Review Article
No access
Published Online: 14 February 2013

Angiogenesis in the Infarcted Myocardium

Publication: Antioxidants & Redox Signaling
Volume 18, Issue Number 9

Abstract

Significance: Proangiogenic therapy appeared a promising strategy for the treatment of patients with acute myocardial infarction (MI), as de novo formation of microvessels, has the potential to salvage ischemic myocardium at early stages after MI, and is also essential to prevent the transition to heart failure through the control of cardiomyocyte hypertrophy and contractility. Recent Advances: Exciting preclinical studies evaluating proangiogenic therapies for MI have prompted the initiation of numerous clinical trials based on protein or gene transfer delivery of growth factors and administration of stem/progenitor cells, mainly from bone marrow origin. Nonetheless, these clinical trials showed mixed results in patients with acute MI. Critical Issues: Even though methodological caveats, such as way of delivery for angiogenic growth factors (e.g., protein vs. gene transfer) and stem/progenitor cells or isolation/culture procedure for regenerative cells might partially explain the failure of such trials, it appears that delivery of a single growth factor or cell type does not support angiogenesis sufficiently to promote cardiac repair. Future Directions: Optimization of proangiogenic therapies might include stimulation of both angiogenesis and vessel maturation and/or the use of additional sources of stem/progenitor cells, such as cardiac progenitor cells. Experimental unraveling of the mechanisms of angiogenesis, vessel maturation, and endothelial cell/cardiomyocyte cross talk in the ischemic heart, analysis of emerging pathways, as well as a better understanding of how cardiovascular risk factors impact endogenous and therapeutically stimulated angiogenesis, would undoubtedly pave the way for the development of novel and hopefully efficient angiogenesis targeting therapeutics for the treatment of acute MI. Antioxid. Redox Signal. 18, 1100–1113.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Aicher ARentsch MSasaki KEllwart JWFandrich FSiebert RCooke JPDimmeler SHeeschen C. Nonbone marrow-derived circulating progenitor cells contribute to postnatal neovascularization following tissue ischemiaCirc Res100581-5892007. 1. Aicher A, Rentsch M, Sasaki K, Ellwart JW, Fandrich F, Siebert R, Cooke JP, Dimmeler S, and Heeschen C. Nonbone marrow-derived circulating progenitor cells contribute to postnatal neovascularization following tissue ischemia. Circ Res 100: 581–589, 2007.
2.
Alitalo KCarmeliet P. Molecular mechanisms of lymphangiogenesis in health and diseaseCancer Cell1219-2272002. 2. Alitalo K and Carmeliet P. Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell 1: 219–227, 2002.
3.
Arras MIto WDScholz DWinkler BSchaper JSchaper W. Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimbJ Clin Invest10140-501998. 3. Arras M, Ito WD, Scholz D, Winkler B, Schaper J, and Schaper W. Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J Clin Invest 101: 40–50, 1998.
4.
Asahara TMurohara TSullivan ASilver Mvan der Zee RLi TWitzenbichler BSchatteman GIsner JM. Isolation of putative progenitor endothelial cells for angiogenesisScience275964-9671997. 4. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, and Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275: 964–967, 1997.
5.
Assmus BSchachinger VTeupe CBritten MLehmann RDobert NGrunwald FAicher AUrbich CMartin HHoelzer DDimmeler SZeiher AM. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI)Circulation1063009-30172002. 5. Assmus B, Schachinger V, Teupe C, Britten M, Lehmann R, Dobert N, Grunwald F, Aicher A, Urbich C, Martin H, Hoelzer D, Dimmeler S, and Zeiher AM. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 106: 3009–3017, 2002.
6.
