. Burke-Gaffney A, Callister MEJ, and Nakamura H. Thioredoxin: friend or foe in human disease? Trends Pharmacol Sci 26: 398–404, 2005.
85.
Bushweller JHAslund FWüthrich KHolmgren A. Structural and functional characterization of the mutant Escherichia coli glutaredoxin (C14—-S) and its mixed disulfide with glutathioneBiochemistry319288-92931992. 85. Bushweller JH, Aslund F, Wüthrich K, and Holmgren A. Structural and functional characterization of the mutant Escherichia coli glutaredoxin (C14—-S) and its mixed disulfide with glutathione. Biochemistry 31: 9288–9293, 1992.
86.
Butterfield DAPerluigi MSultana R. Oxidative stress in Alzheimer's disease brain: new insights from redox proteomicsEur J Pharmacol54539-502006. 86. Butterfield DA, Perluigi M, and Sultana R. Oxidative stress in Alzheimer's disease brain: new insights from redox proteomics. Eur J Pharmacol 545: 39–50, 2006.
87.
Butterfield LHMerino AGolub SHShau H. From cytoprotection to tumor suppression: the multifactorial role of peroxiredoxinsAntioxid Redox Signal1385-4021999. 87. Butterfield LH, Merino A, Golub SH, and Shau H. From cytoprotection to tumor suppression: the multifactorial role of peroxiredoxins. Antioxid Redox Signal 1: 385–402, 1999.
88.
Bylund JBrown KLMovitz CDahlgren CKarlsson A. Intracellular generation of superoxide by the phagocyte NADPH oxidase: how, where, and what for?Free Radic Biol Med491834-18452010. 88. Bylund J, Brown KL, Movitz C, Dahlgren C, and Karlsson A. Intracellular generation of superoxide by the phagocyte NADPH oxidase: how, where, and what for? Free Radic Biol Med 49: 1834–1845, 2010.
89.
Cabreiro FPicot CRFriguet BPetropoulos I. Methionine sulfoxide reductases: relevance to aging and protection against oxidative stressAnn N Y Acad Sci106737-442006. 89. Cabreiro F, Picot CR, Friguet B, and Petropoulos I. Methionine sulfoxide reductases: relevance to aging and protection against oxidative stress. Ann N Y Acad Sci 1067: 37–44, 2006.
90.
Cagnol SChambard J-C. ERK and cell death: mechanisms of ERK-induced cell death—apoptosis, autophagy and senescenceFEBS J2772-212010. 90. Cagnol S and Chambard J-C. ERK and cell death: mechanisms of ERK-induced cell death—apoptosis, autophagy and senescence. FEBS J 277: 2–21, 2010.
91.
Cai JNelson KCWu MSternberg P Jr.Jones DP. Oxidative damage and protection of the RPEProg Retin Eye Res19205-2212000. 91. Cai J, Nelson KC, Wu M, Sternberg P Jr., and Jones DP. Oxidative damage and protection of the RPE. Prog Retin Eye Res 19: 205–221, 2000.
92.
Cai WZhang LSong YWang BZhang BCui XHu GLiu YWu JFang J. Small molecule inhibitors of mammalian thioredoxin reductaseFree Radic Biol Med52257-2652012. 92. Cai W, Zhang L, Song Y, Wang B, Zhang B, Cui X, Hu G, Liu Y, Wu J, and Fang J. Small molecule inhibitors of mammalian thioredoxin reductase. Free Radic Biol Med 52: 257–265, 2012.
93.
Calabrese VCornelius CMaiolino LLuca MChiaramonte RToscano MASerra A. Oxidative stress, redox homeostasis and cellular stress response in Ménière's disease: role of vitagenesNeurochem Res352208-22172010. 93. Calabrese V, Cornelius C, Maiolino L, Luca M, Chiaramonte R, Toscano MA, and Serra A. Oxidative stress, redox homeostasis and cellular stress response in Ménière's disease: role of vitagenes. Neurochem Res 35: 2208–2217, 2010.
94.
Camaschella C. Understanding iron homeostasis through genetic analysis of hemochromatosis and related disordersBlood1063710-37172005. 94. Camaschella C. Understanding iron homeostasis through genetic analysis of hemochromatosis and related disorders. Blood 106: 3710–3717, 2005.
95.
Camaschella CCampanella ADe Falco LBoschetto LMerlini RSilvestri LLevi SIolascon A. The human counterpart of zebrafish shiraz shows sideroblastic-like microcytic anemia and iron overloadBlood1101353-13582007. 95. Camaschella C, Campanella A, De Falco L, Boschetto L, Merlini R, Silvestri L, Levi S, and Iolascon A. The human counterpart of zebrafish shiraz shows sideroblastic-like microcytic anemia and iron overload. Blood 110: 1353–1358, 2007.
96.
Cameron NECotter MA. Pro-inflammatory mechanisms in diabetic neuropathy: focus on the nuclear factor kappa B pathwayCurr Drug Targets960-672008. 96. Cameron NE and Cotter MA. Pro-inflammatory mechanisms in diabetic neuropathy: focus on the nuclear factor kappa B pathway. Curr Drug Targets 9: 60–67, 2008.
97.
Cao JSchulte JKnight ALeslie NRZagozdzon ABronson RManevich YBeeson CNeumann CA. Prdx1 inhibits tumorigenesis via regulating PTEN/AKT activityEMBO J281505-15172009. 97. Cao J, Schulte J, Knight A, Leslie NR, Zagozdzon A, Bronson R, Manevich Y, Beeson C, and Neumann CA. Prdx1 inhibits tumorigenesis via regulating PTEN/AKT activity. EMBO J 28: 1505–1517, 2009.
98.
Cao ZLindsay JGIsaacs NW. Mitochondrial peroxiredoxinsSubcell Biochem44295-3152007. 98. Cao Z, Lindsay JG, and Isaacs NW. Mitochondrial peroxiredoxins. Subcell Biochem 44: 295–315, 2007.
99.
Capani FLoidl CFPiehl LLFacorro GDe Paoli THager A. Long term production of reactive oxygen species during perinatal asphyxia in the rat central nervous system: effects of hypothermiaInt J Neurosci113641-6542003. 99. Capani F, Loidl CF, Piehl LL, Facorro G, De Paoli T, and Hager A. Long term production of reactive oxygen species during perinatal asphyxia in the rat central nervous system: effects of hypothermia. Int J Neurosci 113: 641–654, 2003.
100.
Casso DBeach D. A mutation in a thioredoxin reductase homolog suppresses p53-induced growth inhibition in the fission yeast Schizosaccharomyces pombeMol Gen Genet252518-5291996. 100. Casso D and Beach D. A mutation in a thioredoxin reductase homolog suppresses p53-induced growth inhibition in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet 252: 518–529, 1996.
101.
Ceylan SSeidel VZiebart NBerndt CDirdjaja NKrauth-Siegel RL. The dithiol glutaredoxins of african trypanosomes have distinct roles and are closely linked to the unique trypanothione metabolismJ Biol Chem28535224-352372010. 101. Ceylan S, Seidel V, Ziebart N, Berndt C, Dirdjaja N, and Krauth-Siegel RL. The dithiol glutaredoxins of african trypanosomes have distinct roles and are closely linked to the unique trypanothione metabolism. J Biol Chem 285: 35224–35237, 2010.
102.
Chae HZKim HJKang SWRhee SG. Characterization of three isoforms of mammalian peroxiredoxin that reduce peroxides in the presence of thioredoxinDiabetes Res Clin Pract45101-1121999. 102. Chae HZ, Kim HJ, Kang SW, and Rhee SG. Characterization of three isoforms of mammalian peroxiredoxin that reduce peroxides in the presence of thioredoxin. Diabetes Res Clin Pract 45: 101–112, 1999.
103.
Chae HZKim IHKim KRhee SG. Cloning, sequencing, and mutation of thiol-specific antioxidant gene of Saccharomyces cerevisiaeJ Biol Chem26816815-168211993. 103. Chae HZ, Kim IH, Kim K, and Rhee SG. Cloning, sequencing, and mutation of thiol-specific antioxidant gene of Saccharomyces cerevisiae. J Biol Chem 268: 16815–16821, 1993.
104.
Chae HZRobison KPoole LBChurch GStorz GRhee SG. Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymesProc Natl Acad Sci U S A917017-70211994. 104. Chae HZ, Robison K, Poole LB, Church G, Storz G, and Rhee SG. Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc Natl Acad Sci U S A 91: 7017–7021, 1994.
105.
Cha HKim JMOh JGJeong MHPark CSPark JJeong HJPark BKLee Y-HJeong DYang DKBernecker OYKim DHHajjar RJPark WJ. PICOT is a critical regulator of cardiac hypertrophy and cardiomyocyte contractilityJ Mol Cell Cardiol45796-8032008. 105. Cha H, Kim JM, Oh JG, Jeong MH, Park CS, Park J, Jeong HJ, Park BK, Lee Y-H, Jeong D, Yang DK, Bernecker OY, Kim DH, Hajjar RJ, and Park WJ. PICOT is a critical regulator of cardiac hypertrophy and cardiomyocyte contractility. J Mol Cell Cardiol 45: 796–803, 2008.
106.
Chai TFLeck YCHe HYu F-XLuo YHagen T. Hypoxia-inducible factor independent down-regulation of thioredoxin-interacting protein in hypoxiaFEBS Lett585492-4982011. 106. Chai TF, Leck YC, He H, Yu F-X, Luo Y, and Hagen T. Hypoxia-inducible factor independent down-regulation of thioredoxin-interacting protein in hypoxia. FEBS Lett 585: 492–498, 2011.
107.
Chakrapani BYedavally SLeverenz VGiblin FJReddy VN. Simultaneous measurement of reduced and oxidized glutathione in human aqueous humor and cataracts by electrochemical detectionOphthalmic Res27Suppl 169-771995. 107. Chakrapani B, Yedavally S, Leverenz V, Giblin FJ, and Reddy VN. Simultaneous measurement of reduced and oxidized glutathione in human aqueous humor and cataracts by electrochemical detection. Ophthalmic Res 27 Suppl 1: 69–77, 1995.
108.
Cha M-KKim I-H. Preferential overexpression of glutaredoxin3 in human colon and lung carcinomaCancer Epidemiol33281-2872009. 108. Cha M-K and Kim I-H. Preferential overexpression of glutaredoxin3 in human colon and lung carcinoma. Cancer Epidemiol 33: 281–287, 2009.
109.
Cha MKYun CHKim IH. Interaction of human thiol-specific antioxidant protein 1 with erythrocyte plasma membraneBiochemistry396944-69502000. 109. Cha MK, Yun CH, and Kim IH. Interaction of human thiol-specific antioxidant protein 1 with erythrocyte plasma membrane. Biochemistry 39: 6944–6950, 2000.
110.
Chance BOshino N. Kinetics and mechanisms of catalase in peroxisomes of the mitochondrial fractionBiochem J122225-2331971. 110. Chance B and Oshino N. Kinetics and mechanisms of catalase in peroxisomes of the mitochondrial fraction. Biochem J 122: 225–233, 1971.
111.
Chandel NSMcClintock DSFeliciano CEWood TMMelendez JARodriguez AMSchumacker PT. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensingJ Biol Chem27525130-251382000. 111. Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, and Schumacker PT. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem 275: 25130–25138, 2000.
112.
Chang JWLee SHJeong JYChae HZKim YCPark Z-YYoo YJ. Peroxiredoxin-I is an autoimmunogenic tumor antigen in non-small cell lung cancerFEBS Lett5792873-28772005. 112. Chang JW, Lee SH, Jeong JY, Chae HZ, Kim YC, Park Z-Y, and Yoo YJ. Peroxiredoxin-I is an autoimmunogenic tumor antigen in non-small cell lung cancer. FEBS Lett 579: 2873–2877, 2005.
113.
Chang T-SJeong WChoi SYYu SKang SWRhee SG. Regulation of peroxiredoxin I activity by Cdc2-mediated phosphorylationJ Biol Chem27725370-253762002. 113. Chang T-S, Jeong W, Choi SY, Yu S, Kang SW, and Rhee SG. Regulation of peroxiredoxin I activity by Cdc2-mediated phosphorylation. J Biol Chem 277: 25370–25376, 2002.
114.
Chang Y-CHuang C-NLin C-HChang H-CWu C-C. Mapping protein cysteine sulfonic acid modifications with specific enrichment and mass spectrometry: an integrated approach to explore the cysteine oxidationProteomics102961-29712010. 114. Chang Y-C, Huang C-N, Lin C-H, Chang H-C, and Wu C-C. Mapping protein cysteine sulfonic acid modifications with specific enrichment and mass spectrometry: an integrated approach to explore the cysteine oxidation. Proteomics 10: 2961–2971, 2010.
115.
Chen C-LLin C-FChang W-THuang W-CTeng C-FLin Y-S. Ceramide induces p38 MAPK and JNK activation through a mechanism involving a thioredoxin-interacting protein-mediated pathwayBlood1114365-43742008. 115. Chen C-L, Lin C-F, Chang W-T, Huang W-C, Teng C-F, and Lin Y-S. Ceramide induces p38 MAPK and JNK activation through a mechanism involving a thioredoxin-interacting protein-mediated pathway. Blood 111: 4365–4374, 2008.
116.
Cheng N-HZhang WChen W-QJin JCui XButte NFChan LHirschi KD. A mammalian monothiol glutaredoxin, Grx3, is critical for cell cycle progression during embryogenesisFEBS J2782525-25392011. 116. Cheng N-H, Zhang W, Chen W-Q, Jin J, Cui X, Butte NF, Chan L, and Hirschi KD. A mammalian monothiol glutaredoxin, Grx3, is critical for cell cycle progression during embryogenesis. FEBS J 278: 2525–2539, 2011.
117.
Chen JFontes GSaxena GPoitout VShalev A. Lack of TXNIP protects against mitochondria-mediated apoptosis but not against fatty acid-induced ER stress-mediated beta-cell deathDiabetes59440-4472010. 117. Chen J, Fontes G, Saxena G, Poitout V, and Shalev A. Lack of TXNIP protects against mitochondria-mediated apoptosis but not against fatty acid-induced ER stress-mediated beta-cell death. Diabetes 59: 440–447, 2010.
118.
Chen J-HChang Y-WYao C-WChiueh T-SHuang S-CChien K-YChen AChang F-YWong C-HChen Y-J. Plasma proteome of severe acute respiratory syndrome analyzed by two-dimensional gel electrophoresis and mass spectrometryProc Natl Acad Sci U S A10117039-170442004. 118. Chen J-H, Chang Y-W, Yao C-W, Chiueh T-S, Huang S-C, Chien K-Y, Chen A, Chang F-Y, Wong C-H, and Chen Y-J. Plasma proteome of severe acute respiratory syndrome analyzed by two-dimensional gel electrophoresis and mass spectrometry. Proc Natl Acad Sci U S A 101: 17039–17044, 2004.
119.
Chen JHui STCouto FMMungrue INDavis DBAttie ADLusis AJDavis RAShalev A. Thioredoxin-interacting protein deficiency induces Akt/Bcl-xL signaling and pancreatic beta-cell mass and protects against diabetesFASEB J223581-35942008. 119. Chen J, Hui ST, Couto FM, Mungrue IN, Davis DB, Attie AD, Lusis AJ, Davis RA, and Shalev A. Thioredoxin-interacting protein deficiency induces Akt/Bcl-xL signaling and pancreatic beta-cell mass and protects against diabetes. FASEB J 22: 3581–3594, 2008.
120.
Chen JSaxena GMungrue INLusis AJShalev A. Thioredoxin-interacting protein: a critical link between glucose toxicity and beta-cell apoptosisDiabetes57938-9442008. 120. Chen J, Saxena G, Mungrue IN, Lusis AJ, and Shalev A. Thioredoxin-interacting protein: a critical link between glucose toxicity and beta-cell apoptosis. Diabetes 57: 938–944, 2008.
121.
Chen JWDodia CFeinstein SIJain MKFisher AB. 1-Cys peroxiredoxin, a bifunctional enzyme with glutathione peroxidase and phospholipase A2 activitiesJ Biol Chem27528421-284272000. 121. Chen JW, Dodia C, Feinstein SI, Jain MK, and Fisher AB. 1-Cys peroxiredoxin, a bifunctional enzyme with glutathione peroxidase and phospholipase A2 activities. J Biol Chem 275: 28421–28427, 2000.
122.
Chen LNa RGu MSalmon ABLiu YLiang HQi WVan Remmen HRichardson ARan Q. Reduction of mitochondrial H2O2 by overexpressing peroxiredoxin 3 improves glucose tolerance in miceAging Cell7866-8782008. 122. Chen L, Na R, Gu M, Salmon AB, Liu Y, Liang H, Qi W, Van Remmen H, Richardson A, and Ran Q. Reduction of mitochondrial H2O2 by overexpressing peroxiredoxin 3 improves glucose tolerance in mice. Aging Cell 7: 866–878, 2008.
123.
Chen M-FKeng PCShau HWu C-THu Y-CLiao S-KChen W-C. Inhibition of lung tumor growth and augmentation of radiosensitivity by decreasing peroxiredoxin I expressionInt J Radiat Oncol Biol Phys64581-5912006. 123. Chen M-F, Keng PC, Shau H, Wu C-T, Hu Y-C, Liao S-K, and Chen W-C. Inhibition of lung tumor growth and augmentation of radiosensitivity by decreasing peroxiredoxin I expression. Int J Radiat Oncol Biol Phys 64: 581–591, 2006.
124.
Chen QAmes BN. Senescence-like growth arrest induced by hydrogen peroxide in human diploid fibroblast F65 cellsProc Natl Acad Sci U S A914130-41341994. 124. Chen Q and Ames BN. Senescence-like growth arrest induced by hydrogen peroxide in human diploid fibroblast F65 cells. Proc Natl Acad Sci U S A 91: 4130–4134, 1994.
125.
Chernatynskaya AVLooney BHu HZhu XXia C-Q. Administration of recombinant human thioredoxin-1 significantly delays and prevents autoimmune diabetes in nonobese diabetic mice through modulation of autoimmunityDiabetes Metab Res Rev27809-8122011. 125. Chernatynskaya AV, Looney B, Hu H, Zhu X, and Xia C-Q. Administration of recombinant human thioredoxin-1 significantly delays and prevents autoimmune diabetes in nonobese diabetic mice through modulation of autoimmunity. Diabetes Metab Res Rev 27: 809–812, 2011.
126.
Chinta SJAndersen JK. Redox imbalance in Parkinson's diseaseBiochim Biophys Acta17801362-13672008. 126. Chinta SJ and Andersen JK. Redox imbalance in Parkinson's disease. Biochim Biophys Acta 1780: 1362–1367, 2008.
127.
Chinta SJKumar MJHsu MRajagopalan SKaur DRane ANicholls DGChoi JAndersen JK. Inducible alterations of glutathione levels in adult dopaminergic midbrain neurons result in nigrostriatal degenerationJ Neurosci2713997-140062007. 127. Chinta SJ, Kumar MJ, Hsu M, Rajagopalan S, Kaur D, Rane A, Nicholls DG, Choi J, and Andersen JK. Inducible alterations of glutathione levels in adult dopaminergic midbrain neurons result in nigrostriatal degeneration. J Neurosci 27: 13997–14006, 2007.
128.
Choi HSPark KJHwang SCPark HYKim YSPark K. The role of peroxiredoxin III in the ototoxic drug-induced mitochondrial apoptosis of cochlear hair cellsActa Otolaryngol128944-9512008. 128. Choi HS, Park KJ, Hwang SC, Park HY, Kim YS, and Park K. The role of peroxiredoxin III in the ototoxic drug-induced mitochondrial apoptosis of cochlear hair cells. Acta Otolaryngol 128: 944–951, 2008.
129.
Choi J-OYun S-HSung KLee YTPark J-IJu E-SLee S-CPark SWKim D-KOh JKJeon E-S. Thioredoxin, adiponectin and clinical course of acute fulminant myocarditisHeart971067-10732011. 129. Choi J-O, Yun S-H, Sung K, Lee YT, Park J-I, Ju E-S, Lee S-C, Park SW, Kim D-K, Oh JK, and Jeon E-S. Thioredoxin, adiponectin and clinical course of acute fulminant myocarditis. Heart 97: 1067–1073, 2011.
130.
Choksi SLin YPobezinskaya YChen LPark CMorgan MLi TJitkaew SCao XKim Y-SKim H-SLevitt PShih GBirre MDeng C-XLiu Z-G. A HIF-1 target, ATIA, protects cells from apoptosis by modulating the mitochondrial thioredoxin, TRX2Mol Cell42597-6092011. 130. Choksi S, Lin Y, Pobezinskaya Y, Chen L, Park C, Morgan M, Li T, Jitkaew S, Cao X, Kim Y-S, Kim H-S, Levitt P, Shih G, Birre M, Deng C-X, and Liu Z-G. A HIF-1 target, ATIA, protects cells from apoptosis by modulating the mitochondrial thioredoxin, TRX2. Mol Cell 42: 597–609, 2011.
131.
Chou F-CSytwu H-K. Overexpression of thioredoxin in islets transduced by a lentiviral vector prolongs graft survival in autoimmune diabetic NOD miceJ Biomed Sci16712009. 131. Chou F-C and Sytwu H-K. Overexpression of thioredoxin in islets transduced by a lentiviral vector prolongs graft survival in autoimmune diabetic NOD mice. J Biomed Sci 16: 71, 2009.
132.
Chutkow WABirkenfeld ALBrown JDLee H-YFrederick DWYoshioka JPatwari PKursawe RCushman SWPlutzky JShulman GISamuel VTLee RT. Deletion of the alpha-arrestin protein Txnip in mice promotes adiposity and adipogenesis while preserving insulin sensitivityDiabetes591424-14342010. 132. Chutkow WA, Birkenfeld AL, Brown JD, Lee H-Y, Frederick DW, Yoshioka J, Patwari P, Kursawe R, Cushman SW, Plutzky J, Shulman GI, Samuel VT, and Lee RT. Deletion of the alpha-arrestin protein Txnip in mice promotes adiposity and adipogenesis while preserving insulin sensitivity. Diabetes 59: 1424–1434, 2010.
133.
Circu MLAw TY. Redox biology of the intestineFree Radic Res451245-12662011. 133. Circu ML and Aw TY. Redox biology of the intestine. Free Radic Res 45: 1245–1266, 2011.
134.
Cochemé HMQuin CMcQuaker SJCabreiro FLogan APrime TAAbakumova IPatel JVFearnley IMJames AMPorteous CMSmith RAJSaeed SCarré JESinger MGems DHartley RCPartridge LMurphy MP. Measurement of H2O2 within living Drosophila during aging using a ratiometric mass spectrometry probe targeted to the mitochondrial matrixCell Metab13340-3502011. 134. Cochemé HM, Quin C, McQuaker SJ, Cabreiro F, Logan A, Prime TA, Abakumova I, Patel JV, Fearnley IM, James AM, Porteous CM, Smith RAJ, Saeed S, Carré JE, Singer M, Gems D, Hartley RC, Partridge L, and Murphy MP. Measurement of H2O2 within living Drosophila during aging using a ratiometric mass spectrometry probe targeted to the mitochondrial matrix. Cell Metab 13: 340–350, 2011.
135.
Conrad MJakupoglu CMoreno SGLippl SBanjac ASchneider MBeck HHatzopoulos AKJust USinowatz FSchmahl WChien KRWurst WBornkamm GWBrielmeier M. Essential role for mitochondrial thioredoxin reductase in hematopoiesis, heart development, and heart functionMol Cell Biol249414-94232004. 135. Conrad M, Jakupoglu C, Moreno SG, Lippl S, Banjac A, Schneider M, Beck H, Hatzopoulos AK, Just U, Sinowatz F, Schmahl W, Chien KR, Wurst W, Bornkamm GW, and Brielmeier M. Essential role for mitochondrial thioredoxin reductase in hematopoiesis, heart development, and heart function. Mol Cell Biol 24: 9414–9423, 2004.
136.
Coral KRaman RRathi SRajesh MSulochana KNAngayarkanni NPaul PGRamakrishnan S. Plasma homocysteine and total thiol content in patients with exudative age-related macular degenerationEye (Lond)20203-2072006. 136. Coral K, Raman R, Rathi S, Rajesh M, Sulochana KN, Angayarkanni N, Paul PG, and Ramakrishnan S. Plasma homocysteine and total thiol content in patients with exudative age-related macular degeneration. Eye (Lond) 20: 203–207, 2006.
137.
Da Costa CA. DJ-1: a newcomer in Parkinson's disease pathologyCurr Mol Med7650-6572007. 137. Da Costa CA. DJ-1: a newcomer in Parkinson's disease pathology. Curr Mol Med 7: 650–657, 2007.
138.
Cumming RCDargusch RFischer WHSchubert D. Increase in expression levels and resistance to sulfhydryl oxidation of peroxiredoxin isoforms in amyloid beta-resistant nerve cellsJ Biol Chem28230523-305342007. 138. Cumming RC, Dargusch R, Fischer WH, and Schubert D. Increase in expression levels and resistance to sulfhydryl oxidation of peroxiredoxin isoforms in amyloid beta-resistant nerve cells. J Biol Chem 282: 30523–30534, 2007.
139.
Curtsinger JMSchmidt CSMondino ALins DCKedl RMJenkins MKMescher MF. Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cellsJ Immunol1623256-32621999. 139. Curtsinger JM, Schmidt CS, Mondino A, Lins DC, Kedl RM, Jenkins MK, and Mescher MF. Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells. J Immunol 162: 3256–3262, 1999.
140.
Daily DVlamis-Gardikas AOffen DMittelman LMelamed EHolmgren ABarzilai A. Glutaredoxin protects cerebellar granule neurons from dopamine-induced apoptosis by activating NF-kappa B via Ref-1J Biol Chem2761335-13442001. 140. Daily D, Vlamis-Gardikas A, Offen D, Mittelman L, Melamed E, Holmgren A, and Barzilai A. Glutaredoxin protects cerebellar granule neurons from dopamine-induced apoptosis by activating NF-kappa B via Ref-1. J Biol Chem 276: 1335–1344, 2001.
141.
Dai SHe YZhang HYu LWan TXu ZJones DChen HMin W. Endothelial-specific expression of mitochondrial thioredoxin promotes ischemia-mediated arteriogenesis and angiogenesisArterioscler Thromb Vasc Biol29495-5022009. 141. Dai S, He Y, Zhang H, Yu L, Wan T, Xu Z, Jones D, Chen H, and Min W. Endothelial-specific expression of mitochondrial thioredoxin promotes ischemia-mediated arteriogenesis and angiogenesis. Arterioscler Thromb Vasc Biol 29: 495–502, 2009.
142.
Dalle-Donne IRossi RColombo GGiustarini DMilzani A. Protein S-glutathionylation: a regulatory device from bacteria to humansTrends Biochem Sci3485-962009. 142. Dalle-Donne I, Rossi R, Colombo G, Giustarini D, and Milzani A. Protein S-glutathionylation: a regulatory device from bacteria to humans. Trends Biochem Sci 34: 85–96, 2009.
143.
Dammeyer PArnér ESJ. Human Protein Atlas of redox systems—what can be learnt?Biochim Biophys Acta1810111-1382011. 143. Dammeyer P and Arnér ESJ. Human Protein Atlas of redox systems—what can be learnt? Biochim Biophys Acta 1810: 111–138, 2011.
144.
Dammeyer PDamdimopoulos AENordman TJiménez AMiranda-Vizuete AArnér ESJ. Induction of cell membrane protrusions by the N-terminal glutaredoxin domain of a rare splice variant of human thioredoxin reductase 1J Biol Chem2832814-28212008. 144. Dammeyer P, Damdimopoulos AE, Nordman T, Jiménez A, Miranda-Vizuete A, and Arnér ESJ. Induction of cell membrane protrusions by the N-terminal glutaredoxin domain of a rare splice variant of human thioredoxin reductase 1. J Biol Chem 283: 2814–2821, 2008.
145.
Danet GHPan YLuongo JLBonnet DASimon MC. Expansion of human SCID-repopulating cells under hypoxic conditionsJ Clin Invest112126-1352003. 145. Danet GH, Pan Y, Luongo JL, Bonnet DA, and Simon MC. Expansion of human SCID-repopulating cells under hypoxic conditions. J Clin Invest 112: 126–135, 2003.
146.
Danielson SRAndersen JK. Oxidative and nitrative protein modifications in Parkinson's diseaseFree Radic Biol Med441787-17942008. 146. Danielson SR and Andersen JK. Oxidative and nitrative protein modifications in Parkinson's disease. Free Radic Biol Med 44: 1787–1794, 2008.
147.
Daniil ZDPapageorgiou EKoutsokera AKostikas KKiropoulos TPapaioannou AIGourgoulianis KI. Serum levels of oxidative stress as a marker of disease severity in idiopathic pulmonary fibrosisPulm Pharmacol Ther2126-312008. 147. Daniil ZD, Papageorgiou E, Koutsokera A, Kostikas K, Kiropoulos T, Papaioannou AI, and Gourgoulianis KI. Serum levels of oxidative stress as a marker of disease severity in idiopathic pulmonary fibrosis. Pulm Pharmacol Ther 21: 26–31, 2008.
148.
Das KCGuo XLWhite CW. Induction of thioredoxin and thioredoxin reductase gene expression in lungs of newborn primates by oxygenAm J Physiol276L530-L5391999. 148. Das KC, Guo XL, and White CW. Induction of thioredoxin and thioredoxin reductase gene expression in lungs of newborn primates by oxygen. Am J Physiol 276: L530–L539, 1999.
149.
Davis DANewcomb FMStarke DWOtt DEMieyal JJYarchoan R. Thioltransferase (glutaredoxin) is detected within HIV-1 and can regulate the activity of glutathionylated HIV-1 protease in vitroJ Biol Chem27225935-259401997. 149. Davis DA, Newcomb FM, Starke DW, Ott DE, Mieyal JJ, and Yarchoan R. Thioltransferase (glutaredoxin) is detected within HIV-1 and can regulate the activity of glutathionylated HIV-1 protease in vitro. J Biol Chem 272: 25935–25940, 1997.
150.
Dessein AJLenzi HLBina JCCarvalho EMWeiser WYAndrade ZADavid JR. Modulation of eosinophil cytotoxicity by blood mononuclear cells from healthy subjects and patients with chronic schistosomiasis mansoniCell Immunol85100-1131984. 150. Dessein AJ, Lenzi HL, Bina JC, Carvalho EM, Weiser WY, Andrade ZA, and David JR. Modulation of eosinophil cytotoxicity by blood mononuclear cells from healthy subjects and patients with chronic schistosomiasis mansoni. Cell Immunol 85: 100–113, 1984.
151.
Devi SAKiran TR. Regional responses in antioxidant system to exercise training and dietary vitamin E in aging rat brainNeurobiol Aging25501-5082004. 151. Devi SA and Kiran TR. Regional responses in antioxidant system to exercise training and dietary vitamin E in aging rat brain. Neurobiol Aging 25: 501–508, 2004.
152.
Dexter DTHolley AEFlitter WDSlater TFWells FRDaniel SELees AJJenner PMarsden CD. Increased levels of lipid hydroperoxides in the parkinsonian substantia nigra: an HPLC and ESR studyMov Disord992-971994. 152. Dexter DT, Holley AE, Flitter WD, Slater TF, Wells FR, Daniel SE, Lees AJ, Jenner P, and Marsden CD. Increased levels of lipid hydroperoxides in the parkinsonian substantia nigra: an HPLC and ESR study. Mov Disord 9: 92–97, 1994.
153.
Diaz Vivancos PWolff TMarkovic JPallardó FVFoyer CH. A nuclear glutathione cycle within the cell cycleBiochem J431169-1782010. 153. Diaz Vivancos P, Wolff T, Markovic J, Pallardó FV, and Foyer CH. A nuclear glutathione cycle within the cell cycle. Biochem J 431: 169–178, 2010.
154.
Ding YYamada SWang K-YShimajiri SGuo XTanimoto AMurata YKitajima SWatanabe TIzumi HKohno KSasaguri Y. Overexpression of peroxiredoxin 4 protects against high-dose streptozotocin-induced diabetes by suppressing oxidative stress and cytokines in transgenic miceAntioxid Redox Signal131477-14902010. 154. Ding Y, Yamada S, Wang K-Y, Shimajiri S, Guo X, Tanimoto A, Murata Y, Kitajima S, Watanabe T, Izumi H, Kohno K, and Sasaguri Y. Overexpression of peroxiredoxin 4 protects against high-dose streptozotocin-induced diabetes by suppressing oxidative stress and cytokines in transgenic mice. Antioxid Redox Signal 13: 1477–1490, 2010.
155.
Diotte NMXiong YGao JChua BHLHo Y-S. Attenuation of doxorubicin-induced cardiac injury by mitochondrial glutaredoxin 2Biochim Biophys Acta1793427-4382009. 155. Diotte NM, Xiong Y, Gao J, Chua BHL, and Ho Y-S. Attenuation of doxorubicin-induced cardiac injury by mitochondrial glutaredoxin 2. Biochim Biophys Acta 1793: 427–438, 2009.
156.
Dirnagl UIadecola CMoskowitz MA. Pathobiology of ischaemic stroke: an integrated viewTrends Neurosci22391-3971999. 156. Dirnagl U, Iadecola C, and Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22: 391–397, 1999.
157.
Distrutti E. Hydrogen sulphide and painInflamm Allergy Drug Targets10123-1322011. 157. Distrutti E. Hydrogen sulphide and pain. Inflamm Allergy Drug Targets 10: 123–132, 2011.
158.
Dittmann LMDanner AGronych JWolter MStühler KGrzendowski MBecker NBageritz JGoidts VToedt GFelsberg JSabel MCBarbus SReifenberger GLichter PTews B. Downregulation of PRDX1 by promoter hypermethylation is frequent in 1p/19q-deleted oligodendroglial tumours and increases radio- and chemosensitivity of Hs683 glioma cells in vitroOncogene313409-34182012. 158. Dittmann LM, Danner A, Gronych J, Wolter M, Stühler K, Grzendowski M, Becker N, Bageritz J, Goidts V, Toedt G, Felsberg J, Sabel MC, Barbus S, Reifenberger G, Lichter P, and Tews B. Downregulation of PRDX1 by promoter hypermethylation is frequent in 1p/19q-deleted oligodendroglial tumours and increases radio- and chemosensitivity of Hs683 glioma cells in vitro. Oncogene 31: 3409–3418, 2012.
159.
Di Domenico FSultana RTiu GFScheff NNPerluigi MCini CButterfield DA. Protein levels of heat shock proteins 27, 32, 60, 70, 90 and thioredoxin-1 in amnestic mild cognitive impairment: an investigation on the role of cellular stress response in the progression of Alzheimer diseaseBrain Res133372-812010. 159. Di Domenico F, Sultana R, Tiu GF, Scheff NN, Perluigi M, Cini C, and Butterfield DA. Protein levels of heat shock proteins 27, 32, 60, 70, 90 and thioredoxin-1 in amnestic mild cognitive impairment: an investigation on the role of cellular stress response in the progression of Alzheimer disease. Brain Res 1333: 72–81, 2010.
160.
Dominy JEStipanuk MH. New roles for cysteine and transsulfuration enzymes: production of H2S, a neuromodulator and smooth muscle relaxantNutr Rev62348-3532004. 160. Dominy JE and Stipanuk MH. New roles for cysteine and transsulfuration enzymes: production of H2S, a neuromodulator and smooth muscle relaxant. Nutr Rev 62: 348–353, 2004.
161.
Drapier JCHirling HWietzerbin JKaldy PKühn LC. Biosynthesis of nitric oxide activates iron regulatory factor in macrophagesEMBO J123643-36491993. 161. Drapier JC, Hirling H, Wietzerbin J, Kaldy P, and Kühn LC. Biosynthesis of nitric oxide activates iron regulatory factor in macrophages. EMBO J 12: 3643–3649, 1993.
162.
Dunn KCAotaki-Keen AEPutkey FRHjelmeland LM. ARPE-19, a human retinal pigment epithelial cell line with differentiated propertiesExp Eye Res62155-1691996. 162. Dunn KC, Aotaki-Keen AE, Putkey FR, and Hjelmeland LM. ARPE-19, a human retinal pigment epithelial cell line with differentiated properties. Exp Eye Res 62: 155–169, 1996.
163.
Egler RAFernandes ERothermund KSereika SDe Souza-Pinto NJaruga PDizdaroglu MProchownik EV. Regulation of reactive oxygen species, DNA damage, and c-Myc function by peroxiredoxin 1Oncogene248038-80502005. 163. Egler RA, Fernandes E, Rothermund K, Sereika S, De Souza-Pinto N, Jaruga P, Dizdaroglu M, and Prochownik EV. Regulation of reactive oxygen species, DNA damage, and c-Myc function by peroxiredoxin 1. Oncogene 24: 8038–8050, 2005.
164.
Eismann THuber NShin TKuboki SGalloway EWyder MEdwards MJGreis KDShertzer HGFisher ABLentsch AB. Peroxiredoxin-6 protects against mitochondrial dysfunction and liver injury during ischemia-reperfusion in miceAm J Physiol Gastrointest Liver Physiol296G266-G2742009. 164. Eismann T, Huber N, Shin T, Kuboki S, Galloway E, Wyder M, Edwards MJ, Greis KD, Shertzer HG, Fisher AB, and Lentsch AB. Peroxiredoxin-6 protects against mitochondrial dysfunction and liver injury during ischemia-reperfusion in mice. Am J Physiol Gastrointest Liver Physiol 296: G266–G274, 2009.
165.
Eklund HGleason FKHolmgren A. Structural and functional relations among thioredoxins of different speciesProteins1113-281991. 165. Eklund H, Gleason FK, and Holmgren A. Structural and functional relations among thioredoxins of different species. Proteins 11: 13–28, 1991.
166.
Eltzschig HKEckle T. Ischemia and reperfusion—from mechanism to translationNat Med171391-14012011. 166. Eltzschig HK and Eckle T. Ischemia and reperfusion—from mechanism to translation. Nat Med 17: 1391–1401, 2011.
167.
Enoksson MFernandes APPrast SLillig CHHolmgren AOrrenius S. Overexpression of glutaredoxin 2 attenuates apoptosis by preventing cytochrome c releaseBiochem Biophys Res Commun327774-7792005. 167. Enoksson M, Fernandes AP, Prast S, Lillig CH, Holmgren A, and Orrenius S. Overexpression of glutaredoxin 2 attenuates apoptosis by preventing cytochrome c release. Biochem Biophys Res Commun 327: 774–779, 2005.
168.
Erickson PFMaxwell IHSu LJBaumann MGlode LM. Sequence of cDNA for rat cystathionine gamma-lyase and comparison of deduced amino acid sequence with related Escherichia coli enzymesBiochem J269335-3401990. 168. Erickson PF, Maxwell IH, Su LJ, Baumann M, and Glode LM. Sequence of cDNA for rat cystathionine gamma-lyase and comparison of deduced amino acid sequence with related Escherichia coli enzymes. Biochem J 269: 335–340, 1990.
169.
Ericson MLHörling JWendel-Hansen VHolmgren ARosén A. Secretion of thioredoxin after in vitro activation of human B cellsLymphokine Cytokine Res11201-2071992. 169. Ericson ML, Hörling J, Wendel-Hansen V, Holmgren A, and Rosén A. Secretion of thioredoxin after in vitro activation of human B cells. Lymphokine Cytokine Res 11: 201–207, 1992.
170.
Eriksson SAskelöf PAxelsson KCarlberg IGuthenberg CMannervik B. Resolution of glutathione-linked enzymes in rat liver and evaluation of their contribution to disulfide reduction via thiol—disulfide interchangeActa Chem Scand B Org Chem Biochem28922-9301974. 170. Eriksson S, Askelöf P, Axelsson K, Carlberg I, Guthenberg C, and Mannervik B. Resolution of glutathione-linked enzymes in rat liver and evaluation of their contribution to disulfide reduction via thiol—disulfide interchange. Acta Chem Scand B Org Chem Biochem 28: 922–930, 1974.
171.
Esposito FRusso TCimino F. Generation of prooxidant conditions in intact cells to induce modifications of cell cycle regulatory proteinsMeth Enzymol352258-2682002. 171. Esposito F, Russo T, and Cimino F. Generation of prooxidant conditions in intact cells to induce modifications of cell cycle regulatory proteins. Meth Enzymol 352: 258–268, 2002.
172.
Ezashi TDas PRoberts RM. Low O2 tensions and the prevention of differentiation of hES cellsProc Natl Acad Sci U S A1024783-47882005. 172. Ezashi T, Das P, and Roberts RM. Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci U S A 102: 4783–4788, 2005.
173.
Fan CZwacka RMEngelhardt JF. Therapeutic approaches for ischemia/reperfusion injury in the liverJ Mol Med77577-5921999. 173. Fan C, Zwacka RM, and Engelhardt JF. Therapeutic approaches for ischemia/reperfusion injury in the liver. J Mol Med 77: 577–592, 1999.
174.
Fang JNakamura TCho D-HGu ZLipton SA. S-nitrosylation of peroxiredoxin 2 promotes oxidative stress-induced neuronal cell death in Parkinson's diseaseProc Natl Acad Sci U S A10418742-187472007. 174. Fang J, Nakamura T, Cho D-H, Gu Z, and Lipton SA. S-nitrosylation of peroxiredoxin 2 promotes oxidative stress-induced neuronal cell death in Parkinson's disease. Proc Natl Acad Sci U S A 104: 18742–18747, 2007.
175.
Fang JZhong LZhao RHolmgren A. Ebselen: a thioredoxin reductase-dependent catalyst for alpha-tocopherol quinone reductionToxicol Appl Pharmacol207103-1092005. 175. Fang J, Zhong L, Zhao R, and Holmgren A. Ebselen: a thioredoxin reductase-dependent catalyst for alpha-tocopherol quinone reduction. Toxicol Appl Pharmacol 207: 103–109, 2005.
176.
Farout LFriguet B. Proteasome function in aging and oxidative stress: implications in protein maintenance failureAntioxid Redox Signal8205-2162006. 176. Farout L and Friguet B. Proteasome function in aging and oxidative stress: implications in protein maintenance failure. Antioxid Redox Signal 8: 205–216, 2006.
177.
Fatma NKubo ESen MAgarwal NThoreson WBCamras CBSingh DP. Peroxiredoxin 6 delivery attenuates TNF-alpha-and glutamate-induced retinal ganglion cell death by limiting ROS levels and maintaining Ca2+ homeostasisBrain Res123363-782008. 177. Fatma N, Kubo E, Sen M, Agarwal N, Thoreson WB, Camras CB, and Singh DP. Peroxiredoxin 6 delivery attenuates TNF-alpha-and glutamate-induced retinal ganglion cell death by limiting ROS levels and maintaining Ca2+ homeostasis. Brain Res 1233: 63–78, 2008.
178.
Fatma NKubo EToris CBStamer WDCamras CBSingh DP. PRDX6 attenuates oxidative stress- and TGFbeta-induced abnormalities of human trabecular meshwork cellsFree Radic Res43783-7952009. 178. Fatma N, Kubo E, Toris CB, Stamer WD, Camras CB, and Singh DP. PRDX6 attenuates oxidative stress- and TGFbeta-induced abnormalities of human trabecular meshwork cells. Free Radic Res 43: 783–795, 2009.
179.
Fatma NSingh PChhunchha BKubo EShinohara TBhargavan BSingh DP. Deficiency of Prdx6 in lens epithelial cells induces ER stress response-mediated impaired homeostasis and apoptosisAm J Physiol Cell Physiol301C954-C9672011. 179. Fatma N, Singh P, Chhunchha B, Kubo E, Shinohara T, Bhargavan B, and Singh DP. Deficiency of Prdx6 in lens epithelial cells induces ER stress response-mediated impaired homeostasis and apoptosis. Am J Physiol Cell Physiol 301: C954–C967, 2011.
180.
Feige MJHendershot LM. Disulfide bonds in ER protein folding and homeostasisCurr Opin Cell Biol23167-1752011. 180. Feige MJ and Hendershot LM. Disulfide bonds in ER protein folding and homeostasis. Curr Opin Cell Biol 23: 167–175, 2011.
181.
Feng YZhong NRouhier NHase TKusunoki MJacquot J-PJin CXia B. Structural insight into poplar glutaredoxin C1 with a bridging iron-sulfur cluster at the active siteBiochemistry457998-80082006. 181. Feng Y, Zhong N, Rouhier N, Hase T, Kusunoki M, Jacquot J-P, Jin C, and Xia B. Structural insight into poplar glutaredoxin C1 with a bridging iron-sulfur cluster at the active site. Biochemistry 45: 7998–8008, 2006.
182.
Fenton HJH. LXXIII.-Oxidation of tartaric acid in presence of ironJ Chem Soc Trans65899-9101894. 182. Fenton HJH. LXXIII.-Oxidation of tartaric acid in presence of iron. J Chem Soc Trans 65: 899–910, 1894.
183.
Fernandes APCapitanio ASelenius MBrodin ORundlöf A-KBjörnstedt M. Expression profiles of thioredoxin family proteins in human lung cancer tissue: correlation with proliferation and differentiationHistopathology55313-3202009. 183. Fernandes AP, Capitanio A, Selenius M, Brodin O, Rundlöf A-K, and Björnstedt M. Expression profiles of thioredoxin family proteins in human lung cancer tissue: correlation with proliferation and differentiation. Histopathology 55: 313–320, 2009.
184.
Fernandes APHolmgren A. Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup systemAntioxid Redox Signal663-742004. 184. Fernandes AP and Holmgren A. Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system. Antioxid Redox Signal 6: 63–74, 2004.
185.
Fernando MRLechner JMLöfgren SGladyshev VNLou MF. Mitochondrial thioltransferase (glutaredoxin 2) has GSH-dependent and thioredoxin reductase-dependent peroxidase activities in vitro and in lens epithelial cellsFASEB J202645-26472006. 185. Fernando MR, Lechner JM, Löfgren S, Gladyshev VN, and Lou MF. Mitochondrial thioltransferase (glutaredoxin 2) has GSH-dependent and thioredoxin reductase-dependent peroxidase activities in vitro and in lens epithelial cells. FASEB J 20: 2645–2647, 2006.
186.
Fernando MRNanri HYoshitake SNagata-Kuno KMinakami S. Thioredoxin regenerates proteins inactivated by oxidative stress in endothelial cellsEur J Biochem209917-9221992. 186. Fernando MR, Nanri H, Yoshitake S, Nagata-Kuno K, and Minakami S. Thioredoxin regenerates proteins inactivated by oxidative stress in endothelial cells. Eur J Biochem 209: 917–922, 1992.