Autiero MWaltenberger JCommuni DKranz AMoons LLambrechts DKroll JPlaisance SDe Mol MBono FKliche SFellbrich GBallmer-Hofer KMaglione DMayr-Beyrle UDewerchin MDombrowski SStanimirovic DVan Hummelen PDehio CHicklin DJPersico GHerbert JMShibuya MCollen DConway EMCarmeliet P. Role of PlGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1Nat Med9936-9432003. 6. Autiero M, Waltenberger J, Communi D, Kranz A, Moons L, Lambrechts D, Kroll J, Plaisance S, De Mol M, Bono F, Kliche S, Fellbrich G, Ballmer-Hofer K, Maglione D, Mayr-Beyrle U, Dewerchin M, Dombrowski S, Stanimirovic D, Van Hummelen P, Dehio C, Hicklin DJ, Persico G, Herbert JM, Shibuya M, Collen D, Conway EM, and Carmeliet P. Role of PlGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nat Med 9: 936–943, 2003.
7.
Banai SJaklitsch MTCasscells WShou MShrivastav SCorrea REpstein SEUnger EF. Effects of acidic fibroblast growth factor on normal and ischemic myocardiumCirc Res6976-851991. 7. Banai S, Jaklitsch MT, Casscells W, Shou M, Shrivastav S, Correa R, Epstein SE, and Unger EF. Effects of acidic fibroblast growth factor on normal and ischemic myocardium. Circ Res 69: 76–85, 1991.
8.
Bao WQin PNeedle SErickson-Miller CLDuffy KJAriazi JLZhao SOlzinski ARBehm DJPipes GCJucker BMHu ELepore JJWillette RN. Chronic inhibition of hypoxia-inducible factor prolyl 4-hydroxylase improves ventricular performance, remodeling, and vascularity after myocardial infarction in the ratJ Cardiovasc Pharmacol56147-1552010. 8. Bao W, Qin P, Needle S, Erickson-Miller CL, Duffy KJ, Ariazi JL, Zhao S, Olzinski AR, Behm DJ, Pipes GC, Jucker BM, Hu E, Lepore JJ, and Willette RN. Chronic inhibition of hypoxia-inducible factor prolyl 4-hydroxylase improves ventricular performance, remodeling, and vascularity after myocardial infarction in the rat. J Cardiovasc Pharmacol 56: 147–155, 2010.
9.
Battler AScheinowitz MBor AHasdai DVered ZDi Segni EVarda-Bloom NNass DEngelberg SEldar M et al. Intracoronary injection of basic fibroblast growth factor enhances angiogenesis in infarcted swine myocardiumJ Am Coll Cardiol222001-20061993. 9. Battler A, Scheinowitz M, Bor A, Hasdai D, Vered Z, Di Segni E, Varda-Bloom N, Nass D, Engelberg S, Eldar M, and et al. Intracoronary injection of basic fibroblast growth factor enhances angiogenesis in infarcted swine myocardium. J Am Coll Cardiol 22: 2001–2006, 1993.
10.
Bekkers SCYazdani SKVirmani RWaltenberger J. Microvascular obstruction: underlying pathophysiology and clinical diagnosisJ Am Coll Cardiol551649-16602010. 10. Bekkers SC, Yazdani SK, Virmani R, and Waltenberger J. Microvascular obstruction: underlying pathophysiology and clinical diagnosis. J Am Coll Cardiol 55: 1649–1660, 2010.
11.
Beltrami APBarlucchi LTorella DBaker MLimana FChimenti SKasahara HRota MMusso EUrbanek KLeri AKajstura JNadal-Ginard BAnversa P. Adult cardiac stem cells are multipotent and support myocardial regenerationCell114763-7762003. 11. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, and Anversa P. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114: 763–776, 2003.
12.
Bolli RChugh ARD'Amario DLoughran JHStoddard MFIkram SBeache GMWagner SGLeri AHosoda TSanada FElmore JBGoichberg PCappetta DSolankhi NKFahsah IRokosh DGSlaughter MSKajstura JAnversa P. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trialLancet3781847-18572011. 12. Bolli R, Chugh AR, D'Amario D, Loughran JH, Stoddard MF, Ikram S, Beache GM, Wagner SG, Leri A, Hosoda T, Sanada F, Elmore JB, Goichberg P, Cappetta D, Solankhi NK, Fahsah I, Rokosh DG, Slaughter MS, Kajstura J, and Anversa P. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378: 1847–1857, 2011.
13.