187.
Fernando MRSumimoto HNanri HKawabata SIwanaga SMinakami SFukumaki YTakeshige K. Cloning and sequencing of the cDNA encoding human glutaredoxinBiochim Biophys Acta1218229-2311994. 187. Fernando MR, Sumimoto H, Nanri H, Kawabata S, Iwanaga S, Minakami S, Fukumaki Y, and Takeshige K. Cloning and sequencing of the cDNA encoding human glutaredoxin. Biochim Biophys Acta 1218: 229–231, 1994.
188.
Ferrante RJBrowne SEShinobu LABowling ACBaik MJMacGarvey UKowall NWBrown RH Jr.Beal MF. Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosisJ Neurochem692064-20741997. 188. Ferrante RJ, Browne SE, Shinobu LA, Bowling AC, Baik MJ, MacGarvey U, Kowall NW, Brown RH Jr., and Beal MF. Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J Neurochem 69: 2064–2074, 1997.
189.
Ferreira LFReid MB. Muscle-derived ROS and thiol regulation in muscle fatigueJ Appl Physiol104853-8602008. 189. Ferreira LF and Reid MB. Muscle-derived ROS and thiol regulation in muscle fatigue. J Appl Physiol 104: 853–860, 2008.
190.
Ferreira NEOmae SPereira ARodrigues MVMiyakawa AACampos LCGSantos PCJLDallan LAMartinez TLSantos RDMill JGKrieger JEPereira AC. Thioredoxin interacting protein genetic variation is associated with diabetes and hypertension in the Brazilian general populationAtherosclerosis221131-1362012. 190. Ferreira NE, Omae S, Pereira A, Rodrigues MV, Miyakawa AA, Campos LCG, Santos PCJL, Dallan LA, Martinez TL, Santos RD, Mill JG, Krieger JE, and Pereira AC. Thioredoxin interacting protein genetic variation is associated with diabetes and hypertension in the Brazilian general population. Atherosclerosis 221: 131–136, 2012.
191.
Ferri AFiorenzo PNencini MCozzolino MPesaresi MGValle CSepe SMoreno SCarrì MT. Glutaredoxin 2 prevents aggregation of mutant SOD1 in mitochondria and abolishes its toxicityHum Mol Genet194529-45422010. 191. Ferri A, Fiorenzo P, Nencini M, Cozzolino M, Pesaresi MG, Valle C, Sepe S, Moreno S, and Carrì MT. Glutaredoxin 2 prevents aggregation of mutant SOD1 in mitochondria and abolishes its toxicity. Hum Mol Genet 19: 4529–4542, 2010.
192.
Figueiredo PAMota MPAppell HJDuarte JA. The role of mitochondria in aging of skeletal muscleBiogerontology967-842008. 192. Figueiredo PA, Mota MP, Appell HJ, and Duarte JA. The role of mitochondria in aging of skeletal muscle. Biogerontology 9: 67–84, 2008.
193.
Filser MComini MAMolina-Navarro MMDirdjaja NHerrero EKrauth-Siegel RL. Cloning, functional analysis, and mitochondrial localization of Trypanosoma brucei monothiol glutaredoxin-1Biol Chem38921-322008. 193. Filser M, Comini MA, Molina-Navarro MM, Dirdjaja N, Herrero E, and Krauth-Siegel RL. Cloning, functional analysis, and mitochondrial localization of Trypanosoma brucei monothiol glutaredoxin-1. Biol Chem 389: 21–32, 2008.
194.
Finkel THolbrook NJ. Oxidants, oxidative stress and the biology of ageingNature408239-2472000. 194. Finkel T and Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 408: 239–247, 2000.
195.
Fisher AB. Peroxiredoxin 6: a bifunctional enzyme with glutathione peroxidase and phospholipase A2 activitiesAntioxid Redox Signal15831-8442011. 195. Fisher AB. Peroxiredoxin 6: a bifunctional enzyme with glutathione peroxidase and phospholipase A2 activities. Antioxid Redox Signal 15: 831–844, 2011.
196.
Fisher ABDodia CManevich YChen JWFeinstein SI. Phospholipid hydroperoxides are substrates for non-selenium glutathione peroxidaseJ Biol Chem27421326-213341999. 196. Fisher AB, Dodia C, Manevich Y, Chen JW, and Feinstein SI. Phospholipid hydroperoxides are substrates for non-selenium glutathione peroxidase. J Biol Chem 274: 21326–21334, 1999.
197.
Fitzgerald LAZhang YLewis GVan Etten JL. Characterization of a monothiol glutaredoxin encoded by Chlorella virus PBCV-1Virus Genes39418-4262009. 197. Fitzgerald LA, Zhang Y, Lewis G, and Van Etten JL. Characterization of a monothiol glutaredoxin encoded by Chlorella virus PBCV-1. Virus Genes 39: 418–426, 2009.
198.
Fitzpatrick AMTeague WGHolguin FYeh MBrown LAS. Airway glutathione homeostasis is altered in children with severe asthma: evidence for oxidant stressJ Allergy Clin Immunol123146-152.e82009. 198. Fitzpatrick AM, Teague WG, Holguin F, Yeh M, and Brown LAS. Airway glutathione homeostasis is altered in children with severe asthma: evidence for oxidant stress. J Allergy Clin Immunol 123: 146–152.e8, 2009.
199.
Flohé LToppo SCozza GUrsini F. A comparison of thiol peroxidase mechanismsAntioxid Redox Signal15763-7802011. 199. Flohé L, Toppo S, Cozza G, and Ursini F. A comparison of thiol peroxidase mechanisms. Antioxid Redox Signal 15: 763–780, 2011.
200.
Forman HJMaiorino MUrsini F. Signaling functions of reactive oxygen speciesBiochemistry49835-8422010. 200. Forman HJ, Maiorino M, and Ursini F. Signaling functions of reactive oxygen species. Biochemistry 49: 835–842, 2010.
201.
Forouzannia ARichards GMKhuntia DMehta MP. Motexafin gadolinium: a novel radiosensitizer for brain tumorsExpert Rev Anticancer Ther7785-7942007. 201. Forouzannia A, Richards GM, Khuntia D, and Mehta MP. Motexafin gadolinium: a novel radiosensitizer for brain tumors. Expert Rev Anticancer Ther 7: 785–794, 2007.
202.
Foster MWForrester MTStamler JS. A protein microarray-based analysis of S-nitrosylationProc Natl Acad Sci U S A10618948-189532009. 202. Foster MW, Forrester MT, and Stamler JS. A protein microarray-based analysis of S-nitrosylation. Proc Natl Acad Sci U S A 106: 18948–18953, 2009.
203.
Foster MWHess DTStamler JS. Protein S-nitrosylation in health and disease: a current perspectiveTrends Mol Med15391-4042009. 203. Foster MW, Hess DT, and Stamler JS. Protein S-nitrosylation in health and disease: a current perspective. Trends Mol Med 15: 391–404, 2009.
204.
Francoleon NECarrington SJFukuto JM. The reaction of H(2)S with oxidized thiols: generation of persulfides and implications to H(2)S biologyArch Biochem Biophys516146-1532011. 204. Francoleon NE, Carrington SJ, and Fukuto JM. The reaction of H(2)S with oxidized thiols: generation of persulfides and implications to H(2)S biology. Arch Biochem Biophys 516: 146–153, 2011.
205.
Fratelli MGianazza EGhezzi P. Redox proteomics: identification and functional role of glutathionylated proteinsExpert Rev Proteomics1365-3762004. 205. Fratelli M, Gianazza E, and Ghezzi P. Redox proteomics: identification and functional role of glutathionylated proteins. Expert Rev Proteomics 1: 365–376, 2004.
206.
Freemerman AJGallegos APowis G. Nuclear factor kappaB transactivation is increased but is not involved in the proliferative effects of thioredoxin overexpression in MCF-7 breast cancer cellsCancer Res594090-40941999. 206. Freemerman AJ, Gallegos A, and Powis G. Nuclear factor kappaB transactivation is increased but is not involved in the proliferative effects of thioredoxin overexpression in MCF-7 breast cancer cells. Cancer Res 59: 4090–4094, 1999.
207.
Freiesleben De Blasio BBak PPociot FKarlsen AENerup J. Onset of type 1 diabetes: a dynamical instabilityDiabetes481677-16851999. 207. Freiesleben De Blasio B, Bak P, Pociot F, Karlsen AE, and Nerup J. Onset of type 1 diabetes: a dynamical instability. Diabetes 48: 1677–1685, 1999.
208.
Fridovich I. Quantitative aspects of the production of superoxide anion radical by milk xanthine oxidaseJ Biol Chem2454053-40571970. 208. Fridovich I. Quantitative aspects of the production of superoxide anion radical by milk xanthine oxidase. J Biol Chem 245: 4053–4057, 1970.
209.
Fry MGreen DE. Cardiolipin requirement for electron transfer in complex I and III of the mitochondrial respiratory chainJ Biol Chem2561874-18801981. 209. Fry M and Green DE. Cardiolipin requirement for electron transfer in complex I and III of the mitochondrial respiratory chain. J Biol Chem 256: 1874–1880, 1981.
210.
Fujii JIuchi YOkada F. Fundamental roles of reactive oxygen species and protective mechanisms in the female reproductive systemReprod Biol Endocrinol3432005. 210. Fujii J, Iuchi Y, and Okada F. Fundamental roles of reactive oxygen species and protective mechanisms in the female reproductive system. Reprod Biol Endocrinol 3: 43, 2005.
211.
Fujii TFujii JTaniguchi N. Augmented expression of peroxiredoxin VI in rat lung and kidney after birth implies an antioxidative roleEur J Biochem268218-2252001. 211. Fujii T, Fujii J, and Taniguchi N. Augmented expression of peroxiredoxin VI in rat lung and kidney after birth implies an antioxidative role. Eur J Biochem 268: 218–225, 2001.
212.
Fukai TUshio-Fukai M. Superoxide dismutases: role in redox signaling, vascular function, and diseasesAntioxid Redox Signal151583-16062011. 212. Fukai T and Ushio-Fukai M. Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 15: 1583–1606, 2011.
213.
Funato YMichiue TAsashima MMiki H. The thioredoxin-related redox-regulating protein nucleoredoxin inhibits Wnt-beta-catenin signalling through dishevelledNat Cell Biol8501-5082006. 213. Funato Y, Michiue T, Asashima M, and Miki H. The thioredoxin-related redox-regulating protein nucleoredoxin inhibits Wnt-beta-catenin signalling through dishevelled. Nat Cell Biol 8: 501–508, 2006.
214.
Funato YMichiue TTerabayashi TYukita ADanno HAsashima MMiki H. Nucleoredoxin regulates the Wnt/planar cell polarity pathway in XenopusGenes Cells13965-9752008. 214. Funato Y, Michiue T, Terabayashi T, Yukita A, Danno H, Asashima M, and Miki H. Nucleoredoxin regulates the Wnt/planar cell polarity pathway in Xenopus. Genes Cells 13: 965–975, 2008.
215.
Funato YMiki H. Nucleoredoxin, a novel thioredoxin family member involved in cell growth and differentiationAntioxid Redox Signal91035-10572007. 215. Funato Y and Miki H. Nucleoredoxin, a novel thioredoxin family member involved in cell growth and differentiation. Antioxid Redox Signal 9: 1035–1057, 2007.
216.
Funato YTerabayashi TSakamoto ROkuzaki DIchise HNojima HYoshida NMiki H. Nucleoredoxin sustains Wnt/β-catenin signaling by retaining a pool of inactive dishevelled proteinCurr Biol201945-19522010. 216. Funato Y, Terabayashi T, Sakamoto R, Okuzaki D, Ichise H, Nojima H, Yoshida N, and Miki H. Nucleoredoxin sustains Wnt/β-catenin signaling by retaining a pool of inactive dishevelled protein. Curr Biol 20: 1945–1952, 2010.
217.
Furchgott RF. Endothelium-derived relaxing factor: discovery, early studies, and identification as nitric oxideBiosci Rep19235-2511999. 217. Furchgott RF. Endothelium-derived relaxing factor: discovery, early studies, and identification as nitric oxide. Biosci Rep 19: 235–251, 1999.
218.
Gallogly MMStarke DWLeonberg AKOspina SMEMieyal JJ. Kinetic and mechanistic characterization and versatile catalytic properties of mammalian glutaredoxin 2: implications for intracellular rolesBiochemistry4711144-111572008. 218. Gallogly MM, Starke DW, Leonberg AK, Ospina SME, and Mieyal JJ. Kinetic and mechanistic characterization and versatile catalytic properties of mammalian glutaredoxin 2: implications for intracellular roles. Biochemistry 47: 11144–11157, 2008.
219.
Gao B-BChen XTimothy NAiello LPFeener EP. Characterization of the vitreous proteome in diabetes without diabetic retinopathy and diabetes with proliferative diabetic retinopathyJ Proteome Res72516-25252008. 219. Gao B-B, Chen X, Timothy N, Aiello LP, and Feener EP. Characterization of the vitreous proteome in diabetes without diabetic retinopathy and diabetes with proliferative diabetic retinopathy. J Proteome Res 7: 2516–2525, 2008.
220.
García-Pardo LGranados MDGaytán FPadilla CAMartínez-Galisteo EMorales CSánchez-Criado JEBárcena JA. Immunolocalization of glutaredoxin in the human corpus luteumMol Hum Reprod5914-9191999. 220. García-Pardo L, Granados MD, Gaytán F, Padilla CA, Martínez-Galisteo E, Morales C, Sánchez-Criado JE, and Bárcena JA. Immunolocalization of glutaredoxin in the human corpus luteum. Mol Hum Reprod 5: 914–919, 1999.
221.
Gardiner CSReed DJ. Status of glutathione during oxidant-induced oxidative stress in the preimplantation mouse embryoBiol Reprod511307-13141994. 221. Gardiner CS and Reed DJ. Status of glutathione during oxidant-induced oxidative stress in the preimplantation mouse embryo. Biol Reprod 51: 1307–1314, 1994.
222.
Gasdaska PYOblong JECotgreave IAPowis G. The predicted amino acid sequence of human thioredoxin is identical to that of the autocrine growth factor human adult T-cell derived factor (ADF): thioredoxin mRNA is elevated in some human tumorsBiochim Biophys Acta1218292-2961994. 222. Gasdaska PY, Oblong JE, Cotgreave IA, and Powis G. The predicted amino acid sequence of human thioredoxin is identical to that of the autocrine growth factor human adult T-cell derived factor (ADF): thioredoxin mRNA is elevated in some human tumors. Biochim Biophys Acta 1218: 292–296, 1994.
223.
Geiben-Lynn RKursar MBrown NVAddo MMShau HLieberman JLuster ADWalker BD. HIV-1 antiviral activity of recombinant natural killer cell enhancing factors, NKEF-A and NKEF-B, members of the peroxiredoxin familyJ Biol Chem2781569-15742003. 223. Geiben-Lynn R, Kursar M, Brown NV, Addo MM, Shau H, Lieberman J, Luster AD, and Walker BD. HIV-1 antiviral activity of recombinant natural killer cell enhancing factors, NKEF-A and NKEF-B, members of the peroxiredoxin family. J Biol Chem 278: 1569–1574, 2003.
224.
Gerashchenko MVSu DGladyshev VN. CUG start codon generates thioredoxin/glutathione reductase isoforms in mouse testesJ Biol Chem2854595-46022010. 224. Gerashchenko MV, Su D, and Gladyshev VN. CUG start codon generates thioredoxin/glutathione reductase isoforms in mouse testes. J Biol Chem 285: 4595–4602, 2010.
225.
Gertz MFischer FWolters DSteegborn C. Activation of the lifespan regulator p66Shc through reversible disulfide bond formationProc Natl Acad Sci U S A1055705-57092008. 225. Gertz M, Fischer F, Wolters D, and Steegborn C. Activation of the lifespan regulator p66Shc through reversible disulfide bond formation. Proc Natl Acad Sci U S A 105: 5705–5709, 2008.
226.
Gertz MSteegborn C. The Lifespan-regulator p66Shc in mitochondria: redox enzyme or redox sensor?Antioxid Redox Signal131417-14282010. 226. Gertz M and Steegborn C. The Lifespan-regulator p66Shc in mitochondria: redox enzyme or redox sensor? Antioxid Redox Signal 13: 1417–1428, 2010.
227.
Ghezzi PBonetto VFratelli M. Thiol-disulfide balance: from the concept of oxidative stress to that of redox regulationAntioxid Redox Signal7964-9722005. 227. Ghezzi P, Bonetto V, and Fratelli M. Thiol-disulfide balance: from the concept of oxidative stress to that of redox regulation. Antioxid Redox Signal 7: 964–972, 2005.
228.
Gibson KRWinterburn TJBarrett FSharma SMacRury SMMegson IL. Therapeutic potential of N-acetylcysteine as an antiplatelet agent in patients with type-2 diabetesCardiovasc Diabetol10432011. 228. Gibson KR, Winterburn TJ, Barrett F, Sharma S, MacRury SM, and Megson IL. Therapeutic potential of N-acetylcysteine as an antiplatelet agent in patients with type-2 diabetes. Cardiovasc Diabetol 10: 43, 2011.
229.
Giles GI. The redox regulation of thiol dependent signaling pathways in cancerCurr Pharm Des124427-44432006. 229. Giles GI. The redox regulation of thiol dependent signaling pathways in cancer. Curr Pharm Des 12: 4427–4443, 2006.
230.
Gil LMartínez GGonzález ITarinas AAlvarez AGiuliani AMolina RTápanes RPérez JLeón OS. Contribution to characterization of oxidative stress in HIV/AIDS patientsPharmacol Res47217-2242003. 230. Gil L, Martínez G, González I, Tarinas A, Alvarez A, Giuliani A, Molina R, Tápanes R, Pérez J, and León OS. Contribution to characterization of oxidative stress in HIV/AIDS patients. Pharmacol Res 47: 217–224, 2003.
231.
Gill RTsung ABilliar T. Linking oxidative stress to inflammation: toll-like receptorsFree Radic Biol Med481121-11322010. 231. Gill R, Tsung A, and Billiar T. Linking oxidative stress to inflammation: toll-like receptors. Free Radic Biol Med 48: 1121–1132, 2010.
232.
Gilman AG. Nobel Lecture. G proteins and regulation of adenylyl cyclaseBiosci Rep1565-971995. 232. Gilman AG. Nobel Lecture. G proteins and regulation of adenylyl cyclase. Biosci Rep 15: 65–97, 1995.
233.
Giustarini DMilzani AAldini GCarini MRossi RDalle-Donne I. S-nitrosation versus S-glutathionylation of protein sulfhydryl groups by S-nitrosoglutathioneAntioxid Redox Signal7930-9392005. 233. Giustarini D, Milzani A, Aldini G, Carini M, Rossi R, and Dalle-Donne I. S-nitrosation versus S-glutathionylation of protein sulfhydryl groups by S-nitrosoglutathione. Antioxid Redox Signal 7: 930–939, 2005.
234.
Gobe GCJohnson DW. Distal tubular epithelial cells of the kidney: potential support for proximal tubular cell survival after renal injuryInt J Biochem Cell Biol391551-15612007. 234. Gobe GC and Johnson DW. Distal tubular epithelial cells of the kidney: potential support for proximal tubular cell survival after renal injury. Int J Biochem Cell Biol 39: 1551–1561, 2007.
235.
Godoy JRFunke MAckermann WHaunhorst POesteritz SCapani FElsässer H-PLillig CH. Redox atlas of the mouse. Immunohistochemical detection of glutaredoxin-, peroxiredoxin-, and thioredoxin-family proteins in various tissues of the laboratory mouseBiochim Biophys Acta18102-922011. 235. Godoy JR, Funke M, Ackermann W, Haunhorst P, Oesteritz S, Capani F, Elsässer H-P, and Lillig CH. Redox atlas of the mouse. Immunohistochemical detection of glutaredoxin-, peroxiredoxin-, and thioredoxin-family proteins in various tissues of the laboratory mouse. Biochim Biophys Acta 1810: 2–92, 2011.
236.
Godoy JROesteritz SHanschmann E-MOckenga WAckermann WLillig CH. Segment-specific overexpression of redoxins after renal ischemia and reperfusion: protective roles of glutaredoxin 2, peroxiredoxin 3, and peroxiredoxin 6Free Radic Biol Med51552-5612011. 236. Godoy JR, Oesteritz S, Hanschmann E-M, Ockenga W, Ackermann W, and Lillig CH. Segment-specific overexpression of redoxins after renal ischemia and reperfusion: protective roles of glutaredoxin 2, peroxiredoxin 3, and peroxiredoxin 6. Free Radic Biol Med 51: 552–561, 2011.
237.
González-Fernández RGaytán FMartínez-Galisteo EPorras PPadilla CASánchez Criado JEBárcena JA. Expression of glutaredoxin (thioltransferase) in the rat ovary during the oestrous cycle and postnatal developmentJ Mol Endocrinol34625-6352005. 237. González-Fernández R, Gaytán F, Martínez-Galisteo E, Porras P, Padilla CA, Sánchez Criado JE, and Bárcena JA. Expression of glutaredoxin (thioltransferase) in the rat ovary during the oestrous cycle and postnatal development. J Mol Endocrinol 34: 625–635, 2005.
238.
Gougeon M-L. Apoptosis as an HIV strategy to escape immune attackNat Rev Immunol3392-4042003. 238. Gougeon M-L. Apoptosis as an HIV strategy to escape immune attack. Nat Rev Immunol 3: 392–404, 2003.
239.
Go Y-MJones DP. Redox compartmentalization in eukaryotic cellsBiochim Biophys Acta17801273-12902008. 239. Go Y-M and Jones DP. Redox compartmentalization in eukaryotic cells. Biochim Biophys Acta 1780: 1273–1290, 2008.
240.
Gravina SAMieyal JJ. Thioltransferase is a specific glutathionyl mixed disulfide oxidoreductaseBiochemistry323368-33761993. 240. Gravina SA and Mieyal JJ. Thioltransferase is a specific glutathionyl mixed disulfide oxidoreductase. Biochemistry 32: 3368–3376, 1993.
241.
Griffith OW. Mammalian sulfur amino acid metabolism: an overviewMeth Enzymol143366-3761987. 241. Griffith OW. Mammalian sulfur amino acid metabolism: an overview. Meth Enzymol 143: 366–376, 1987.
242.
Grimsrud PAXie HGriffin TJBernlohr DA. Oxidative stress and covalent modification of protein with bioactive aldehydesJ Biol Chem28321837-218412008. 242. Grimsrud PA, Xie H, Griffin TJ, and Bernlohr DA. Oxidative stress and covalent modification of protein with bioactive aldehydes. J Biol Chem 283: 21837–21841, 2008.
243.
Grogan TMFenoglio-Prieser CZeheb RBellamy WFrutiger YVela EStemmerman GMacdonald JRichter LGallegos APowis G. Thioredoxin, a putative oncogene product, is overexpressed in gastric carcinoma and associated with increased proliferation and increased cell survivalHum Pathol31475-4812000. 243. Grogan TM, Fenoglio-Prieser C, Zeheb R, Bellamy W, Frutiger Y, Vela E, Stemmerman G, Macdonald J, Richter L, Gallegos A, and Powis G. Thioredoxin, a putative oncogene product, is overexpressed in gastric carcinoma and associated with increased proliferation and increased cell survival. Hum Pathol 31: 475–481, 2000.
244.
Gruber CWCemazar MHeras BMartin JLCraik DJ. Protein disulfide isomerase: the structure of oxidative foldingTrends Biochem Sci31455-4642006. 244. Gruber CW, Cemazar M, Heras B, Martin JL, and Craik DJ. Protein disulfide isomerase: the structure of oxidative folding. Trends Biochem Sci 31: 455–464, 2006.
245.
Gruetter CABarry BKMcNamara DBGruetter DYKadowitz PJIgnarro L. Relaxation of bovine coronary artery and activation of coronary arterial guanylate cyclase by nitric oxide, nitroprusside and a carcinogenic nitrosoamineJ Cyclic Nucleotide Res5211-2241979. 245. Gruetter CA, Barry BK, McNamara DB, Gruetter DY, Kadowitz PJ, and Ignarro L. Relaxation of bovine coronary artery and activation of coronary arterial guanylate cyclase by nitric oxide, nitroprusside and a carcinogenic nitrosoamine. J Cyclic Nucleotide Res 5: 211–224, 1979.
246.
Grunewald RWWeber IIKinne-Saffran EKinne RK. Control of sorbitol metabolism in renal inner medulla of diabetic rats: regulation by substrate, cosubstrate and products of the aldose reductase reactionBiochim Biophys Acta122539-471993. 246. Grunewald RW, Weber II, Kinne-Saffran E, and Kinne RK. Control of sorbitol metabolism in renal inner medulla of diabetic rats: regulation by substrate, cosubstrate and products of the aldose reductase reaction. Biochim Biophys Acta 1225: 39–47, 1993.
247.
Del Guerra SLupi RMarselli LMasini MBugliani MSbrana STorri SPollera MBoggi UMosca FDel Prato SMarchetti P. Functional and molecular defects of pancreatic islets in human type 2 diabetesDiabetes54727-7352005. 247. Del Guerra S, Lupi R, Marselli L, Masini M, Bugliani M, Sbrana S, Torri S, Pollera M, Boggi U, Mosca F, Del Prato S, and Marchetti P. Functional and molecular defects of pancreatic islets in human type 2 diabetes. Diabetes 54: 727–735, 2005.
248.
Guo QHuang XZhang JLuo YPeng ZLi S. Downregulation of peroxiredoxin I by a novel fully human phage display recombinant antibody induces apoptosis and enhances radiation sensitization in A549 lung carcinoma cellsCancer Biother Radiopharm27307-3162012. 248. Guo Q, Huang X, Zhang J, Luo Y, Peng Z, and Li S. Downregulation of peroxiredoxin I by a novel fully human phage display recombinant antibody induces apoptosis and enhances radiation sensitization in A549 lung carcinoma cells. Cancer Biother Radiopharm 27: 307–316, 2012.
249.
Haber FWilstätter R. Unpaarigheit und Radikalketten im Reaktion-Mechanismus organischer und enzymatischer VorgängeChem Ber642844-28561931. 249. Haber F and Wilstätter R. Unpaarigheit und Radikalketten im Reaktion-Mechanismus organischer und enzymatischer Vorgänge. Chem Ber 64: 2844–2856, 1931.
250.
Hacioglu EEsmer IFomenko DEGladyshev VNKoc A. The roles of thiol oxidoreductases in yeast replicative agingMech Ageing Dev131692-6992010. 250. Hacioglu E, Esmer I, Fomenko DE, Gladyshev VN, and Koc A. The roles of thiol oxidoreductases in yeast replicative aging. Mech Ageing Dev 131: 692–699, 2010.
251.
Hackett NRHeguy AHarvey B-GO'Connor TPLuettich KFlieder DBKaplan RCrystal RG. Variability of antioxidant-related gene expression in the airway epithelium of cigarette smokersAm J Respir Cell Mol Biol29331-3432003. 251. Hackett NR, Heguy A, Harvey B-G, O'Connor TP, Luettich K, Flieder DB, Kaplan R, and Crystal RG. Variability of antioxidant-related gene expression in the airway epithelium of cigarette smokers. Am J Respir Cell Mol Biol 29: 331–343, 2003.
252.
Hainaut PMilner J. Redox modulation of p53 conformation and sequence-specific DNA binding in vitroCancer Res534469-44731993. 252. Hainaut P and Milner J. Redox modulation of p53 conformation and sequence-specific DNA binding in vitro. Cancer Res 53: 4469–4473, 1993.
253.
Halliwell BGutteridge JM. The antioxidants of human extracellular fluidsArch Biochem Biophys2801-81990. 253. Halliwell B and Gutteridge JM. The antioxidants of human extracellular fluids. Arch Biochem Biophys 280: 1–8, 1990.
254.
Halvey PJWatson WHHansen JMGo Y-MSamali AJones DP. Compartmental oxidation of thiol-disulphide redox couples during epidermal growth factor signallingBiochem J386215-2192005. 254. Halvey PJ, Watson WH, Hansen JM, Go Y-M, Samali A, and Jones DP. Compartmental oxidation of thiol-disulphide redox couples during epidermal growth factor signalling. Biochem J 386: 215–219, 2005.
255.
Hamada YFujii HKitazawa RYodoi JKitazawa SFukagawa M. Thioredoxin-1 overexpression in transgenic mice attenuates streptozotocin-induced diabetic osteopenia: a novel role of oxidative stress and therapeutic implicationsBone44936-9412009. 255. Hamada Y, Fujii H, Kitazawa R, Yodoi J, Kitazawa S, and Fukagawa M. Thioredoxin-1 overexpression in transgenic mice attenuates streptozotocin-induced diabetic osteopenia: a novel role of oxidative stress and therapeutic implications. Bone 44: 936–941, 2009.
256.
Hamada YMiyata SNii-Kono TKitazawa RKitazawa SHigo SFukunaga MUeyama SNakamura HYodoi JFukagawa MKasuga M. Overexpression of thioredoxin1 in transgenic mice suppresses development of diabetic nephropathyNephrol Dial Transplant221547-15572007. 256. Hamada Y, Miyata S, Nii-Kono T, Kitazawa R, Kitazawa S, Higo S, Fukunaga M, Ueyama S, Nakamura H, Yodoi J, Fukagawa M, and Kasuga M. Overexpression of thioredoxin1 in transgenic mice suppresses development of diabetic nephropathy. Nephrol Dial Transplant 22: 1547–1557, 2007.
257.
Hamnell-Pamment YLind CPalmberg CBergman TCotgreave IA. Determination of site-specificity of S-glutathionylated cellular proteinsBiochem Biophys Res Commun332362-3692005. 257. Hamnell-Pamment Y, Lind C, Palmberg C, Bergman T, and Cotgreave IA. Determination of site-specificity of S-glutathionylated cellular proteins. Biochem Biophys Res Commun 332: 362–369, 2005.
258.
Hanschmann E-MLönn MESchütte LDFunke MGodoy JREitner SHudemann CLillig CH. Both thioredoxin 2 and glutaredoxin 2 contribute to the reduction of the mitochondrial 2-cys peroxiredoxin prx3J Biol Chem28540699-407052010. 258. Hanschmann E-M, Lönn ME, Schütte LD, Funke M, Godoy JR, Eitner S, Hudemann C, and Lillig CH. Both thioredoxin 2 and glutaredoxin 2 contribute to the reduction of the mitochondrial 2-cys peroxiredoxin prx3. J Biol Chem 285: 40699–40705, 2010.
259.
Hansson HAHolmgren ANorstedt GRozell B. Changes in the distribution of insulin-like growth factor I, thioredoxin, thioredoxin reductase and ribonucleotide reductase during the development of the retinaExp Eye Res48411-4201989. 259. Hansson HA, Holmgren A, Norstedt G, and Rozell B. Changes in the distribution of insulin-like growth factor I, thioredoxin, thioredoxin reductase and ribonucleotide reductase during the development of the retina. Exp Eye Res 48: 411–420, 1989.
260.
Hansson HAHolmgren ARozell BTäljedal IB. Immunohistochemical localization of thioredoxin and thioredoxin reductase in mouse exocrine and endocrine pancreasCell Tissue Res245189-1951986. 260. Hansson HA, Holmgren A, Rozell B, and Täljedal IB. Immunohistochemical localization of thioredoxin and thioredoxin reductase in mouse exocrine and endocrine pancreas. Cell Tissue Res 245: 189–195, 1986.
261.
Harju TKaarteenaho-Wiik RSoini YSormunen RKinnula VL. Diminished immunoreactivity of gamma-glutamylcysteine synthetase in the airways of smokers' lungAm J Respir Crit Care Med166754-7592002. 261. Harju T, Kaarteenaho-Wiik R, Soini Y, Sormunen R, and Kinnula VL. Diminished immunoreactivity of gamma-glutamylcysteine synthetase in the airways of smokers' lung. Am J Respir Crit Care Med 166: 754–759, 2002.
262.
Harman D. Aging: a theory based on free radical and radiation chemistryJ Gerontol11298-3001956. 262. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol 11: 298–300, 1956.
263.
Harman D. The biologic clock: the mitochondria?J Am Geriatr Soc20145-1471972. 263. Harman D. The biologic clock: the mitochondria? J Am Geriatr Soc 20: 145–147, 1972.
264.
Harris AL. Hypoxia—a key regulatory factor in tumour growthNat Rev Cancer238-472002. 264. Harris AL. Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2: 38–47, 2002.
265.
Harris JR. Release of a macromolecular protein component from human erythrocyte ghostsBiochim Biophys Acta150534-5371968. 265. Harris JR. Release of a macromolecular protein component from human erythrocyte ghosts. Biochim Biophys Acta 150: 534–537, 1968.
266.
Hasanova NKubo EKumamoto YTakamura YAkagi Y. Age-related cataracts and Prdx6: correlation between severity of lens opacity, age and the level of Prdx 6 expressionBr J Ophthalmol931081-10842009. 266. Hasanova N, Kubo E, Kumamoto Y, Takamura Y, and Akagi Y. Age-related cataracts and Prdx6: correlation between severity of lens opacity, age and the level of Prdx 6 expression. Br J Ophthalmol 93: 1081–1084, 2009.
267.
Hasegawa ASuzuki SMatsumoto YOkubo T. In vivo fatiguing contraction of rat diaphragm produces hydroxyl radicalsFree Radic Biol Med22349-3541997. 267. Hasegawa A, Suzuki S, Matsumoto Y, and Okubo T. In vivo fatiguing contraction of rat diaphragm produces hydroxyl radicals. Free Radic Biol Med 22: 349–354, 1997.
268.
Hashemy SIUngerstedt JSZahedi Avval FHolmgren A. Motexafin gadolinium, a tumor-selective drug targeting thioredoxin reductase and ribonucleotide reductaseJ Biol Chem28110691-106972006. 268. Hashemy SI, Ungerstedt JS, Zahedi Avval F, and Holmgren A. Motexafin gadolinium, a tumor-selective drug targeting thioredoxin reductase and ribonucleotide reductase. J Biol Chem 281: 10691–10697, 2006.
269.
Hattori ITakagi YNakamura HNozaki KBai JKondo NSugino TNishimura MHashimoto NYodoi J. Intravenous administration of thioredoxin decreases brain damage following transient focal cerebral ischemia in miceAntioxid Redox Signal681-872004. 269. Hattori I, Takagi Y, Nakamura H, Nozaki K, Bai J, Kondo N, Sugino T, Nishimura M, Hashimoto N, and Yodoi J. Intravenous administration of thioredoxin decreases brain damage following transient focal cerebral ischemia in mice. Antioxid Redox Signal 6: 81–87, 2004.
270.
Hatzopoulos AKDe Angelis MHWurst WBornkamm GWBrielmeier MConrad MJakupoglu CPrzemeck GKHSchneider MMoreno SGMayr N. Cytoplasmic thioredoxin reductase is essential for embryogenesis but dispensable for cardiac developmentMol Cell Biol251980-19882005. 270. Hatzopoulos AK, De Angelis MH, Wurst W, Bornkamm GW, Brielmeier M, Conrad M, Jakupoglu C, Przemeck GKH, Schneider M, Moreno SG, and Mayr N. Cytoplasmic thioredoxin reductase is essential for embryogenesis but dispensable for cardiac development. Mol Cell Biol 25: 1980–1988, 2005.
271.
Haunhorst PBerndt CEitner SGodoy JRLillig CH. Characterization of the human monothiol glutaredoxin 3 (PICOT) as iron-sulfur proteinBiochem Biophys Res Commun394372-3762010. 271. Haunhorst P, Berndt C, Eitner S, Godoy JR, and Lillig CH. Characterization of the human monothiol glutaredoxin 3 (PICOT) as iron-sulfur protein. Biochem Biophys Res Commun 394: 372–376, 2010.
272.
Hayashi TFunato YTerabayashi TMorinaka ASakamoto RIchise HFukuda HYoshida NMiki H. Nucleoredoxin negatively regulates Toll-like receptor 4 signaling via recruitment of flightless-I to myeloid differentiation primary response gene (88)J Biol Chem28518586-185932010. 272. Hayashi T, Funato Y, Terabayashi T, Morinaka A, Sakamoto R, Ichise H, Fukuda H, Yoshida N, and Miki H. Nucleoredoxin negatively regulates Toll-like receptor 4 signaling via recruitment of flightless-I to myeloid differentiation primary response gene (88). J Biol Chem 285: 18586–18593, 2010.
273.
Hayes JDFlanagan JUJowsey IR. Glutathione transferasesAnnu Rev Pharmacol Toxicol4551-882005. 273. Hayes JD, Flanagan JU, and Jowsey IR. Glutathione transferases. Annu Rev Pharmacol Toxicol 45: 51–88, 2005.
274.
Hegde ABhatia M. Hydrogen sulfide in inflammation: friend or foe?Inflamm Allergy Drug Targets10118-1222011. 274. Hegde A and Bhatia M. Hydrogen sulfide in inflammation: friend or foe? Inflamm Allergy Drug Targets 10: 118–122, 2011.
275.
Hellberg VWallin IEriksson SHernlund EJerremalm EBerndtsson MEksborg SArnér ESJShoshan MEhrsson HLaurell G. Cisplatin and oxaliplatin toxicity: importance of cochlear kinetics as a determinant for ototoxicityJ Natl Cancer Inst10137-472009. 275. Hellberg V, Wallin I, Eriksson S, Hernlund E, Jerremalm E, Berndtsson M, Eksborg S, Arnér ESJ, Shoshan M, Ehrsson H, and Laurell G. Cisplatin and oxaliplatin toxicity: importance of cochlear kinetics as a determinant for ototoxicity. J Natl Cancer Inst 101: 37–47, 2009.
276.
Hentze MWMuckenthaler MUAndrews NC. Balancing acts: molecular control of mammalian iron metabolismCell117285-2972004. 276. Hentze MW, Muckenthaler MU, and Andrews NC. Balancing acts: molecular control of mammalian iron metabolism. Cell 117: 285–297, 2004.
277.
Herrero EDe la Torre-Ruiz MA. Monothiol glutaredoxins: a common domain for multiple functionsCell Mol Life Sci641518-15302007. 277. Herrero E and De la Torre-Ruiz MA. Monothiol glutaredoxins: a common domain for multiple functions. Cell Mol Life Sci 64: 1518–1530, 2007.
278.
Hess DTMatsumoto AKim S-OMarshall HEStamler JS. Protein S-nitrosylation: purview and parametersNat Rev Mol Cell Biol6150-1662005. 278. Hess DT, Matsumoto A, Kim S-O, Marshall HE, and Stamler JS. Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6: 150–166, 2005.
279.
Hirota KMatsui MMurata MTakashima YCheng FSItoh TFukuda KYodoi JJunji Y. Nucleoredoxin, glutaredoxin, and thioredoxin differentially regulate NF-kappaB, AP-1, and CREB activation in HEK293 cellsBiochem Biophys Res Commun274177-1822000. 279. Hirota K, Matsui M, Murata M, Takashima Y, Cheng FS, Itoh T, Fukuda K, Yodoi J, and Junji Y. Nucleoredoxin, glutaredoxin, and thioredoxin differentially regulate NF-kappaB, AP-1, and CREB activation in HEK293 cells. Biochem Biophys Res Commun 274: 177–182, 2000.
280.
Hirota KMurata MSachi YNakamura HTakeuchi JMori KYodoi J. Distinct roles of thioredoxin in the cytoplasm and in the nucleus. A two-step mechanism of redox regulation of transcription factor NF-kappaBJ Biol Chem27427891-278971999. 280. Hirota K, Murata M, Sachi Y, Nakamura H, Takeuchi J, Mori K, and Yodoi J. Distinct roles of thioredoxin in the cytoplasm and in the nucleus. A two-step mechanism of redox regulation of transcription factor NF-kappaB. J Biol Chem 274: 27891–27897, 1999.
281.
Hirota KNakamura HMasutani HYodoi J. Thioredoxin superfamily and thioredoxin-inducing agentsAnn N Y Acad Sci957189-1992002. 281. Hirota K, Nakamura H, Masutani H, and Yodoi J. Thioredoxin superfamily and thioredoxin-inducing agents. Ann N Y Acad Sci 957: 189–199, 2002.
282.
Hoch FL. Cardiolipins and biomembrane functionBiochim Biophys Acta111371-1331992. 282. Hoch FL. Cardiolipins and biomembrane function. Biochim Biophys Acta 1113: 71–133, 1992.
283.
Hofmann BHecht H-JFlohé L. PeroxiredoxinsBiol Chem383347-3642002. 283. Hofmann B, Hecht H-J, and Flohé L. Peroxiredoxins. Biol Chem 383: 347–364, 2002.
284.
Holmgren A. Thioredoxin. 6. The amino acid sequence of the protein from escherichia coli BEur J Biochem6475-4841968. 284. Holmgren A. Thioredoxin. 6. The amino acid sequence of the protein from escherichia coli B. Eur J Biochem 6: 475–484, 1968.
285.
Holmgren A. Hydrogen donor system for Escherichia coli ribonucleoside-diphosphate reductase dependent upon glutathioneProc Natl Acad Sci U S A732275-22791976. 285. Holmgren A. Hydrogen donor system for Escherichia coli ribonucleoside-diphosphate reductase dependent upon glutathione. Proc Natl Acad Sci U S A 73: 2275–2279, 1976.
286.
Holmgren A. Glutathione-dependent enzyme reactions of the phage T4 ribonucleotide reductase systemJ Biol Chem2537424-74301978. 286. Holmgren A. Glutathione-dependent enzyme reactions of the phage T4 ribonucleotide reductase system. J Biol Chem 253: 7424–7430, 1978.
287.
Holmgren A. Glutathione-dependent synthesis of deoxyribonucleotides. Purification and characterization of glutaredoxin from Escherichia coliJ Biol Chem2543664-36711979. 287. Holmgren A. Glutathione-dependent synthesis of deoxyribonucleotides. Purification and characterization of glutaredoxin from Escherichia coli. J Biol Chem 254: 3664–3671, 1979.
288.
Holmgren A. Glutathione-dependent synthesis of deoxyribonucleotides. Characterization of the enzymatic mechanism of Escherichia coli glutaredoxinJ Biol Chem2543672-36781979. 288. Holmgren A. Glutathione-dependent synthesis of deoxyribonucleotides. Characterization of the enzymatic mechanism of Escherichia coli glutaredoxin. J Biol Chem 254: 3672–3678, 1979.
289.
Holmgren AAslund F. GlutaredoxinMeth Enzymol252283-2921995. 289. Holmgren A and Aslund F. Glutaredoxin. Meth Enzymol 252: 283–292, 1995.
290.
Holmgren ABjörnstedt M. Thioredoxin and thioredoxin reductaseMeth Enzymol252199-2081995. 290. Holmgren A and Björnstedt M. Thioredoxin and thioredoxin reductase. Meth Enzymol 252: 199–208, 1995.
291.
Holmgren ABuchanan BBWolosiuk RA. Photosynthetic regulatory protein from rabbit liver is identical with thioredoxinFEBS Lett82351-3541977. 291. Holmgren A, Buchanan BB, and Wolosiuk RA. Photosynthetic regulatory protein from rabbit liver is identical with thioredoxin. FEBS Lett 82: 351–354, 1977.
292.
Holmgren ALuthman M. Tissue distrubution and subcellular localization of bovine thioredoxin determined by radioimmunoassayBiochemistry174071-40771978. 292. Holmgren A and Luthman M. Tissue distrubution and subcellular localization of bovine thioredoxin determined by radioimmunoassay. Biochemistry 17: 4071–4077, 1978.
293.
Holmgren ASöderberg BOEklund HBrändén CI. Three-dimensional structure of Escherichia coli thioredoxin-S2 to 2.8 A resolutionProc Natl Acad Sci U S A722305-23091975. 293. Holmgren A, Söderberg BO, Eklund H, and Brändén CI. Three-dimensional structure of Escherichia coli thioredoxin-S2 to 2.8 A resolution. Proc Natl Acad Sci U S A 72: 2305–2309, 1975.
294.
Hopkins FG. On an autoxidisable constituent of the cellBiochem J15286-3051921. 294. Hopkins FG. On an autoxidisable constituent of the cell. Biochem J 15: 286–305, 1921.
295.
Hopkins FG. On the isolation of glutathioneJ Biol Chem72185-1871927. 295. Hopkins FG. On the isolation of glutathione. J Biol Chem 72: 185–187, 1927.
296.
Hopkins FGDixon M. On glutathioneJ Biol Chem54527-5631922. 296. Hopkins FG and Dixon M. On glutathione. J Biol Chem 54: 527–563, 1922.
297.
Hopkins FGWith a section in the text by Leslie J. Harris. On glutathione: a reinvestigationJ Biol Chem84269-3201929. 297. Hopkins FG, With a section in the text by Leslie J. Harris. On glutathione: a reinvestigation. J Biol Chem 84: 269–320, 1929.
298.
Horstkotte JPerisic TSchneider MLange PSchroeder MKiermayer CHinkel RZiegler TMandal PKDavid RSchulz SSchmitt SWidder JSinowatz FBecker BFBauersachs JNaebauer MFranz WMJeremias IBrielmeier MZischka HConrad MKupatt C. Mitochondrial thioredoxin reductase is essential for early postischemic myocardial protectionCirculation1242892-29022011. 298. Horstkotte J, Perisic T, Schneider M, Lange P, Schroeder M, Kiermayer C, Hinkel R, Ziegler T, Mandal PK, David R, Schulz S, Schmitt S, Widder J, Sinowatz F, Becker BF, Bauersachs J, Naebauer M, Franz WM, Jeremias I, Brielmeier M, Zischka H, Conrad M, and Kupatt C. Mitochondrial thioredoxin reductase is essential for early postischemic myocardial protection. Circulation 124: 2892–2902, 2011.
299.
Hoskins ERHood BLSun MKrivak TCEdwards RPConrads TP. Proteomic analysis of ovarian cancer proximal fluids: validation of elevated peroxiredoxin 1 in patient peripheral circulationPLoS One6e250562011. 299. Hoskins ER, Hood BL, Sun M, Krivak TC, Edwards RP, and Conrads TP. Proteomic analysis of ovarian cancer proximal fluids: validation of elevated peroxiredoxin 1 in patient peripheral circulation. PLoS One 6: e25056, 2011.
300.
Hotta MTashiro FIkegami HNiwa HOgihara TYodoi JMiyazaki J. Pancreatic beta cell-specific expression of thioredoxin, an antioxidative and antiapoptotic protein, prevents autoimmune and streptozotocin-induced diabetesJ Exp Med1881445-14511998. 300. Hotta M, Tashiro F, Ikegami H, Niwa H, Ogihara T, Yodoi J, and Miyazaki J. Pancreatic beta cell-specific expression of thioredoxin, an antioxidative and antiapoptotic protein, prevents autoimmune and streptozotocin-induced diabetes. J Exp Med 188: 1445–1451, 1998.