Bonauer ACarmona GIwasaki MMione MKoyanagi MFischer ABurchfield JFox HDoebele COhtani KChavakis EPotente MTjwa MUrbich CZeiher AMDimmeler S. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in miceScience3241710-17132009. 13. Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A, Burchfield J, Fox H, Doebele C, Ohtani K, Chavakis E, Potente M, Tjwa M, Urbich C, Zeiher AM, and Dimmeler S. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324: 1710–1713, 2009.
14.
Bry MKivela RHolopainen TAnisimov ATammela TSoronen JSilvola JSaraste AJeltsch MKorpisalo PCarmeliet PLemstrom KBShibuya MYla-Herttuala SAlhonen LMervaala EAndersson LCKnuuti JAlitalo K. Vascular endothelial growth factor-B acts as a coronary growth factor in transgenic rats without inducing angiogenesis, vascular leak, or inflammationCirculation1221725-17332010. 14. Bry M, Kivela R, Holopainen T, Anisimov A, Tammela T, Soronen J, Silvola J, Saraste A, Jeltsch M, Korpisalo P, Carmeliet P, Lemstrom KB, Shibuya M, Yla-Herttuala S, Alhonen L, Mervaala E, Andersson LC, Knuuti J, and Alitalo K. Vascular endothelial growth factor-B acts as a coronary growth factor in transgenic rats without inducing angiogenesis, vascular leak, or inflammation. Circulation 122: 1725–1733, 2010.
15.
Cao RBrakenhielm EPawliuk RWariaro DPost MJWahlberg ELeboulch PCao Y. Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2Nat Med9604-6132003. 15. Cao R, Brakenhielm E, Pawliuk R, Wariaro D, Post MJ, Wahlberg E, Leboulch P, and Cao Y. Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat Med 9: 604–613, 2003.
16.
Cao REriksson AKubo HAlitalo KCao YThyberg J. Comparative evaluation of FGF-2-, VEGF-A-, and VEGF-C-induced angiogenesis, lymphangiogenesis, vascular fenestrations, and permeabilityCirc Res94664-6702004. 16. Cao R, Eriksson A, Kubo H, Alitalo K, Cao Y, and Thyberg J. Comparative evaluation of FGF-2-, VEGF-A-, and VEGF-C-induced angiogenesis, lymphangiogenesis, vascular fenestrations, and permeability. Circ Res 94: 664–670, 2004.
17.
Capoccia BJGregory ADLink DC. Recruitment of the inflammatory subset of monocytes to sites of ischemia induces angiogenesis in a monocyte chemoattractant protein-1-dependent fashionJ Leukoc Biol84760-7682008. 17. Capoccia BJ, Gregory AD, and Link DC. Recruitment of the inflammatory subset of monocytes to sites of ischemia induces angiogenesis in a monocyte chemoattractant protein-1-dependent fashion. J Leukoc Biol 84: 760–768, 2008.
18.
Caporali AMeloni MVollenkle CBonci DSala-Newby GBAddis RSpinetti GLosa SMasson RBaker AHAgami Rle Sage CCondorelli GMadeddu PMartelli FEmanueli C. Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemiaCirculation123282-2912011. 18. Caporali A, Meloni M, Vollenkle C, Bonci D, Sala-Newby GB, Addis R, Spinetti G, Losa S, Masson R, Baker AH, Agami R, le Sage C, Condorelli G, Madeddu P, Martelli F, and Emanueli C. Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia. Circulation 123: 282–291, 2011.
19.
Carmeliet PJain RK. Molecular mechanisms and clinical applications of angiogenesisNature473298-3072011. 19. Carmeliet P and Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature 473: 298–307, 2011.
20.
Ceradini DJKulkarni ARCallaghan MJTepper OMBastidas NKleinman MECapla JMGaliano RDLevine JPGurtner GC. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1Nat Med10858-8642004. 20. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, and Gurtner GC. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10: 858–864, 2004.
21.