301.
Ho Y-SXiong YHo DSGao JChua BHLPai HMieyal JJ. Targeted disruption of the glutaredoxin 1 gene does not sensitize adult mice to tissue injury induced by ischemia/reperfusion and hyperoxiaFree Radic Biol Med431299-13122007. 301. Ho Y-S, Xiong Y, Ho DS, Gao J, Chua BHL, Pai H, and Mieyal JJ. Targeted disruption of the glutaredoxin 1 gene does not sensitize adult mice to tissue injury induced by ischemia/reperfusion and hyperoxia. Free Radic Biol Med 43: 1299–1312, 2007.
302.
Hsieh C-CPapaconstantinou J. The effect of aging on p38 signaling pathway activity in the mouse liver and in response to ROS generated by 3-nitropropionic acidMech Ageing Dev1231423-14352002. 302. Hsieh C-C and Papaconstantinou J. The effect of aging on p38 signaling pathway activity in the mouse liver and in response to ROS generated by 3-nitropropionic acid. Mech Ageing Dev 123: 1423–1435, 2002.
303.
Hsieh C-CRosenblatt JIPapaconstantinou J. Age-associated changes in SAPK/JNK and p38 MAPK signaling in response to the generation of ROS by 3-nitropropionic acidMech Ageing Dev124733-7462003. 303. Hsieh C-C, Rosenblatt JI, and Papaconstantinou J. Age-associated changes in SAPK/JNK and p38 MAPK signaling in response to the generation of ROS by 3-nitropropionic acid. Mech Ageing Dev 124: 733–746, 2003.
304.
Hsu H-HHoffmann SDi Marco GSEndlich NPeter-Katalinić JWeide TPavenstädt H. Downregulation of the antioxidant protein peroxiredoxin 2 contributes to angiotensin II-mediated podocyte apoptosisKidney Int80959-9692011. 304. Hsu H-H, Hoffmann S, Di Marco GS, Endlich N, Peter-Katalinić J, Weide T, and Pavenstädt H. Downregulation of the antioxidant protein peroxiredoxin 2 contributes to angiotensin II-mediated podocyte apoptosis. Kidney Int 80: 959–969, 2011.
305.
Hsu MSrinivas BKumar JSubramanian RAndersen J. Glutathione depletion resulting in selective mitochondrial complex I inhibition in dopaminergic cells is via an NO-mediated pathway not involving peroxynitrite: implications for Parkinson's diseaseJ Neurochem921091-11032005. 305. Hsu M, Srinivas B, Kumar J, Subramanian R, and Andersen J. Glutathione depletion resulting in selective mitochondrial complex I inhibition in dopaminergic cells is via an NO-mediated pathway not involving peroxynitrite: implications for Parkinson's disease. J Neurochem 92: 1091–1103, 2005.
306.
Huang C-FSun Z-JZhao Y-FChen X-MJia JZhang W-F. Increased expression of peroxiredoxin 6 and cyclophilin A in squamous cell carcinoma of the tongueOral Dis17328-3342011. 306. Huang C-F, Sun Z-J, Zhao Y-F, Chen X-M, Jia J, and Zhang W-F. Increased expression of peroxiredoxin 6 and cyclophilin A in squamous cell carcinoma of the tongue. Oral Dis 17: 328–334, 2011.
307.
Huang ZPinto JTDeng HRichie JP Jr. Inhibition of caspase-3 activity and activation by protein glutathionylationBiochem Pharmacol752234-22442008. 307. Huang Z, Pinto JT, Deng H, and Richie JP Jr. Inhibition of caspase-3 activity and activation by protein glutathionylation. Biochem Pharmacol 75: 2234–2244, 2008.
308.
Huber HETabor SRichardson CC. Escherichia coli thioredoxin stabilizes complexes of bacteriophage T7 DNA polymerase and primed templatesJ Biol Chem26216224-162321987. 308. Huber HE, Tabor S, and Richardson CC. Escherichia coli thioredoxin stabilizes complexes of bacteriophage T7 DNA polymerase and primed templates. J Biol Chem 262: 16224–16232, 1987.
309.
Hudemann CBerndt CLillig CH. Glutaredoxine und Eisen-Schwefel-ZentrenBiospektrum1432-352008. 309. Hudemann C, Berndt C, and Lillig CH. Glutaredoxine und Eisen-Schwefel-Zentren. Biospektrum 14: 32–35, 2008.
310.
Hudemann CLönn MEGodoy JRZahedi Avval FCapani FHolmgren ALillig CH. Identification, expression pattern, and characterization of mouse glutaredoxin 2 isoformsAntioxid Redox Signal111-142009. 310. Hudemann C, Lönn ME, Godoy JR, Zahedi Avval F, Capani F, Holmgren A, and Lillig CH. Identification, expression pattern, and characterization of mouse glutaredoxin 2 isoforms. Antioxid Redox Signal 11: 1–14, 2009.
311.
Hughes MNCentelles MNMoore KP. Making and working with hydrogen sulfide: the chemistry and generation of hydrogen sulfide in vitro and its measurement in vivo: a reviewFree Radic Biol Med471346-13532009. 311. Hughes MN, Centelles MN, and Moore KP. Making and working with hydrogen sulfide: the chemistry and generation of hydrogen sulfide in vitro and its measurement in vivo: a review. Free Radic Biol Med 47: 1346–1353, 2009.
312.
Hu HLu LMu WJohnson RJBlock ERPatel JM. Priming donor lungs with thioredoxin-1 attenuates acute allograft injury in a rat model of lung transplantationJ Heart Lung Transplant271142-11492008. 312. Hu H, Lu L, Mu W, Johnson RJ, Block ER, and Patel JM. Priming donor lungs with thioredoxin-1 attenuates acute allograft injury in a rat model of lung transplantation. J Heart Lung Transplant 27: 1142–1149, 2008.
313.
Hunter GEagles BA. Non-protein sulfur compounds of the bloodJ Biol Chem72133-1461927. 313. Hunter G and Eagles BA. Non-protein sulfur compounds of the blood. J Biol Chem 72: 133–146, 1927.
314.
Hutchens MPDunlap JHurn PDJarnberg PO. Renal ischemia: does sex matter?Anesth Analg107239-2492008. 314. Hutchens MP, Dunlap J, Hurn PD, and Jarnberg PO. Renal ischemia: does sex matter? Anesth Analg 107: 239–249, 2008.
315.
Hu XWeng ZChu CTZhang LCao GGao YSignore AZhu JHastings TGreenamyre JTChen J. Peroxiredoxin-2 protects against 6-hydroxydopamine-induced dopaminergic neurodegeneration via attenuation of the apoptosis signal-regulating kinase (ASK1) signaling cascadeJ Neurosci31247-2612011. 315. Hu X, Weng Z, Chu CT, Zhang L, Cao G, Gao Y, Signore A, Zhu J, Hastings T, Greenamyre JT, and Chen J. Peroxiredoxin-2 protects against 6-hydroxydopamine-induced dopaminergic neurodegeneration via attenuation of the apoptosis signal-regulating kinase (ASK1) signaling cascade. J Neurosci 31: 247–261, 2011.
316.
Hwang IKYoo K-YKim DWLee CHChoi JHKwon Y-GKim Y-MChoi SYWon M-H. Changes in the expression of mitochondrial peroxiredoxin and thioredoxin in neurons and glia and their protective effects in experimental cerebral ischemic damageFree Radic Biol Med481242-12512010. 316. Hwang IK, Yoo K-Y, Kim DW, Lee CH, Choi JH, Kwon Y-G, Kim Y-M, Choi SY, and Won M-H. Changes in the expression of mitochondrial peroxiredoxin and thioredoxin in neurons and glia and their protective effects in experimental cerebral ischemic damage. Free Radic Biol Med 48: 1242–1251, 2010.
317.
Ichijo HNishida EIrie KTen Dijke PSaitoh MMoriguchi TTakagi MMatsumoto KMiyazono KGotoh Y. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathwaysScience27590-941997. 317. Ichijo H, Nishida E, Irie K, Ten Dijke P, Saitoh M, Moriguchi T, Takagi M, Matsumoto K, Miyazono K, and Gotoh Y. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 275: 90–94, 1997.
318.
Ichiki HHoshino TKinoshita TImaoka HKato SInoue HNakamura HYodoi JYoung HAAizawa H. Thioredoxin suppresses airway hyperresponsiveness and airway inflammation in asthmaBiochem Biophys Res Commun3341141-11482005. 318. Ichiki H, Hoshino T, Kinoshita T, Imaoka H, Kato S, Inoue H, Nakamura H, Yodoi J, Young HA, and Aizawa H. Thioredoxin suppresses airway hyperresponsiveness and airway inflammation in asthma. Biochem Biophys Res Commun 334: 1141–1148, 2005.
319.
Ikegami HOno MFujisawa THiromine YKawabata YYamato E. Molecular scanning of the gene for thioredoxin, an antioxidative and antiapoptotic protein, and genetic susceptibility to type 1 diabetesAnn N Y Acad Sci1150103-1052008. 319. Ikegami H, Ono M, Fujisawa T, Hiromine Y, Kawabata Y, and Yamato E. Molecular scanning of the gene for thioredoxin, an antioxidative and antiapoptotic protein, and genetic susceptibility to type 1 diabetes. Ann N Y Acad Sci 1150: 103–105, 2008.
320.
Im J-YLee K-WWoo J-MJunn EMouradian MM. DJ-1 induces thioredoxin 1 expression through the Nrf2 pathwayHum Mol Genet213013-30242012. 320. Im J-Y, Lee K-W, Woo J-M, Junn E, and Mouradian MM. DJ-1 induces thioredoxin 1 expression through the Nrf2 pathway. Hum Mol Genet 21: 3013–3024, 2012.
321.
Immenschuh SBaumgart-Vogt ETan MIwahara SRamadori GFahimi HD. Differential cellular and subcellular localization of heme-binding protein 23/peroxiredoxin I and heme oxygenase-1 in rat liverJ Histochem Cytochem511621-16312003. 321. Immenschuh S, Baumgart-Vogt E, Tan M, Iwahara S, Ramadori G, and Fahimi HD. Differential cellular and subcellular localization of heme-binding protein 23/peroxiredoxin I and heme oxygenase-1 in rat liver. J Histochem Cytochem 51: 1621–1631, 2003.
322.
Immer FFLippeck CBarmettler HBerdat PAEckstein FSKipfer BSaner HSchmidli JCarrel TP. Improvement of quality of life after surgery on the thoracic aorta: effect of antegrade cerebral perfusion and short duration of deep hypothermic circulatory arrestCirculation110II250-II2552004. 322. Immer FF, Lippeck C, Barmettler H, Berdat PA, Eckstein FS, Kipfer B, Saner H, Schmidli J, and Carrel TP. Improvement of quality of life after surgery on the thoracic aorta: effect of antegrade cerebral perfusion and short duration of deep hypothermic circulatory arrest. Circulation 110: II250–II255, 2004.
323.
Inomata YNakamura HTanito MTeratani AKawaji TKondo NYodoi JTanihara H. Thioredoxin inhibits NMDA-induced neurotoxicity in the rat retinaJ Neurochem98372-3852006. 323. Inomata Y, Nakamura H, Tanito M, Teratani A, Kawaji T, Kondo N, Yodoi J, and Tanihara H. Thioredoxin inhibits NMDA-induced neurotoxicity in the rat retina. J Neurochem 98: 372–385, 2006.
324.
Inoue KTakano HKoike EWarabi EYanagawa TYanagisawa RIshii T. Peroxiredoxin I is a negative regulator of Th2-dominant allergic asthmaInt Immunopharmacol91281-12882009. 324. Inoue K, Takano H, Koike E, Warabi E, Yanagawa T, Yanagisawa R, and Ishii T. Peroxiredoxin I is a negative regulator of Th2-dominant allergic asthma. Int Immunopharmacol 9: 1281–1288, 2009.
325.
Ischiropoulos HZhu LBeckman JS. Peroxynitrite formation from macrophage-derived nitric oxideArch Biochem Biophys298446-4511992. 325. Ischiropoulos H, Zhu L, and Beckman JS. Peroxynitrite formation from macrophage-derived nitric oxide. Arch Biochem Biophys 298: 446–451, 1992.
326.
Ishii TYamada MSato HMatsue MTaketani SNakayama KSugita YBannai S. Cloning and characterization of a 23-kDa stress-induced mouse peritoneal macrophage proteinJ Biol Chem26818633-186361993. 326. Ishii T, Yamada M, Sato H, Matsue M, Taketani S, Nakayama K, Sugita Y, and Bannai S. Cloning and characterization of a 23-kDa stress-induced mouse peritoneal macrophage protein. J Biol Chem 268: 18633–18636, 1993.
327.
Ito WKobayashi NTakeda MUeki SKayaba HNakamura HYodoi JChihara J. Thioredoxin in allergic inflammationInt Arch Allergy Immunol155Suppl 1142-1462011. 327. Ito W, Kobayashi N, Takeda M, Ueki S, Kayaba H, Nakamura H, Yodoi J, and Chihara J. Thioredoxin in allergic inflammation. Int Arch Allergy Immunol 155 Suppl 1: 142–146, 2011.
328.
Iuchi YOkada FTsunoda SKibe NShirasawa NIkawa MOkabe MIkeda YFujii J. Peroxiredoxin 4 knockout results in elevated spermatogenic cell death via oxidative stressBiochem J419149-1582009. 328. Iuchi Y, Okada F, Tsunoda S, Kibe N, Shirasawa N, Ikawa M, Okabe M, Ikeda Y, and Fujii J. Peroxiredoxin 4 knockout results in elevated spermatogenic cell death via oxidative stress. Biochem J 419: 149–158, 2009.
329.
Ivarsson RQuintens RDejonghe STsukamoto KIn't Veld PRenström ESchuit FC. Redox control of exocytosis: regulatory role of NADPH, thioredoxin, and glutaredoxinDiabetes542132-21422005. 329. Ivarsson R, Quintens R, Dejonghe S, Tsukamoto K, In't Veld P, Renström E, and Schuit FC. Redox control of exocytosis: regulatory role of NADPH, thioredoxin, and glutaredoxin. Diabetes 54: 2132–2142, 2005.
330.
Iverson SLOrrenius S. The cardiolipin-cytochrome c interaction and the mitochondrial regulation of apoptosisArch Biochem Biophys42337-462004. 330. Iverson SL and Orrenius S. The cardiolipin-cytochrome c interaction and the mitochondrial regulation of apoptosis. Arch Biochem Biophys 423: 37–46, 2004.
331.
Jaeger TBudde HFlohé LMenge USingh MTrujillo MRadi R. Multiple thioredoxin-mediated routes to detoxify hydroperoxides in Mycobacterium tuberculosisArch Biochem Biophys423182-1912004. 331. Jaeger T, Budde H, Flohé L, Menge U, Singh M, Trujillo M, and Radi R. Multiple thioredoxin-mediated routes to detoxify hydroperoxides in Mycobacterium tuberculosis. Arch Biochem Biophys 423: 182–191, 2004.
332.
Jakupoglu CPrzemeck GKHSchneider MMoreno SGMayr NHatzopoulos AKDe Angelis MHWurst WBornkamm GWBrielmeier MConrad M. Cytoplasmic thioredoxin reductase is essential for embryogenesis but dispensable for cardiac developmentMol Cell Biol251980-19882005. 332. Jakupoglu C, Przemeck GKH, Schneider M, Moreno SG, Mayr N, Hatzopoulos AK, De Angelis MH, Wurst W, Bornkamm GW, Brielmeier M, and Conrad M. Cytoplasmic thioredoxin reductase is essential for embryogenesis but dispensable for cardiac development. Mol Cell Biol 25: 1980–1988, 2005.
333.
Jang HHLee KOChi YHJung BGPark SKPark JHLee JRLee SSMoon JCYun JWChoi YOKim WYKang JSCheong G-WYun D-JRhee SGCho MJLee SY. Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone functionCell117625-6352004. 333. Jang HH, Lee KO, Chi YH, Jung BG, Park SK, Park JH, Lee JR, Lee SS, Moon JC, Yun JW, Choi YO, Kim WY, Kang JS, Cheong G-W, Yun D-J, Rhee SG, Cho MJ, and Lee SY. Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 117: 625–635, 2004.
334.
Jang YCRemmen VH. The mitochondrial theory of aging: insight from transgenic and knockout mouse modelsExp Gerontol44256-2602009. 334. Jang YC and Remmen VH. The mitochondrial theory of aging: insight from transgenic and knockout mouse models. Exp Gerontol 44: 256–260, 2009.
335.
Jekell AHossain AAlehagen UDahlström URosén A. Elevated circulating levels of thioredoxin and stress in chronic heart failureEur J Heart Fail6883-8902004. 335. Jekell A, Hossain A, Alehagen U, Dahlström U, and Rosén A. Elevated circulating levels of thioredoxin and stress in chronic heart failure. Eur J Heart Fail 6: 883–890, 2004.
336.
Jenkins MKJohnson JG. Molecules involved in T-cell costimulationCurr Opin Immunol5361-3671993. 336. Jenkins MK and Johnson JG. Molecules involved in T-cell costimulation. Curr Opin Immunol 5: 361–367, 1993.
337.
Jeong DCha HKim EKang MYang DKKim JMYoon POOh JGBernecker OYSakata SLe TTCui LLee Y-HKim DHWoo S-HLiao RHajjar RJPark WJ. PICOT inhibits cardiac hypertrophy and enhances ventricular function and cardiomyocyte contractilityCirc Res99307-3142006. 337. Jeong D, Cha H, Kim E, Kang M, Yang DK, Kim JM, Yoon PO, Oh JG, Bernecker OY, Sakata S, Le TT, Cui L, Lee Y-H, Kim DH, Woo S-H, Liao R, Hajjar RJ, and Park WJ. PICOT inhibits cardiac hypertrophy and enhances ventricular function and cardiomyocyte contractility. Circ Res 99: 307–314, 2006.
338.
Jeong DKim JMCha HOh JGPark JYun S-HJu E-SJeon E-SHajjar RJPark WJ. PICOT attenuates cardiac hypertrophy by disrupting calcineurin-NFAT signalingCirc Res102711-7192008. 338. Jeong D, Kim JM, Cha H, Oh JG, Park J, Yun S-H, Ju E-S, Jeon E-S, Hajjar RJ, and Park WJ. PICOT attenuates cardiac hypertrophy by disrupting calcineurin-NFAT signaling. Circ Res 102: 711–719, 2008.
339.
Jewell URKvietikova IScheid ABauer CWenger RHGassmann M. Induction of HIF-1alpha in response to hypoxia is instantaneousFASEB J151312-13142001. 339. Jewell UR, Kvietikova I, Scheid A, Bauer C, Wenger RH, and Gassmann M. Induction of HIF-1alpha in response to hypoxia is instantaneous. FASEB J 15: 1312–1314, 2001.
340.
Jha NJurma OLalli GLiu YPettus EHGreenamyre JTLiu RMForman HJAndersen JK. Glutathione depletion in PC12 results in selective inhibition of mitochondrial complex I activity. Implications for Parkinson's diseaseJ Biol Chem27526096-261012000. 340. Jha N, Jurma O, Lalli G, Liu Y, Pettus EH, Greenamyre JT, Liu RM, Forman HJ, and Andersen JK. Glutathione depletion in PC12 results in selective inhibition of mitochondrial complex I activity. Implications for Parkinson's disease. J Biol Chem 275: 26096–26101, 2000.
341.
Jia LBonaventura CBonaventura JStamler JS. S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular controlNature380221-2261996. 341. Jia L, Bonaventura C, Bonaventura J, and Stamler JS. S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature 380: 221–226, 1996.
342.
Jikimoto TNishikubo YKoshiba MKanagawa SMorinobu SMorinobu ASaura RMizuno KKondo SToyokuni SNakamura HYodoi JKumagai S. Thioredoxin as a biomarker for oxidative stress in patients with rheumatoid arthritisMol Immunol38765-7722002. 342. Jikimoto T, Nishikubo Y, Koshiba M, Kanagawa S, Morinobu S, Morinobu A, Saura R, Mizuno K, Kondo S, Toyokuni S, Nakamura H, Yodoi J, and Kumagai S. Thioredoxin as a biomarker for oxidative stress in patients with rheumatoid arthritis. Mol Immunol 38: 765–772, 2002.
343.
Jiménez AJohansson CLjung JSagemark JBerndt KDRen BTibbelin GLadenstein RKieselbach THolmgren AGustafsson JAMiranda-Vizuete A. Human spermatid-specific thioredoxin-1 (Sptrx-1) is a two-domain protein with oxidizing activityFEBS Lett53079-842002. 343. Jiménez A, Johansson C, Ljung J, Sagemark J, Berndt KD, Ren B, Tibbelin G, Ladenstein R, Kieselbach T, Holmgren A, Gustafsson JA, and Miranda-Vizuete A. Human spermatid-specific thioredoxin-1 (Sptrx-1) is a two-domain protein with oxidizing activity. FEBS Lett 530: 79–84, 2002.
344.
Jiménez APelto-Huikko MGustafsson J-AMiranda-Vizuete A. Characterization of human thioredoxin-like-1: potential involvement in the cellular response against glucose deprivationFEBS Lett580960-9672006. 344. Jiménez A, Pelto-Huikko M, Gustafsson J-A, and Miranda-Vizuete A. Characterization of human thioredoxin-like-1: potential involvement in the cellular response against glucose deprivation. FEBS Lett 580: 960–967, 2006.
345.
Jiménez AZu WRawe VYPelto-Huikko MFlickinger CJSutovsky PGustafsson J-AOko RMiranda-Vizuete A. Spermatocyte/spermatid-specific thioredoxin-3, a novel Golgi apparatus-associated thioredoxin, is a specific marker of aberrant spermatogenesisJ Biol Chem27934971-349822004. 345. Jiménez A, Zu W, Rawe VY, Pelto-Huikko M, Flickinger CJ, Sutovsky P, Gustafsson J-A, Oko R, and Miranda-Vizuete A. Spermatocyte/spermatid-specific thioredoxin-3, a novel Golgi apparatus-associated thioredoxin, is a specific marker of aberrant spermatogenesis. J Biol Chem 279: 34971–34982, 2004.
346.
Jin DYChae HZRhee SGJeang KT. Regulatory role for a novel human thioredoxin peroxidase in NF-kappaB activationJ Biol Chem27230952-309611997. 346. Jin DY, Chae HZ, Rhee SG, and Jeang KT. Regulatory role for a novel human thioredoxin peroxidase in NF-kappaB activation. J Biol Chem 272: 30952–30961, 1997.
347.
Jin M-HLee Y-HKim J-MSun H-NMoon E-YShong MHKim S-ULee SHLee T-HYu D-YLee D-S. Characterization of neural cell types expressing peroxiredoxins in mouse brainNeurosci Lett381252-2572005. 347. Jin M-H, Lee Y-H, Kim J-M, Sun H-N, Moon E-Y, Shong MH, Kim S-U, Lee SH, Lee T-H, Yu D-Y, and Lee D-S. Characterization of neural cell types expressing peroxiredoxins in mouse brain. Neurosci Lett 381: 252–257, 2005.
348.
Johansson CKavanagh KLGileadi OOppermann U. Reversible sequestration of active site cysteines in a 2Fe-2S-bridged dimer provides a mechanism for glutaredoxin 2 regulation in human mitochondriaJ Biol Chem2823077-30822007. 348. Johansson C, Kavanagh KL, Gileadi O, and Oppermann U. Reversible sequestration of active site cysteines in a 2Fe-2S-bridged dimer provides a mechanism for glutaredoxin 2 regulation in human mitochondria. J Biol Chem 282: 3077–3082, 2007.
349.
Johansson CLillig CHHolmgren A. Human mitochondrial glutaredoxin reduces S-glutathionylated proteins with high affinity accepting electrons from either glutathione or thioredoxin reductaseJ Biol Chem2797537-75432004. 349. Johansson C, Lillig CH, and Holmgren A. Human mitochondrial glutaredoxin reduces S-glutathionylated proteins with high affinity accepting electrons from either glutathione or thioredoxin reductase. J Biol Chem 279: 7537–7543, 2004.
350.
Johansson CRoos AKMontano SJSengupta RFilippakopoulos PGuo KVon Delft FHolmgren AOppermann UKavanagh KL. The crystal structure of human GLRX5: iron-sulfur cluster co-ordination, tetrameric assembly and monomer activityBiochem J433303-3112011. 350. Johansson C, Roos AK, Montano SJ, Sengupta R, Filippakopoulos P, Guo K, Von Delft F, Holmgren A, Oppermann U, and Kavanagh KL. The crystal structure of human GLRX5: iron-sulfur cluster co-ordination, tetrameric assembly and monomer activity. Biochem J 433: 303–311, 2011.
351.
Johnston MVTrescher WHIshida ANakajima W. Neurobiology of hypoxic-ischemic injury in the developing brainPediatr Res49735-7412001. 351. Johnston MV, Trescher WH, Ishida A, and Nakajima W. Neurobiology of hypoxic-ischemic injury in the developing brain. Pediatr Res 49: 735–741, 2001.
352.
Jomova KValko M. Advances in metal-induced oxidative stress and human diseaseToxicology28365-872011. 352. Jomova K and Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology 283: 65–87, 2011.
353.
Jones DP. Redox potential of GSH/GSSG couple: assay and biological significanceMeth Enzymol34893-1122002. 353. Jones DP. Redox potential of GSH/GSSG couple: assay and biological significance. Meth Enzymol 348: 93–112, 2002.
354.
Jones DP. Redefining oxidative stressAntioxid Redox Signal81865-18792006. 354. Jones DP. Redefining oxidative stress. Antioxid Redox Signal 8: 1865–1879, 2006.
355.
Jönsson TJMurray MSJohnson LCLowther WT. Reduction of cysteine sulfinic acid in peroxiredoxin by sulfiredoxin proceeds directly through a sulfinic phosphoryl ester intermediateJ Biol Chem28323846-238512008. 355. Jönsson TJ, Murray MS, Johnson LC, and Lowther WT. Reduction of cysteine sulfinic acid in peroxiredoxin by sulfiredoxin proceeds directly through a sulfinic phosphoryl ester intermediate. J Biol Chem 283: 23846–23851, 2008.
356.
Jönsson TJTsang AWLowther WTFurdui CM. Identification of intact protein thiosulfinate intermediate in the reduction of cysteine sulfinic acid in peroxiredoxin by human sulfiredoxinJ Biol Chem28322890-228942008. 356. Jönsson TJ, Tsang AW, Lowther WT, and Furdui CM. Identification of intact protein thiosulfinate intermediate in the reduction of cysteine sulfinic acid in peroxiredoxin by human sulfiredoxin. J Biol Chem 283: 22890–22894, 2008.
357.
Jørgensen MCAhnfelt-Rønne JHald JMadsen ODSerup PHecksher-Sørensen J. An illustrated review of early pancreas development in the mouseEndocr Rev28685-7052007. 357. Jørgensen MC, Ahnfelt-Rønne J, Hald J, Madsen OD, Serup P, and Hecksher-Sørensen J. An illustrated review of early pancreas development in the mouse. Endocr Rev 28: 685–705, 2007.
358.
Joubert JMalan SF. Novel nitric oxide synthase inhibitors: a patent reviewExpert Opin Ther Pat21537-5602011. 358. Joubert J and Malan SF. Novel nitric oxide synthase inhibitors: a patent review. Expert Opin Ther Pat 21: 537–560, 2011.
359.
Jurado JPrieto-Alamo M-JMadrid-Rísquez JPueyo C. Absolute gene expression patterns of thioredoxin and glutaredoxin redox systems in mouseJ Biol Chem27845546-455542003. 359. Jurado J, Prieto-Alamo M-J, Madrid-Rísquez J, and Pueyo C. Absolute gene expression patterns of thioredoxin and glutaredoxin redox systems in mouse. J Biol Chem 278: 45546–45554, 2003.
360.
Kaarniranta KSalminen AHaapasalo ASoininen HHiltunen M. Age-related macular degeneration (AMD): Alzheimer's disease in the eye?J Alzheimers Dis24615-6312011. 360. Kaarniranta K, Salminen A, Haapasalo A, Soininen H, and Hiltunen M. Age-related macular degeneration (AMD): Alzheimer's disease in the eye? J Alzheimers Dis 24: 615–631, 2011.
361.
Kaarteenaho-Wiik RKinnula VL. Distribution of antioxidant enzymes in developing human lung, respiratory distress syndrome, and bronchopulmonary dysplasiaJ Histochem Cytochem521231-12402004. 361. Kaarteenaho-Wiik R and Kinnula VL. Distribution of antioxidant enzymes in developing human lung, respiratory distress syndrome, and bronchopulmonary dysplasia. J Histochem Cytochem 52: 1231–1240, 2004.
362.
Kaimul AMNakamura HMasutani HYodoi J. Thioredoxin and thioredoxin-binding protein-2 in cancer and metabolic syndromeFree Radic Biol Med43861-8682007. 362. Kaimul AM, Nakamura H, Masutani H, and Yodoi J. Thioredoxin and thioredoxin-binding protein-2 in cancer and metabolic syndrome. Free Radic Biol Med 43: 861–868, 2007.
363.
Kakisaka YNakashima TSumida YYoh TNakamura HYodoi JSenmaru H. Elevation of serum thioredoxin levels in patients with type 2 diabetesHorm Metab Res34160-1642002. 363. Kakisaka Y, Nakashima T, Sumida Y, Yoh T, Nakamura H, Yodoi J, and Senmaru H. Elevation of serum thioredoxin levels in patients with type 2 diabetes. Horm Metab Res 34: 160–164, 2002.
364.
Kalantari PNarayan VNatarajan SKMuralidhar KGandhi UHVunta HHenderson AJPrabhu KS. Thioredoxin reductase-1 negatively regulates HIV-1 transactivating protein Tat-dependent transcription in human macrophagesJ Biol Chem28333183-331902008. 364. Kalantari P, Narayan V, Natarajan SK, Muralidhar K, Gandhi UH, Vunta H, Henderson AJ, and Prabhu KS. Thioredoxin reductase-1 negatively regulates HIV-1 transactivating protein Tat-dependent transcription in human macrophages. J Biol Chem 283: 33183–33190, 2008.
365.
Kamimoto YSugiyama TKihira TZhang LMurabayashi NUmekawa TNagao KMa NToyoda NYodoi JSagawa N. Transgenic mice overproducing human thioredoxin-1, an antioxidative and anti-apoptotic protein, prevents diabetic embryopathyDiabetologia532046-20552010. 365. Kamimoto Y, Sugiyama T, Kihira T, Zhang L, Murabayashi N, Umekawa T, Nagao K, Ma N, Toyoda N, Yodoi J, and Sagawa N. Transgenic mice overproducing human thioredoxin-1, an antioxidative and anti-apoptotic protein, prevents diabetic embryopathy. Diabetologia 53: 2046–2055, 2010.
366.
Kaneto HFujii JMyint TMiyazawa NIslam KNKawasaki YSuzuki KNakamura MTatsumi HYamasaki YTaniguchi N. Reducing sugars trigger oxidative modification and apoptosis in pancreatic beta-cells by provoking oxidative stress through the glycation reactionBiochem J320855-8631996. 366. Kaneto H, Fujii J, Myint T, Miyazawa N, Islam KN, Kawasaki Y, Suzuki K, Nakamura M, Tatsumi H, Yamasaki Y, and Taniguchi N. Reducing sugars trigger oxidative modification and apoptosis in pancreatic beta-cells by provoking oxidative stress through the glycation reaction. Biochem J 320: 855–863, 1996.
367.
Kaneto HXu GSong KHSuzuma KBonner-Weir SSharma AWeir GC. Activation of the hexosamine pathway leads to deterioration of pancreatic beta-cell function through the induction of oxidative stressJ Biol Chem27631099-311042001. 367. Kaneto H, Xu G, Song KH, Suzuma K, Bonner-Weir S, Sharma A, and Weir GC. Activation of the hexosamine pathway leads to deterioration of pancreatic beta-cell function through the induction of oxidative stress. J Biol Chem 276: 31099–31104, 2001.
368.
Kang DHLee DJLee KWPark YSLee JYLee S-HKoh YJKoh G-YChoi CYu D-YKim JKang SW. Peroxiredoxin II is an essential antioxidant enzyme that prevents the oxidative inactivation of VEGF receptor-2 in vascular endothelial cellsMol Cell44545-5582011. 368. Kang DH, Lee DJ, Lee KW, Park YS, Lee JY, Lee S-H, Koh YJ, Koh G-Y, Choi C, Yu D-Y, Kim J, and Kang SW. Peroxiredoxin II is an essential antioxidant enzyme that prevents the oxidative inactivation of VEGF receptor-2 in vascular endothelial cells. Mol Cell 44: 545–558, 2011.
369.
Kang SWShin H-SLee K-KRhee SGYu D-YLee T-HKim S-UYu S-LKim SHPark DSMoon H-BDho SHKwon K-SKwon HJHan Y-HJeong S. Peroxiredoxin II is essential for sustaining life span of erythrocytes in miceBlood1015033-50382003. 369. Kang SW, Shin H-S, Lee K-K, Rhee SG, Yu D-Y, Lee T-H, Kim S-U, Yu S-L, Kim SH, Park DS, Moon H-B, Dho SH, Kwon K-S, Kwon HJ, Han Y-H, and Jeong S. Peroxiredoxin II is essential for sustaining life span of erythrocytes in mice. Blood 101: 5033–5038, 2003.
370.
Karihtala PSoini YVaskivuo LBloigu RPuistola U. DNA adduct 8-hydroxydeoxyguanosine, a novel putative marker of prognostic significance in ovarian carcinomaInt J Gynecol Cancer191047-10512009. 370. Karihtala P, Soini Y, Vaskivuo L, Bloigu R, and Puistola U. DNA adduct 8-hydroxydeoxyguanosine, a novel putative marker of prognostic significance in ovarian carcinoma. Int J Gynecol Cancer 19: 1047–1051, 2009.
371.
Karunakaran SSaeed URamakrishnan SKoumar RCRavindranath V. Constitutive expression and functional characterization of mitochondrial glutaredoxin (Grx2) in mouse and human brainBrain Res11858-172007. 371. Karunakaran S, Saeed U, Ramakrishnan S, Koumar RC, and Ravindranath V. Constitutive expression and functional characterization of mitochondrial glutaredoxin (Grx2) in mouse and human brain. Brain Res 1185: 8–17, 2007.
372.
Kasuno KNakamura HOno TMuso EYodoi J. Protective roles of thioredoxin, a redox-regulating protein, in renal ischemia/reperfusion injuryKidney Int641273-12822003. 372. Kasuno K, Nakamura H, Ono T, Muso E, and Yodoi J. Protective roles of thioredoxin, a redox-regulating protein, in renal ischemia/reperfusion injury. Kidney Int 64: 1273–1282, 2003.
373.
Kato NMotohashi SOkada TOzawa TMashima K. PICOT, protein kinase C theta-interacting protein, is a novel regulator of FcepsilonRI-mediated mast cell activationCell Immunol25162-672008. 373. Kato N, Motohashi S, Okada T, Ozawa T, and Mashima K. PICOT, protein kinase C theta-interacting protein, is a novel regulator of FcepsilonRI-mediated mast cell activation. Cell Immunol 251: 62–67, 2008.
374.
Kato SKato MAbe YMatsumura TNishino TAoki MItoyama YAsayama KAwaya AHirano AOhama E. Redox system expression in the motor neurons in amyotrophic lateral sclerosis (ALS): immunohistochemical studies on sporadic ALS, superoxide dismutase 1 (SOD1)-mutated familial ALS, and SOD1-mutated ALS animal modelsActa Neuropathol110101-1122005. 374. Kato S, Kato M, Abe Y, Matsumura T, Nishino T, Aoki M, Itoyama Y, Asayama K, Awaya A, Hirano A, and Ohama E. Redox system expression in the motor neurons in amyotrophic lateral sclerosis (ALS): immunohistochemical studies on sporadic ALS, superoxide dismutase 1 (SOD1)-mutated familial ALS, and SOD1-mutated ALS animal models. Acta Neuropathol 110: 101–112, 2005.
375.
Kawahito SKitahata HOshita S. Problems associated with glucose toxicity: role of hyperglycemia-induced oxidative stressWorld J Gastroenterol154137-41422009. 375. Kawahito S, Kitahata H, and Oshita S. Problems associated with glucose toxicity: role of hyperglycemia-induced oxidative stress. World J Gastroenterol 15: 4137–4142, 2009.
376.
Kenchappa RSRavindranath V. Glutaredoxin is essential for maintenance of brain mitochondrial complex I: studies with MPTPFASEB J17717-7192003. 376. Kenchappa RS and Ravindranath V. Glutaredoxin is essential for maintenance of brain mitochondrial complex I: studies with MPTP. FASEB J 17: 717–719, 2003.
377.
Kettenhofen NJWood MJ. Formation, reactivity, and detection of protein sulfenic acidsChem Res Toxicol231633-16462010. 377. Kettenhofen NJ and Wood MJ. Formation, reactivity, and detection of protein sulfenic acids. Chem Res Toxicol 23: 1633–1646, 2010.
378.
Kim HSKang SWRhee SGClerch LB. Rat lung peroxiredoxins I and II are differentially regulated during development and by hyperoxiaAm J Physiol Lung Cell Mol Physiol280L1212-L12172001. 378. Kim HS, Kang SW, Rhee SG, and Clerch LB. Rat lung peroxiredoxins I and II are differentially regulated during development and by hyperoxia. Am J Physiol Lung Cell Mol Physiol 280: L1212–L1217, 2001.
379.
Kim H-SManevich YFeinstein SIPak JHHo YSFisher AB. Induction of 1-cys peroxiredoxin expression by oxidative stress in lung epithelial cellsAm J Physiol Lung Cell Mol Physiol285L363-L3692003. 379. Kim H-S, Manevich Y, Feinstein SI, Pak JH, Ho YS, and Fisher AB. Induction of 1-cys peroxiredoxin expression by oxidative stress in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 285: L363–L369, 2003.
380.
Kim KKim IHLee KYRhee SGStadtman ER. The isolation and purification of a specific “protector” protein which inhibits enzyme inactivation by a thiol/Fe(III)/O2 mixed-function oxidation systemJ Biol Chem2634704-47111988. 380. Kim K, Kim IH, Lee KY, Rhee SG, and Stadtman ER. The isolation and purification of a specific “protector” protein which inhibits enzyme inactivation by a thiol/Fe(III)/O2 mixed-function oxidation system. J Biol Chem 263: 4704–4711, 1988.
381.
Kim SHFountoulakis MCairns NLubec G. Protein levels of human peroxiredoxin subtypes in brains of patients with Alzheimer's disease and Down syndromeJ Neural Transm Suppl223-2352001. 381. Kim SH, Fountoulakis M, Cairns N, and Lubec G. Protein levels of human peroxiredoxin subtypes in brains of patients with Alzheimer's disease and Down syndrome. J Neural Transm Suppl 223–235, 2001.
382.
Kimura H. Hydrogen sulfide: its production, release and functionsAmino Acids41113-1212011. 382. Kimura H. Hydrogen sulfide: its production, release and functions. Amino Acids 41: 113–121, 2011.
383.
Kimura HWeisz AKurashima YHashimoto KOgura TD'Acquisto FAddeo RMakuuchi MEsumi H. Hypoxia response element of the human vascular endothelial growth factor gene mediates transcriptional regulation by nitric oxide: control of hypoxia-inducible factor-1 activity by nitric oxideBlood95189-1972000. 383. Kimura H, Weisz A, Kurashima Y, Hashimoto K, Ogura T, D'Acquisto F, Addeo R, Makuuchi M, and Esumi H. Hypoxia response element of the human vascular endothelial growth factor gene mediates transcriptional regulation by nitric oxide: control of hypoxia-inducible factor-1 activity by nitric oxide. Blood 95: 189–197, 2000.
384.
Kim YCMasutani HYamaguchi YItoh KYamamoto MYodoi J. Hemin-induced activation of the thioredoxin gene by Nrf2. A differential regulation of the antioxidant responsive element by a switch of its binding factorsJ Biol Chem27618399-184062001. 384. Kim YC, Masutani H, Yamaguchi Y, Itoh K, Yamamoto M, and Yodoi J. Hemin-induced activation of the thioredoxin gene by Nrf2. A differential regulation of the antioxidant responsive element by a switch of its binding factors. J Biol Chem 276: 18399–18406, 2001.
385.
Kim Y-JAhn J-YLiang PIp CZhang YPark Y-M. Human prx1 gene is a target of Nrf2 and is up-regulated by hypoxia/reoxygenation: implication to tumor biologyCancer Res67546-5542007. 385. Kim Y-J, Ahn J-Y, Liang P, Ip C, Zhang Y, and Park Y-M. Human prx1 gene is a target of Nrf2 and is up-regulated by hypoxia/reoxygenation: implication to tumor biology. Cancer Res 67: 546–554, 2007.
386.
Kim Y-JLee W-SIp CChae H-ZPark E-MPark Y-M. Prx1 suppresses radiation-induced c-Jun NH2-terminal kinase signaling in lung cancer cells through interaction with the glutathione S-transferase Pi/c-Jun NH2-terminal kinase complexCancer Res667136-71422006. 386. Kim Y-J, Lee W-S, Ip C, Chae H-Z, Park E-M, and Park Y-M. Prx1 suppresses radiation-induced c-Jun NH2-terminal kinase signaling in lung cancer cells through interaction with the glutathione S-transferase Pi/c-Jun NH2-terminal kinase complex. Cancer Res 66: 7136–7142, 2006.
387.
Kim YSLee HLLee KBPark JHChung WYLee KSSheen SSPark KJHwang SC. Nuclear factor E2-related factor 2 dependent overexpression of sulfiredoxin and peroxiredoxin III in human lung cancerKorean J Intern Med26304-3132011. 387. Kim YS, Lee HL, Lee KB, Park JH, Chung WY, Lee KS, Sheen SS, Park KJ, and Hwang SC. Nuclear factor E2-related factor 2 dependent overexpression of sulfiredoxin and peroxiredoxin III in human lung cancer. Korean J Intern Med 26: 304–313, 2011.
388.
King GLLoeken MR. Hyperglycemia-induced oxidative stress in diabetic complicationsHistochem Cell Biol122333-3382004. 388. King GL and Loeken MR. Hyperglycemia-induced oxidative stress in diabetic complications. Histochem Cell Biol 122: 333–338, 2004.
389.
Kinnula VLLehtonen SKaarteenaho-Wiik RLakari EPääkkö PKang SWRhee SGSoini Y. Cell specific expression of peroxiredoxins in human lung and pulmonary sarcoidosisThorax57157-1642002. 389. Kinnula VL, Lehtonen S, Kaarteenaho-Wiik R, Lakari E, Pääkkö P, Kang SW, Rhee SG, and Soini Y. Cell specific expression of peroxiredoxins in human lung and pulmonary sarcoidosis. Thorax 57: 157–164, 2002.
390.
Kinoshita THoshino TImaoka HIchiki HOkamoto MKawayama TYodoi JKato SAizawa H. Thioredoxin prevents the development and progression of elastase-induced emphysemaBiochem Biophys Res Commun354712-7192007. 390. Kinoshita T, Hoshino T, Imaoka H, Ichiki H, Okamoto M, Kawayama T, Yodoi J, Kato S, and Aizawa H. Thioredoxin prevents the development and progression of elastase-induced emphysema. Biochem Biophys Res Commun 354: 712–719, 2007.
391.
Kirby JHalligan EBaptista MJAllen SHeath PRHolden HBarber SCLoynes CAWood-Allum CALunec JShaw PJ. Mutant SOD1 alters the motor neuronal transcriptome: implications for familial ALSBrain1281686-17062005. 391. Kirby J, Halligan E, Baptista MJ, Allen S, Heath PR, Holden H, Barber SC, Loynes CA, Wood-Allum CA, Lunec J, and Shaw PJ. Mutant SOD1 alters the motor neuronal transcriptome: implications for familial ALS. Brain 128: 1686–1706, 2005.
392.
Kishimoto CShioji KNakamura HNakayama YYodoi JSasayama S. Serum thioredoxin (TRX) levels in patients with heart failureJpn Circ J65491-4942001. 392. Kishimoto C, Shioji K, Nakamura H, Nakayama Y, Yodoi J, and Sasayama S. Serum thioredoxin (TRX) levels in patients with heart failure. Jpn Circ J 65: 491–494, 2001.
393.
Kisucka JChauhan AKPatten ISYesilaltay ANeumann CVan Etten RAKrieger MWagner DD. Peroxiredoxin1 prevents excessive endothelial activation and early atherosclerosisCirc Res103598-6052008. 393. Kisucka J, Chauhan AK, Patten IS, Yesilaltay A, Neumann C, Van Etten RA, Krieger M, and Wagner DD. Peroxiredoxin1 prevents excessive endothelial activation and early atherosclerosis. Circ Res 103: 598–605, 2008.
394.
Kleemann RKapurniotu AFrank RWGessner AMischke RFlieger OJüttner SBrunner HBernhagen J. Disulfide analysis reveals a role for macrophage migration inhibitory factor (MIF) as thiol-protein oxidoreductaseJ Mol Biol28085-1021998. 394. Kleemann R, Kapurniotu A, Frank RW, Gessner A, Mischke R, Flieger O, Jüttner S, Brunner H, and Bernhagen J. Disulfide analysis reveals a role for macrophage migration inhibitory factor (MIF) as thiol-protein oxidoreductase. J Mol Biol 280: 85–102, 1998.
395.
Knowlton KUBadorff C. The immune system in viral myocarditis: maintaining the balanceCirc Res85559-5611999. 395. Knowlton KU and Badorff C. The immune system in viral myocarditis: maintaining the balance. Circ Res 85: 559–561, 1999.
396.
Kobayashi MNakamura HYodoi JShiota K. Immunohistochemical localization of thioredoxin and glutaredoxin in mouse embryos and fetusesAntioxid Redox Signal2653-6632000. 396. Kobayashi M, Nakamura H, Yodoi J, and Shiota K. Immunohistochemical localization of thioredoxin and glutaredoxin in mouse embryos and fetuses. Antioxid Redox Signal 2: 653–663, 2000.
397.
Kobzik LReid MBBredt DSStamler JS. Nitric oxide in skeletal muscleNature372546-5481994. 397. Kobzik L, Reid MB, Bredt DS, and Stamler JS. Nitric oxide in skeletal muscle. Nature 372: 546–548, 1994.