Cho HJLee NLee JYChoi YJIi MWecker AJeong JOCurry CQin GYoon YS. Role of host tissues for sustained humoral effects after endothelial progenitor cell transplantation into the ischemic heartJ Exp Med2043257-32692007. 21. Cho HJ, Lee N, Lee JY, Choi YJ, Ii M, Wecker A, Jeong JO, Curry C, Qin G, and Yoon YS. Role of host tissues for sustained humoral effects after endothelial progenitor cell transplantation into the ischemic heart. J Exp Med 204: 3257–3269, 2007.
22.
Cochain CRodero MPVilar JRecalde ARichart ALLoinard CZouggari YGuerin CDuriez MCombadiere BPoupel LLevy BIMallat ZCombadiere CSilvestre JS. Regulation of monocyte subset systemic levels by distinct chemokine receptors controls post-ischaemic neovascularizationCardiovasc Res88186-1952010. 22. Cochain C, Rodero MP, Vilar J, Recalde A, Richart AL, Loinard C, Zouggari Y, Guerin C, Duriez M, Combadiere B, Poupel L, Levy BI, Mallat Z, Combadiere C, and Silvestre JS. Regulation of monocyte subset systemic levels by distinct chemokine receptors controls post-ischaemic neovascularization. Cardiovasc Res 88: 186–195, 2010.
23.
Di Santo SYang ZWyler von Ballmoos MVoelzmann JDiehm NBaumgartner IKalka C. Novel cell-free strategy for therapeutic angiogenesis: in vitro generated conditioned medium can replace progenitor cell transplantationPLoS One4e56432009. 23. Di Santo S, Yang Z, Wyler von Ballmoos M, Voelzmann J, Diehm N, Baumgartner I, and Kalka C. Novel cell-free strategy for therapeutic angiogenesis: in vitro generated conditioned medium can replace progenitor cell transplantation. PLoS One 4: e5643, 2009.
24.
Ding BSNolan DJButler JMJames DBabazadeh AORosenwaks ZMittal VKobayashi HShido KLyden DSato TNRabbany SYRafii S. Inductive angiocrine signals from sinusoidal endothelium are required for liver regenerationNature468310-3152010. 24. Ding BS, Nolan DJ, Butler JM, James D, Babazadeh AO, Rosenwaks Z, Mittal V, Kobayashi H, Shido K, Lyden D, Sato TN, Rabbany SY, and Rafii S. Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature 468: 310–315, 2010.
25.
Ding BSNolan DJGuo PBabazadeh AOCao ZRosenwaks ZCrystal RGSimons MSato TNWorgall SShido KRabbany SYRafii S. Endothelial-derived angiocrine signals induce and sustain regenerative lung alveolarizationCell147539-5532011. 25. Ding BS, Nolan DJ, Guo P, Babazadeh AO, Cao Z, Rosenwaks Z, Crystal RG, Simons M, Sato TN, Worgall S, Shido K, Rabbany SY, and Rafii S. Endothelial-derived angiocrine signals induce and sustain regenerative lung alveolarization. Cell 147: 539–553, 2011.
26.
Dobrucki LWTsutsumi YKalinowski LDean JGavin MSen SMendizabal MSinusas AJAikawa R. Analysis of angiogenesis induced by local IGF-1 expression after myocardial infarction using microSPECT-CT imagingJ Mol Cell Cardiol481071-10792010. 26. Dobrucki LW, Tsutsumi Y, Kalinowski L, Dean J, Gavin M, Sen S, Mendizabal M, Sinusas AJ, and Aikawa R. Analysis of angiogenesis induced by local IGF-1 expression after myocardial infarction using microSPECT-CT imaging. J Mol Cell Cardiol 48: 1071–1079, 2010.
27.
Fadini GPLosordo DDimmeler S. Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic useCirc Res110624-6372012. 27. Fadini GP, Losordo D, and Dimmeler S. Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circ Res 110: 624–637, 2012.
28.
Feihl FLiaudet LLevy BIWaeber B. Hypertension and microvascular remodellingCardiovasc Res78274-2852008. 28. Feihl F, Liaudet L, Levy BI, and Waeber B. Hypertension and microvascular remodelling. Cardiovasc Res 78: 274–285, 2008.