398.
Koenen TBStienstra RVan Tits LJDe Graaf JStalenhoef AFHJoosten LABTack CJNetea MG. Hyperglycemia activates caspase-1 and TXNIP-mediated IL-1beta transcription in human adipose tissueDiabetes60517-5242011. 398. Koenen TB, Stienstra R, Van Tits LJ, De Graaf J, Stalenhoef AFH, Joosten LAB, Tack CJ, and Netea MG. Hyperglycemia activates caspase-1 and TXNIP-mediated IL-1beta transcription in human adipose tissue. Diabetes 60: 517–524, 2011.
399.
Koh P-O. Proteomic analysis of focal cerebral ischemic injury in male ratsJ Vet Med Sci72181-1852010. 399. Koh P-O. Proteomic analysis of focal cerebral ischemic injury in male rats. J Vet Med Sci 72: 181–185, 2010.
400.
Koneru SPenumathsa SVThirunavukkarasu MZhan LMaulik N. Thioredoxin-1 gene delivery induces heme oxygenase-1 mediated myocardial preservation after chronic infarction in hypertensive ratsAm J Hypertens22183-1902009. 400. Koneru S, Penumathsa SV, Thirunavukkarasu M, Zhan L, and Maulik N. Thioredoxin-1 gene delivery induces heme oxygenase-1 mediated myocardial preservation after chronic infarction in hypertensive rats. Am J Hypertens 22: 183–190, 2009.
401.
Kong LZhou XLi FYodoi JMcGinnis JCao W. Neuroprotective effect of overexpression of thioredoxin on photoreceptor degeneration in Tubby miceNeurobiol Dis38446-4552010. 401. Kong L, Zhou X, Li F, Yodoi J, McGinnis J, and Cao W. Neuroprotective effect of overexpression of thioredoxin on photoreceptor degeneration in Tubby mice. Neurobiol Dis 38: 446–455, 2010.
402.
Koreny MSterz FUray TSchreiber WHolzer MLaggner AHerkner H. Effect of cooling after human cardiac arrest on myocardial infarct sizeResuscitation8056-602009. 402. Koreny M, Sterz F, Uray T, Schreiber W, Holzer M, Laggner A, and Herkner H. Effect of cooling after human cardiac arrest on myocardial infarct size. Resuscitation 80: 56–60, 2009.
403.
Kosower NSKosower EM. The glutathione status of cellsInt Rev Cytol54109-1601978. 403. Kosower NS and Kosower EM. The glutathione status of cells. Int Rev Cytol 54: 109–160, 1978.
404.
Kozlov AVSzalay LUmar FKropik KStaniek KNiedermüller HBahrami SNohl H. Skeletal muscles, heart, and lung are the main sources of oxygen radicals in old ratsBiochim Biophys Acta1740382-3892005. 404. Kozlov AV, Szalay L, Umar F, Kropik K, Staniek K, Niedermüller H, Bahrami S, and Nohl H. Skeletal muscles, heart, and lung are the main sources of oxygen radicals in old rats. Biochim Biophys Acta 1740: 382–389, 2005.
405.
Kozlov GMäättänen PThomas DYGehring K. A structural overview of the PDI family of proteinsFEBS J2773924-39362010. 405. Kozlov G, Määttänen P, Thomas DY, and Gehring K. A structural overview of the PDI family of proteins. FEBS J 277: 3924–3936, 2010.
406.
Krapfenbauer KEngidawork ECairns NFountoulakis MLubec G. Aberrant expression of peroxiredoxin subtypes in neurodegenerative disordersBrain Res967152-1602003. 406. Krapfenbauer K, Engidawork E, Cairns N, Fountoulakis M, and Lubec G. Aberrant expression of peroxiredoxin subtypes in neurodegenerative disorders. Brain Res 967: 152–160, 2003.
407.
Krauth-Siegel RLComini MA. Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolismBiochim Biophys Acta17801236-12482008. 407. Krauth-Siegel RL and Comini MA. Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism. Biochim Biophys Acta 1780: 1236–1248, 2008.
408.
Krimsky IRacker E. Glutathione, a prosthetic group of glyceraldehyde-3-phosphate dehydrogenaseJ Biol Chem198721-7291952. 408. Krimsky I and Racker E. Glutathione, a prosthetic group of glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 198: 721–729, 1952.
409.
Kronschläger MGalichanin KEkström JLou MFSöderberg PG. Protective effect of the thioltransferase gene on in vivo UVR-300 nm-induced cataractInvest Ophthalmol Vis Sci53248-2522012. 409. Kronschläger M, Galichanin K, Ekström J, Lou MF, and Söderberg PG. Protective effect of the thioltransferase gene on in vivo UVR-300 nm-induced cataract. Invest Ophthalmol Vis Sci 53: 248–252, 2012.
410.
Kubo EFatma NAkagi YBeier DRSingh SPSingh DP. TAT-mediated PRDX6 protein transduction protects against eye lens epithelial cell death and delays lens opacityAm J Physiol Cell Physiol294C842-C8552008. 410. Kubo E, Fatma N, Akagi Y, Beier DR, Singh SP, and Singh DP. TAT-mediated PRDX6 protein transduction protects against eye lens epithelial cell death and delays lens opacity. Am J Physiol Cell Physiol 294: C842–C855, 2008.
411.
Kubo EHasanova NTanaka YFatma NTakamura YSingh DPAkagi Y. Protein expression profiling of lens epithelial cells from Prdx6-depleted mice and their vulnerability to UV radiation exposureAm J Physiol Cell Physiol298C342-C3542010. 411. Kubo E, Hasanova N, Tanaka Y, Fatma N, Takamura Y, Singh DP, and Akagi Y. Protein expression profiling of lens epithelial cells from Prdx6-depleted mice and their vulnerability to UV radiation exposure. Am J Physiol Cell Physiol 298: C342–C354, 2010.
412.
Kulisz AChen NChandel NSShao ZSchumacker PT. Mitochondrial ROS initiate phosphorylation of p38 MAP kinase during hypoxia in cardiomyocytesAm J Physiol Lung Cell Mol Physiol282L1324-L13292002. 412. Kulisz A, Chen N, Chandel NS, Shao Z, and Schumacker PT. Mitochondrial ROS initiate phosphorylation of p38 MAP kinase during hypoxia in cardiomyocytes. Am J Physiol Lung Cell Mol Physiol 282: L1324–L1329, 2002.
413.
Kumsta CJakob U. Redox-regulated chaperonesBiochemistry484666-46762009. 413. Kumsta C and Jakob U. Redox-regulated chaperones. Biochemistry 48: 4666–4676, 2009.
414.
Lambeth JD. NOX enzymes and the biology of reactive oxygenNat Rev Immunol4181-1892004. 414. Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4: 181–189, 2004.
415.
Lapointe JHekimi S. When a theory of aging ages badlyCell Mol Life Sci671-82010. 415. Lapointe J and Hekimi S. When a theory of aging ages badly. Cell Mol Life Sci 67: 1–8, 2010.
416.
Lappalainen ZLappalainen JOksala NKJLaaksonen DEKhanna SSen CKAtalay M. Diabetes impairs exercise training-associated thioredoxin response and glutathione status in rat brainJ Appl Physiol106461-4672009. 416. Lappalainen Z, Lappalainen J, Oksala NKJ, Laaksonen DE, Khanna S, Sen CK, and Atalay M. Diabetes impairs exercise training-associated thioredoxin response and glutathione status in rat brain. J Appl Physiol 106: 461–467, 2009.
417.
Lappalainen ZLappalainen JOksala NKJLaaksonen DEKhanna SSen CKAtalay M. Diabetes impairs exercise training-associated thioredoxin response and glutathione status in rat brainJ Appl Physiol106461-4672009. 417. Lappalainen Z, Lappalainen J, Oksala NKJ, Laaksonen DE, Khanna S, Sen CK, and Atalay M. Diabetes impairs exercise training-associated thioredoxin response and glutathione status in rat brain. J Appl Physiol 106: 461–467, 2009.
418.
Laurent TCMoore ECReichard P. Enzymatic synthesis of deoxyribonucleotides. iv. isolation and characterization of thioredoxin, the hydrogen donor from Escherichia coli BJ Biol Chem2393436-34441964. 418. Laurent TC, Moore EC, and Reichard P. Enzymatic synthesis of deoxyribonucleotides. iv. isolation and characterization of thioredoxin, the hydrogen donor from Escherichia coli B. J Biol Chem 239: 3436–3444, 1964.
419.
Lee DWKaur DChinta SJRajagopalan SAndersen JK. A disruption in iron-sulfur center biogenesis via inhibition of mitochondrial dithiol glutaredoxin 2 may contribute to mitochondrial and cellular iron dysregulation in mammalian glutathione-depleted dopaminergic cells: implications for Parkinson's diseaseAntioxid Redox Signal112083-20942009. 419. Lee DW, Kaur D, Chinta SJ, Rajagopalan S, and Andersen JK. A disruption in iron-sulfur center biogenesis via inhibition of mitochondrial dithiol glutaredoxin 2 may contribute to mitochondrial and cellular iron dysregulation in mammalian glutathione-depleted dopaminergic cells: implications for Parkinson's disease. Antioxid Redox Signal 11: 2083–2094, 2009.
420.
Lee J-HKim KPark E-HAhn KLim C-J. Expression, characterization and regulation of a Saccharomyces cerevisiae monothiol glutaredoxin (Grx6) gene in Schizosaccharomyces pombeMol Cells24316-3222007. 420. Lee J-H, Kim K, Park E-H, Ahn K, and Lim C-J. Expression, characterization and regulation of a Saccharomyces cerevisiae monothiol glutaredoxin (Grx6) gene in Schizosaccharomyces pombe. Mol Cells 24: 316–322, 2007.
421.
Lee SHKim WSLee SHOh JWLee HMJung HHJang JWJun YJCho WJJhun HS. Expression and distribution of thioredoxin and thioredoxin reductase in human nasal mucosa and nasal polypActa Otolaryngol125877-8822005. 421. Lee SH, Kim WS, Lee SH, Oh JW, Lee HM, Jung HH, Jang JW, Jun YJ, Cho WJ, and Jhun HS. Expression and distribution of thioredoxin and thioredoxin reductase in human nasal mucosa and nasal polyp. Acta Otolaryngol 125: 877–882, 2005.
422.
Lee T-HKim S-UYu S-LKim SHPark DSMoon H-BDho SHKwon K-SKwon HJHan Y-HJeong SKang SWShin H-SLee K-KRhee SGYu D-Y. Peroxiredoxin II is essential for sustaining life span of erythrocytes in miceBlood1015033-50382003. 422. Lee T-H, Kim S-U, Yu S-L, Kim SH, Park DS, Moon H-B, Dho SH, Kwon K-S, Kwon HJ, Han Y-H, Jeong S, Kang SW, Shin H-S, Lee K-K, Rhee SG, and Yu D-Y. Peroxiredoxin II is essential for sustaining life span of erythrocytes in mice. Blood 101: 5033–5038, 2003.
423.
Lee YMPark SHShin D-IHwang J-YPark BPark Y-JLee THChae HZJin BKOh THOh YJ. Oxidative modification of peroxiredoxin is associated with drug-induced apoptotic signaling in experimental models of Parkinson diseaseJ Biol Chem2839986-99982008. 423. Lee YM, Park SH, Shin D-I, Hwang J-Y, Park B, Park Y-J, Lee TH, Chae HZ, Jin BK, Oh TH, and Oh YJ. Oxidative modification of peroxiredoxin is associated with drug-induced apoptotic signaling in experimental models of Parkinson disease. J Biol Chem 283: 9986–9998, 2008.
424.
Lehtonen STOhlmeier SKaarteenaho-Wiik RHarju TPääkkö PSoini YKinnula VL. Does the oxidative stress in chronic obstructive pulmonary disease cause thioredoxin/peroxiredoxin oxidation?Antioxid Redox Signal10813-8192008. 424. Lehtonen ST, Ohlmeier S, Kaarteenaho-Wiik R, Harju T, Pääkkö P, Soini Y, and Kinnula VL. Does the oxidative stress in chronic obstructive pulmonary disease cause thioredoxin/peroxiredoxin oxidation? Antioxid Redox Signal 10: 813–819, 2008.
425.
Lei XCheng W. New roles of glutathione peroxidase 1 in oxidative stress and diabetesSelenium—Its Molecular Biology and Role in Human HealthHatfield DLBerry MJGladyshev VNHeidelberg, GermanySpringer2006173-182. 425. Lei X and Cheng W. New roles of glutathione peroxidase 1 in oxidative stress and diabetes. In: Selenium—Its Molecular Biology and Role in Human Health edited by Hatfield DL, Berry MJ, and Gladyshev VN. Heidelberg, Germany: Springer, 2006, pp. 173–182.
426.
Lekli IMukherjee SRay DGurusamy NKim YHTosaki AEngelman RMHo Y-SDas DK. Functional recovery of diabetic mouse hearts by glutaredoxin-1 gene therapy: role of Akt-FoxO-signaling networkGene Ther17478-4852010. 426. Lekli I, Mukherjee S, Ray D, Gurusamy N, Kim YH, Tosaki A, Engelman RM, Ho Y-S, and Das DK. Functional recovery of diabetic mouse hearts by glutaredoxin-1 gene therapy: role of Akt-FoxO-signaling network. Gene Ther 17: 478–485, 2010.
427.
Lenaz GBovina CD'Aurelio MFato RFormiggini GGenova MLGiuliano GMerlo Pich MPaolucci UParenti Castelli GVentura B. Role of mitochondria in oxidative stress and agingAnn N Y Acad Sci959199-2132002. 427. Lenaz G, Bovina C, D'Aurelio M, Fato R, Formiggini G, Genova ML, Giuliano G, Merlo Pich M, Paolucci U, Parenti Castelli G, and Ventura B. Role of mitochondria in oxidative stress and aging. Ann N Y Acad Sci 959: 199–213, 2002.
428.
Léveillard TMohand-Saïd SLorentz OHicks DFintz A-CClérin ESimonutti MForster VCavusoglu NChalmel FDollé PPoch OLambrou GSahel J-A. Identification and characterization of rod-derived cone viability factorNat Genet36755-7592004. 428. Léveillard T, Mohand-Saïd S, Lorentz O, Hicks D, Fintz A-C, Clérin E, Simonutti M, Forster V, Cavusoglu N, Chalmel F, Dollé P, Poch O, Lambrou G, and Sahel J-A. Identification and characterization of rod-derived cone viability factor. Nat Genet 36: 755–759, 2004.
429.
Liang HLi XLi SZheng M-QRozanski GJ. Oxidoreductase regulation of Kv currents in rat ventricleJ Mol Cell Cardiol441062-10712008. 429. Liang H, Li X, Li S, Zheng M-Q, and Rozanski GJ. Oxidoreductase regulation of Kv currents in rat ventricle. J Mol Cell Cardiol 44: 1062–1071, 2008.
430.
Liang MPietrusz JL. Thiol-related genes in diabetic complications: a novel protective role for endogenous thioredoxin 2Arterioscler Thromb Vasc Biol2777-832007. 430. Liang M and Pietrusz JL. Thiol-related genes in diabetic complications: a novel protective role for endogenous thioredoxin 2. Arterioscler Thromb Vasc Biol 27: 77–83, 2007.
431.
Li FSonveaux PRabbani ZNLiu SYan BHuang QVujaskovic ZDewhirst MWLi C-Y. Regulation of HIF-1alpha stability through S-nitrosylationMol Cell2663-742007. 431. Li F, Sonveaux P, Rabbani ZN, Liu S, Yan B, Huang Q, Vujaskovic Z, Dewhirst MW, and Li C-Y. Regulation of HIF-1alpha stability through S-nitrosylation. Mol Cell 26: 63–74, 2007.
432.
Lillig CHBerndt CHolmgren A. Glutaredoxin systemsBiochim Biophys Acta17801304-13172008. 432. Lillig CH, Berndt C, and Holmgren A. Glutaredoxin systems. Biochim Biophys Acta 1780: 1304–1317, 2008.
433.
Lillig CHBerndt CVergnolle OLönn MEHudemann CBill EHolmgren A. Characterization of human glutaredoxin 2 as iron-sulfur protein: a possible role as redox sensorProc Natl Acad Sci U S A1028168-81732005. 433. Lillig CH, Berndt C, Vergnolle O, Lönn ME, Hudemann C, Bill E, and Holmgren A. Characterization of human glutaredoxin 2 as iron-sulfur protein: a possible role as redox sensor. Proc Natl Acad Sci U S A 102: 8168–8173, 2005.
434.
Lillig CHHolmgren A. Thioredoxin and related molecules—from biology to health and diseaseAntioxid Redox Signal925-472007. 434. Lillig CH and Holmgren A. Thioredoxin and related molecules—from biology to health and disease. Antioxid Redox Signal 9: 25–47, 2007.
435.
Lillig CHLönn MEEnoksson MFernandes APHolmgren A. Short interfering RNA-mediated silencing of glutaredoxin 2 increases the sensitivity of HeLa cells toward doxorubicin and phenylarsine oxideProc Natl Acad Sci U S A10113227-132322004. 435. Lillig CH, Lönn ME, Enoksson M, Fernandes AP, and Holmgren A. Short interfering RNA-mediated silencing of glutaredoxin 2 increases the sensitivity of HeLa cells toward doxorubicin and phenylarsine oxide. Proc Natl Acad Sci U S A 101: 13227–13232, 2004.
436.
Lill RKispal G. Maturation of cellular Fe-S proteins: an essential function of mitochondriaTrends Biochem Sci25352-3562000. 436. Lill R and Kispal G. Maturation of cellular Fe-S proteins: an essential function of mitochondria. Trends Biochem Sci 25: 352–356, 2000.
437.
Lill RMühlenhoff U. Iron-sulfur protein biogenesis in eukaryotes: components and mechanismsAnnu Rev Cell Dev Biol22457-4862006. 437. Lill R and Mühlenhoff U. Iron-sulfur protein biogenesis in eukaryotes: components and mechanisms. Annu Rev Cell Dev Biol 22: 457–486, 2006.
438.
Li LShoji WTakano HNishimura NAoki YTakahashi RGoto SKaifu TTakai TObinata M. Increased susceptibility of MER5 (peroxiredoxin III) knockout mice to LPS-induced oxidative stressBiochem Biophys Res Commun355715-7212007. 438. Li L, Shoji W, Takano H, Nishimura N, Aoki Y, Takahashi R, Goto S, Kaifu T, Takai T, and Obinata M. Increased susceptibility of MER5 (peroxiredoxin III) knockout mice to LPS-induced oxidative stress. Biochem Biophys Res Commun 355: 715–721, 2007.
439.
Lim JLuderer U. Oxidative damage increases and antioxidant gene expression decreases with aging in the mouse ovaryBiol Reprod84775-7822011. 439. Lim J and Luderer U. Oxidative damage increases and antioxidant gene expression decreases with aging in the mouse ovary. Biol Reprod 84: 775–782, 2011.
440.
Li NOberley TD. Modulation of antioxidant enzymes, reactive oxygen species, and glutathione levels in manganese superoxide dismutase-overexpressing NIH/3T3 fibroblasts during the cell cycleJ Cell Physiol177148-1601998. 440. Li N and Oberley TD. Modulation of antioxidant enzymes, reactive oxygen species, and glutathione levels in manganese superoxide dismutase-overexpressing NIH/3T3 fibroblasts during the cell cycle. J Cell Physiol 177: 148–160, 1998.
441.
Lippoldt APadilla CAGerst HAndbjer BRichter EHolmgren AFuxe K. Localization of thioredoxin in the rat brain and functional implicationsJ Neurosci156747-67561995. 441. Lippoldt A, Padilla CA, Gerst H, Andbjer B, Richter E, Holmgren A, and Fuxe K. Localization of thioredoxin in the rat brain and functional implications. J Neurosci 15: 6747–6756, 1995.
442.
Liu WNakamura HShioji KTanito MOka SAhsan MKSon AIshii YKishimoto CYodoi J. Thioredoxin-1 ameliorates myosin-induced autoimmune myocarditis by suppressing chemokine expressions and leukocyte chemotaxis in miceCirculation1101276-12832004. 442. Liu W, Nakamura H, Shioji K, Tanito M, Oka S, Ahsan MK, Son A, Ishii Y, Kishimoto C, and Yodoi J. Thioredoxin-1 ameliorates myosin-induced autoimmune myocarditis by suppressing chemokine expressions and leukocyte chemotaxis in mice. Circulation 110: 1276–1283, 2004.
443.
Liu YMin W. Thioredoxin promotes ASK1 ubiquitination and degradation to inhibit ASK1-mediated apoptosis in a redox activity-independent mannerCirc Res901259-12662002. 443. Liu Y and Min W. Thioredoxin promotes ASK1 ubiquitination and degradation to inhibit ASK1-mediated apoptosis in a redox activity-independent manner. Circ Res 90: 1259–1266, 2002.
444.
Li XTang KXie BLi SRozanski GJ. Regulation of Kv4 channel expression in failing rat heart by the thioredoxin systemAm J Physiol Heart Circ Physiol295H416-H4242008. 444. Li X, Tang K, Xie B, Li S, and Rozanski GJ. Regulation of Kv4 channel expression in failing rat heart by the thioredoxin system. Am J Physiol Heart Circ Physiol 295: H416–H424, 2008.
445.
Löfgren SFernando MRXing K-YWang YKuszynski CAHo Y-SLou MF. Effect of thioltransferase (glutaredoxin) deletion on cellular sensitivity to oxidative stress and cell proliferation in lens epithelial cells of thioltransferase knockout mouseInvest Ophthalmol Vis Sci494497-45052008. 445. Löfgren S, Fernando MR, Xing K-Y, Wang Y, Kuszynski CA, Ho Y-S, and Lou MF. Effect of thioltransferase (glutaredoxin) deletion on cellular sensitivity to oxidative stress and cell proliferation in lens epithelial cells of thioltransferase knockout mouse. Invest Ophthalmol Vis Sci 49: 4497–4505, 2008.
446.
Longo VDGralla EBValentine JS. Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. Mitochondrial production of toxic oxygen species in vivoJ Biol Chem27112275-122801996. 446. Longo VD, Gralla EB, and Valentine JS. Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. Mitochondrial production of toxic oxygen species in vivo. J Biol Chem 271: 12275–12280, 1996.
447.
Lönn MEHudemann CBerndt CCherkasov VCapani FHolmgren ALillig CH. Expression pattern of human glutaredoxin 2 isoforms: identification and characterization of two testis/cancer cell-specific isoformsAntioxid Redox Signal10547-5572008. 447. Lönn ME, Hudemann C, Berndt C, Cherkasov V, Capani F, Holmgren A, and Lillig CH. Expression pattern of human glutaredoxin 2 isoforms: identification and characterization of two testis/cancer cell-specific isoforms. Antioxid Redox Signal 10: 547–557, 2008.
448.
Lopes de Faria JBSilva KCLopes de Faria JM. The contribution of hypertension to diabetic nephropathy and retinopathy: the role of inflammation and oxidative stressHypertens Res34413-4222011. 448. Lopes de Faria JB, Silva KC, and Lopes de Faria JM. The contribution of hypertension to diabetic nephropathy and retinopathy: the role of inflammation and oxidative stress. Hypertens Res 34: 413–422, 2011.
449.
Loschen GFlohé LChance B. Respiratory chain linked H(2)O(2) production in pigeon heart mitochondriaFEBS Lett18261-2641971. 449. Loschen G, Flohé L, and Chance B. Respiratory chain linked H(2)O(2) production in pigeon heart mitochondria. FEBS Lett 18: 261–264, 1971.
450.
Lovell MAXie CGabbita SPMarkesbery WR. Decreased thioredoxin and increased thioredoxin reductase levels in Alzheimer's disease brainFree Radic Biol Med28418-4272000. 450. Lovell MA, Xie C, Gabbita SP, and Markesbery WR. Decreased thioredoxin and increased thioredoxin reductase levels in Alzheimer's disease brain. Free Radic Biol Med 28: 418–427, 2000.
451.
Lüdemann HDormeyer MSticherling CStallmann DFollmann HKrauth-Siegel RL. Trypanosoma brucei tryparedoxin, a thioredoxin-like protein in African trypanosomesFEBS Lett431381-3851998. 451. Lüdemann H, Dormeyer M, Sticherling C, Stallmann D, Follmann H, and Krauth-Siegel RL. Trypanosoma brucei tryparedoxin, a thioredoxin-like protein in African trypanosomes. FEBS Lett 431: 381–385, 1998.
452.
Lu JBerndt CHolmgren A. Metabolism of selenium compounds catalyzed by the mammalian selenoprotein thioredoxin reductaseBiochim Biophys Acta17901513-15192009. 452. Lu J, Berndt C, and Holmgren A. Metabolism of selenium compounds catalyzed by the mammalian selenoprotein thioredoxin reductase. Biochim Biophys Acta 1790: 1513–1519, 2009.
453.
Lundberg MFernandes APKumar SHolmgren A. Cellular and plasma levels of human glutaredoxin 1 and 2 detected by sensitive ELISA systemsBiochem Biophys Res Commun319801-8092004. 453. Lundberg M, Fernandes AP, Kumar S, and Holmgren A. Cellular and plasma levels of human glutaredoxin 1 and 2 detected by sensitive ELISA systems. Biochem Biophys Res Commun 319: 801–809, 2004.
454.
Lundström JHolmgren A. Protein disulfide-isomerase is a substrate for thioredoxin reductase and has thioredoxin-like activityJ Biol Chem2659114-91201990. 454. Lundström J and Holmgren A. Protein disulfide-isomerase is a substrate for thioredoxin reductase and has thioredoxin-like activity. J Biol Chem 265: 9114–9120, 1990.
455.
Luthman MEriksson SHolmgren AThelander L. Glutathione-dependent hydrogen donor system for calf thymus ribonucleoside-diphosphate reductaseProc Natl Acad Sci U S A762158-21621979. 455. Luthman M, Eriksson S, Holmgren A, and Thelander L. Glutathione-dependent hydrogen donor system for calf thymus ribonucleoside-diphosphate reductase. Proc Natl Acad Sci U S A 76: 2158–2162, 1979.
456.
Luthman MHolmgren A. Glutaredoxin from calf thymus. Purification to homogeneityJ Biol Chem2576686-66901982. 456. Luthman M and Holmgren A. Glutaredoxin from calf thymus. Purification to homogeneity. J Biol Chem 257: 6686–6690, 1982.
457.
Lysell JStjernholm Vladic YCiarlo NHolmgren ASahlin L. Immunohistochemical determination of thioredoxin and glutaredoxin distribution in the human cervix, and possible relation to cervical ripeningGynecol Endocrinol17303-3102003. 457. Lysell J, Stjernholm Vladic Y, Ciarlo N, Holmgren A, and Sahlin L. Immunohistochemical determination of thioredoxin and glutaredoxin distribution in the human cervix, and possible relation to cervical ripening. Gynecol Endocrinol 17: 303–310, 2003.
458.
Madian AGMyracle ADDiaz-Maldonado NRochelle NSJanle EMRegnier FE. Differential carbonylation of proteins as a function of in vivo oxidative stressJ Proteome Res103959-39722011. 458. Madian AG, Myracle AD, Diaz-Maldonado N, Rochelle NS, Janle EM, and Regnier FE. Differential carbonylation of proteins as a function of in vivo oxidative stress. J Proteome Res 10: 3959–3972, 2011.
459.
Ma DWarabi EYanagawa TKimura SHarada HYamagata KIshii T. Peroxiredoxin I plays a protective role against cisplatin cytotoxicity through mitogen activated kinase signalsOral Oncol451037-10432009. 459. Ma D, Warabi E, Yanagawa T, Kimura S, Harada H, Yamagata K, and Ishii T. Peroxiredoxin I plays a protective role against cisplatin cytotoxicity through mitogen activated kinase signals. Oral Oncol 45: 1037–1043, 2009.
460.
Magaki SRaghavan RMueller COberg KCVinters HVKirsch WM. Iron, copper, and iron regulatory protein 2 in Alzheimer's disease and related dementiasNeurosci Lett41872-762007. 460. Magaki S, Raghavan R, Mueller C, Oberg KC, Vinters HV, and Kirsch WM. Iron, copper, and iron regulatory protein 2 in Alzheimer's disease and related dementias. Neurosci Lett 418: 72–76, 2007.
461.
Magnusson CGBjörnstedt MHolmgren A. Human IgG is substrate for the thioredoxin system: differential cleavage pattern of interchain disulfide bridges in IgG subclassesMol Immunol34709-7171997. 461. Magnusson CG, Björnstedt M, and Holmgren A. Human IgG is substrate for the thioredoxin system: differential cleavage pattern of interchain disulfide bridges in IgG subclasses. Mol Immunol 34: 709–717, 1997.
462.
Malaspina AKaushik NDe Belleroche J. Differential expression of 14 genes in amyotrophic lateral sclerosis spinal cord detected using gridded cDNA arraysJ Neurochem77132-1452001. 462. Malaspina A, Kaushik N, and De Belleroche J. Differential expression of 14 genes in amyotrophic lateral sclerosis spinal cord detected using gridded cDNA arrays. J Neurochem 77: 132–145, 2001.
463.
Malik GGorbounov NDas SGurusamy NOtani HMaulik NGoswami SDas DK. Ischemic preconditioning triggers nuclear translocation of thioredoxin and its interaction with Ref-1 potentiating a survival signal through the PI-3-kinase-Akt pathwayAntioxid Redox Signal82101-21092006. 463. Malik G, Gorbounov N, Das S, Gurusamy N, Otani H, Maulik N, Goswami S, and Das DK. Ischemic preconditioning triggers nuclear translocation of thioredoxin and its interaction with Ref-1 potentiating a survival signal through the PI-3-kinase-Akt pathway. Antioxid Redox Signal 8: 2101–2109, 2006.
464.
Malik GNagy NHo Y-SMaulik NDas DK. Role of glutaredoxin-1 in cardioprotection: an insight with Glrx1 transgenic and knockout animalsJ Mol Cell Cardiol44261-2692008. 464. Malik G, Nagy N, Ho Y-S, Maulik N, and Das DK. Role of glutaredoxin-1 in cardioprotection: an insight with Glrx1 transgenic and knockout animals. J Mol Cell Cardiol 44: 261–269, 2008.
465.
Mannick JB. Regulation of apoptosis by protein S-nitrosylationAmino Acids32523-5262007. 465. Mannick JB. Regulation of apoptosis by protein S-nitrosylation. Amino Acids 32: 523–526, 2007.
466.
Mansfield KDGuzy RDPan YYoung RMCash TPSchumacker PTSimon MC. Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activationCell Metab1393-3992005. 466. Mansfield KD, Guzy RD, Pan Y, Young RM, Cash TP, Schumacker PT, and Simon MC. Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation. Cell Metab 1: 393–399, 2005.
467.
Marino SMGladyshev VN. Structural analysis of cysteine S-nitrosylation: a modified acid-based motif and the emerging role of trans-nitrosylationJ Mol Biol395844-8592010. 467. Marino SM and Gladyshev VN. Structural analysis of cysteine S-nitrosylation: a modified acid-based motif and the emerging role of trans-nitrosylation. J Mol Biol 395: 844–859, 2010.
468.
Markovic JGarcía-Gimenez JLGimeno AViña JPallardó FV. Role of glutathione in cell nucleusFree Radic Res44721-7332010. 468. Markovic J, García-Gimenez JL, Gimeno A, Viña J, and Pallardó FV. Role of glutathione in cell nucleus. Free Radic Res 44: 721–733, 2010.
469.
Marquez VEArias DGPiattoni CVRobello CIglesias AAGuerrero SA. Cloning, expression, and characterization of a dithiol glutaredoxin from Trypanosoma cruziAntioxid Redox Signal12787-7922010. 469. Marquez VE, Arias DG, Piattoni CV, Robello C, Iglesias AA, and Guerrero SA. Cloning, expression, and characterization of a dithiol glutaredoxin from Trypanosoma cruzi. Antioxid Redox Signal 12: 787–792, 2010.
470.
Martinez-Vicente MSovak GCuervo AM. Protein degradation and agingExp Gerontol40622-6332005. 470. Martinez-Vicente M, Sovak G, and Cuervo AM. Protein degradation and aging. Exp Gerontol 40: 622–633, 2005.
471.
Martin JL. Thioredoxin—a fold for all reasonsStructure3245-2501995. 471. Martin JL. Thioredoxin—a fold for all reasons. Structure 3: 245–250, 1995.
472.
Masoro EJ. Caloric restriction and aging: an updateExp Gerontol35299-3052000. 472. Masoro EJ. Caloric restriction and aging: an update. Exp Gerontol 35: 299–305, 2000.
473.
Matsue HEdelbaum DShalhevet DMizumoto NYang CMummert MEOeda JMasayasu HTakashima A. Generation and function of reactive oxygen species in dendritic cells during antigen presentationJ Immunol1713010-30182003. 473. Matsue H, Edelbaum D, Shalhevet D, Mizumoto N, Yang C, Mummert ME, Oeda J, Masayasu H, and Takashima A. Generation and function of reactive oxygen species in dendritic cells during antigen presentation. J Immunol 171: 3010–3018, 2003.
474.
Matsui MOshima MOshima HTakaku KMaruyama TYodoi JTaketo MM. Early embryonic lethality caused by targeted disruption of the mouse thioredoxin geneDev Biol178179-8151996. 474. Matsui M, Oshima M, Oshima H, Takaku K, Maruyama T, Yodoi J, and Taketo MM. Early embryonic lethality caused by targeted disruption of the mouse thioredoxin gene. Dev Biol 178: 179–815, 1996.
475.
Matsuoka TKajimoto YWatada HKaneto HKishimoto MUmayahara YFujitani YKamada TKawamori RYamasaki Y. Glycation-dependent, reactive oxygen species-mediated suppression of the insulin gene promoter activity in HIT cellsJ Clin Invest99144-1501997. 475. Matsuoka T, Kajimoto Y, Watada H, Kaneto H, Kishimoto M, Umayahara Y, Fujitani Y, Kamada T, Kawamori R, and Yamasaki Y. Glycation-dependent, reactive oxygen species-mediated suppression of the insulin gene promoter activity in HIT cells. J Clin Invest 99: 144–150, 1997.
476.
Matsushima SIde TYamato MMatsusaka HHattori FIkeuchi MKubota TSunagawa KHasegawa YKurihara TOikawa SKinugawa STsutsui H. Overexpression of mitochondrial peroxiredoxin-3 prevents left ventricular remodeling and failure after myocardial infarction in miceCirculation1131779-17862006. 476. Matsushima S, Ide T, Yamato M, Matsusaka H, Hattori F, Ikeuchi M, Kubota T, Sunagawa K, Hasegawa Y, Kurihara T, Oikawa S, Kinugawa S, and Tsutsui H. Overexpression of mitochondrial peroxiredoxin-3 prevents left ventricular remodeling and failure after myocardial infarction in mice. Circulation 113: 1779–1786, 2006.
477.
Matsushima SZablocki DSadoshima J. Application of recombinant thioredoxin1 for treatment of heart diseaseJ Mol Cell Cardiol51570-5732011. 477. Matsushima S, Zablocki D, and Sadoshima J. Application of recombinant thioredoxin1 for treatment of heart disease. J Mol Cell Cardiol 51: 570–573, 2011.
478.
Matsushima YNanri HNara SOkufuji TOhta MHachisuka KIkeda M. Hindlimb unloading decreases thioredoxin-related antioxidant proteins and increases thioredoxin-binding protein-2 in rat skeletal muscleFree Radic Res40715-7222006. 478. Matsushima Y, Nanri H, Nara S, Okufuji T, Ohta M, Hachisuka K, and Ikeda M. Hindlimb unloading decreases thioredoxin-related antioxidant proteins and increases thioredoxin-binding protein-2 in rat skeletal muscle. Free Radic Res 40: 715–722, 2006.
479.
Matsuzawa AIchijo H. Redox control of cell fate by MAP kinase: physiological roles of ASK1-MAP kinase pathway in stress signalingBiochim Biophys Acta17801325-13362008. 479. Matsuzawa A and Ichijo H. Redox control of cell fate by MAP kinase: physiological roles of ASK1-MAP kinase pathway in stress signaling. Biochim Biophys Acta 1780: 1325–1336, 2008.
480.
Matthews JRWakasugi NVirelizier JLYodoi JHay RT. Thioredoxin regulates the DNA binding activity of NF-kappa B by reduction of a disulphide bond involving cysteine 62Nucleic Acids Res203821-38301992. 480. Matthews JR, Wakasugi N, Virelizier JL, Yodoi J, and Hay RT. Thioredoxin regulates the DNA binding activity of NF-kappa B by reduction of a disulphide bond involving cysteine 62. Nucleic Acids Res 20: 3821–3830, 1992.
481.
Maurice MMNakamura HGringhuis SOkamoto TYoshida SKullmann FLechner SVan der Voort EALeow AVersendaal JMuller-Ladner UYodoi JTak PPBreedveld FCVerweij CL. Expression of the thioredoxin-thioredoxin reductase system in the inflamed joints of patients with rheumatoid arthritisArthritis Rheum422430-24391999. 481. Maurice MM, Nakamura H, Gringhuis S, Okamoto T, Yoshida S, Kullmann F, Lechner S, Van der Voort EA, Leow A, Versendaal J, Muller-Ladner U, Yodoi J, Tak PP, Breedveld FC, and Verweij CL. Expression of the thioredoxin-thioredoxin reductase system in the inflamed joints of patients with rheumatoid arthritis. Arthritis Rheum 42: 2430–2439, 1999.
482.
May JMMendiratta SHill KEBurk RF. Reduction of dehydroascorbate to ascorbate by the selenoenzyme thioredoxin reductaseJ Biol Chem27222607-226101997. 482. May JM, Mendiratta S, Hill KE, and Burk RF. Reduction of dehydroascorbate to ascorbate by the selenoenzyme thioredoxin reductase. J Biol Chem 272: 22607–22610, 1997.
483.
Ma ZAZhao ZTurk J. Mitochondrial dysfunction and β-cell failure in type 2 diabetes mellitusExp Diabetes Res20127035382012. 483. Ma ZA, Zhao Z, and Turk J. Mitochondrial dysfunction and β-cell failure in type 2 diabetes mellitus. Exp Diabetes Res 2012: 703538, 2012.
484.
McCord JMFridovich I. The utility of superoxide dismutase in studying free radical reactions. I. Radicals generated by the interaction of sulfite, dimethyl sulfoxide, and oxygenJ Biol Chem2446056-60631969. 484. McCord JM and Fridovich I. The utility of superoxide dismutase in studying free radical reactions. I. Radicals generated by the interaction of sulfite, dimethyl sulfoxide, and oxygen. J Biol Chem 244: 6056–6063, 1969.
485.
McCord JMFridovich I. The utility of superoxide dismutase in studying free radical reactions. II. The mechanism of the mediation of cytochrome c reduction by a variety of electron carriersJ Biol Chem2451374-13771970. 485. McCord JM and Fridovich I. The utility of superoxide dismutase in studying free radical reactions. II. The mechanism of the mediation of cytochrome c reduction by a variety of electron carriers. J Biol Chem 245: 1374–1377, 1970.
486.
McDonagh BPadilla CAPedrajas JRBárcena JA. Biosynthetic and iron metabolism is regulated by thiol proteome changes dependent on glutaredoxin-2 and mitochondrial peroxiredoxin-1 in Saccharomyces cerevisiaeJ Biol Chem28615565-155762011. 486. McDonagh B, Padilla CA, Pedrajas JR, and Bárcena JA. Biosynthetic and iron metabolism is regulated by thiol proteome changes dependent on glutaredoxin-2 and mitochondrial peroxiredoxin-1 in Saccharomyces cerevisiae. J Biol Chem 286: 15565–15576, 2011.
487.
McIntyre LAFergusson DAHébert PCMoher DHutchison JS. Prolonged therapeutic hypothermia after traumatic brain injury in adults: a systematic reviewJAMA2892992-29992003. 487. McIntyre LA, Fergusson DA, Hébert PC, Moher D, and Hutchison JS. Prolonged therapeutic hypothermia after traumatic brain injury in adults: a systematic review. JAMA 289: 2992–2999, 2003.
488.
Meister A. Biosynthesis and functions of glutathione, an essential biofactorJ Nutr Sci Vitaminol SpecNo1-61992. 488. Meister A. Biosynthesis and functions of glutathione, an essential biofactor. J Nutr Sci Vitaminol Spec No:1–6, 1992.
489.
Meister AAnderson ME. GlutathioneAnnu Rev Biochem52711-7601983. 489. Meister A and Anderson ME. Glutathione. Annu Rev Biochem 52: 711–760, 1983.
490.
Mesecke NMittler SEckers EHerrmann JMDeponte M. Two novel monothiol glutaredoxins from Saccharomyces cerevisiae provide further insight into iron-sulfur cluster binding, oligomerization, and enzymatic activity of glutaredoxinsBiochemistry471452-14632008. 490. Mesecke N, Mittler S, Eckers E, Herrmann JM, and Deponte M. Two novel monothiol glutaredoxins from Saccharomyces cerevisiae provide further insight into iron-sulfur cluster binding, oligomerization, and enzymatic activity of glutaredoxins. Biochemistry 47: 1452–1463, 2008.
491.
Messina JPLawrence DA. Cell cycle progression of glutathione-depleted human peripheral blood mononuclear cells is inhibited at S phaseJ Immunol1431974-19811989. 491. Messina JP and Lawrence DA. Cell cycle progression of glutathione-depleted human peripheral blood mononuclear cells is inhibited at S phase. J Immunol 143: 1974–1981, 1989.
492.
Metzen EZhou JJelkmann WFandrey JBrüne B. Nitric oxide impairs normoxic degradation of HIF-1alpha by inhibition of prolyl hydroxylasesMol Biol Cell143470-34812003. 492. Metzen E, Zhou J, Jelkmann W, Fandrey J, and Brüne B. Nitric oxide impairs normoxic degradation of HIF-1alpha by inhibition of prolyl hydroxylases. Mol Biol Cell 14: 3470–3481, 2003.
493.
Meyer LMLöfgren SHo Y-SLou MWegener AHolz FSöderberg P. Absence of glutaredoxin1 increases lens susceptibility to oxidative stress induced by UVR-BExp Eye Res89833-8392009. 493. Meyer LM, Löfgren S, Ho Y-S, Lou M, Wegener A, Holz F, and Söderberg P. Absence of glutaredoxin1 increases lens susceptibility to oxidative stress induced by UVR-B. Exp Eye Res 89: 833–839, 2009.
494.
Meyer MPahl HLBaeuerle PA. Regulation of the transcription factors NF-kappa B and AP-1 by redox changesChem Biol Interact9191-1001994. 494. Meyer M, Pahl HL, and Baeuerle PA. Regulation of the transcription factors NF-kappa B and AP-1 by redox changes. Chem Biol Interact 91: 91–100, 1994.
495.
Mieyal JJGallogly MMQanungo SSabens EAShelton MD. Molecular mechanisms and clinical implications of reversible protein S-glutathionylationAntioxid Redox Signal101941-19882008. 495. Mieyal JJ, Gallogly MM, Qanungo S, Sabens EA, and Shelton MD. Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antioxid Redox Signal 10: 1941–1988, 2008.
496.
Miller JA Jr.Miller FSWestin B. Hypothermia in the treatment of asphyxia neonatorumBiol Neonat6148-1631964. 496. Miller JA Jr., Miller FS, and Westin B. Hypothermia in the treatment of asphyxia neonatorum. Biol Neonat 6: 148–163, 1964.
497.
Miranda-Vizuete AGustafsson JASpyrou G. Molecular cloning and expression of a cDNA encoding a human thioredoxin-like proteinBiochem Biophys Res Commun243284-2881998. 497. Miranda-Vizuete A, Gustafsson JA, and Spyrou G. Molecular cloning and expression of a cDNA encoding a human thioredoxin-like protein. Biochem Biophys Res Commun 243: 284–288, 1998.
498.
Miranda-Vizuete ALjung JDamdimopoulos AEGustafsson JAOko RPelto-Huikko MSpyrou G. Characterization of Sptrx, a novel member of the thioredoxin family specifically expressed in human spermatozoaJ Biol Chem27631567-315742001. 498. Miranda-Vizuete A, Ljung J, Damdimopoulos AE, Gustafsson JA, Oko R, Pelto-Huikko M, and Spyrou G. Characterization of Sptrx, a novel member of the thioredoxin family specifically expressed in human spermatozoa. J Biol Chem 276: 31567–31574, 2001.
499.
Miseta ACsutora P. Relationship between the occurrence of cysteine in proteins and the complexity of organismsMol Biol Evol171232-12392000. 499. Miseta A and Csutora P. Relationship between the occurrence of cysteine in proteins and the complexity of organisms. Mol Biol Evol 17: 1232–1239, 2000.
500.
Misra MKSarwat MBhakuni PTuteja RTuteja N. Oxidative stress and ischemic myocardial syndromesMed Sci Monit15RA209-RA2192009. 500. Misra MK, Sarwat M, Bhakuni P, Tuteja R, and Tuteja N. Oxidative stress and ischemic myocardial syndromes. Med Sci Monit 15: RA209–RA219, 2009.
References 501 through 873 have been omitted.

Information & Authors

Information

Published In

cover image Antioxidants & Redox Signaling
Antioxidants & Redox Signaling
Volume 19Issue Number 13November 1, 2013
Pages: 1539 - 1605
PubMed: 23397885

History

Published in print: November 1, 2013
Published online: 17 October 2013
Published ahead of print: 28 March 2013
Published ahead of production: 11 February 2013
Accepted: 7 February 2013
Revision received: 1 February 2013
Received: 5 March 2012

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Eva-Maria Hanschmann
Institute for Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz Arndt University, Greifswald, Germany.
José Rodrigo Godoy
Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria.
Carsten Berndt
Department of Neurology, Medical Faculty, Heinrich-Heine University, Duesseldorf, Germany.
Christoph Hudemann
Institute of Laboratory Medicine, Molecular Diagnostics, Philipps University, Marburg, Germany.
Christopher Horst Lillig
Institute for Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz Arndt University, Greifswald, Germany.

Notes

Reviewing Editors: José Bárcena, Aron B. Fisher, Leopold Flohé, Pietro Ghezzi, Juan-José Lázaro, John J. Mieyal, and Fulvio Ursini
Address correspondence to:Dr. Christopher Horst LilligInstitut für Biochemie und MolekularbiologieUniversitätsmedizin Greifswald KdöRErnst Moritz Arndt UniversitätFleischmannstr. 42-4417475 GreifswaldGermany
E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top