29.
Ferrara NGerber HPLeCouter J. The biology of VEGF and its receptorsNat Med9669-6762003. 29. Ferrara N, Gerber HP, and LeCouter J. The biology of VEGF and its receptors. Nat Med 9: 669–676, 2003.
30.
Fiedler JJazbutyte VKirchmaier BCGupta SKLorenzen JHartmann DGaluppo PKneitz SPena JTSohn-Lee CLoyer XSoutschek JBrand TTuschl THeineke JMartin USchulte-Merker SErtl GEngelhardt SBauersachs JThum T. MicroRNA-24 regulates vascularity after myocardial infarctionCirculation124720-7302011. 30. Fiedler J, Jazbutyte V, Kirchmaier BC, Gupta SK, Lorenzen J, Hartmann D, Galuppo P, Kneitz S, Pena JT, Sohn-Lee C, Loyer X, Soutschek J, Brand T, Tuschl T, Heineke J, Martin U, Schulte-Merker S, Ertl G, Engelhardt S, Bauersachs J, and Thum T. MicroRNA-24 regulates vascularity after myocardial infarction. Circulation 124: 720–730, 2011.
31.
Foubert PMatrone GSouttou BLere-Dean CBarateau VPlouet JLe Ricousse-Roussanne SLevy BISilvestre JSTobelem G. Coadministration of endothelial and smooth muscle progenitor cells enhances the efficiency of proangiogenic cell-based therapyCirc Res103751-7602008. 31. Foubert P, Matrone G, Souttou B, Lere-Dean C, Barateau V, Plouet J, Le Ricousse-Roussanne S, Levy BI, Silvestre JS, and Tobelem G. Coadministration of endothelial and smooth muscle progenitor cells enhances the efficiency of proangiogenic cell-based therapy. Circ Res 103: 751–760, 2008.
32.
Foubert PSilvestre JSSouttou BBarateau VMartin CEbrahimian TGLere-Dean CContreres JOSulpice ELevy BIPlouet JTobelem GLe Ricousse-Roussanne S. PSGL-1-mediated activation of EphB4 increases the proangiogenic potential of endothelial progenitor cellsJ Clin Invest1171527-15372007. 32. Foubert P, Silvestre JS, Souttou B, Barateau V, Martin C, Ebrahimian TG, Lere-Dean C, Contreres JO, Sulpice E, Levy BI, Plouet J, Tobelem G, and Le Ricousse-Roussanne S. PSGL-1-mediated activation of EphB4 increases the proangiogenic potential of endothelial progenitor cells. J Clin Invest 117: 1527–1537, 2007.
33.
Fraccarollo DWidder JDGaluppo PThum TTsikas DHoffmann MRuetten HErtl GBauersachs J. Improvement in left ventricular remodeling by the endothelial nitric oxide synthase enhancer AVE9488 after experimental myocardial infarctionCirculation118818-8272008. 33. Fraccarollo D, Widder JD, Galuppo P, Thum T, Tsikas D, Hoffmann M, Ruetten H, Ertl G, and Bauersachs J. Improvement in left ventricular remodeling by the endothelial nitric oxide synthase enhancer AVE9488 after experimental myocardial infarction. Circulation 118: 818–827, 2008.
34.
Frangogiannis NG. The mechanistic basis of infarct healingAntioxid Redox Signal81907-19392006. 34. Frangogiannis NG. The mechanistic basis of infarct healing. Antioxid Redox Signal 8: 1907–1939, 2006.
35.
Frangogiannis NGSmith CWEntman ML. The inflammatory response in myocardial infarctionCardiovasc Res5331-472002. 35. Frangogiannis NG, Smith CW, and Entman ML. The inflammatory response in myocardial infarction. Cardiovasc Res 53: 31–47, 2002.
36.
Frontini MJNong ZGros RDrangova MO'Neil CRahman MNAkawi OYin HEllis CGPickering JG. Fibroblast growth factor 9 delivery during angiogenesis produces durable, vasoresponsive microvessels wrapped by smooth muscle cellsNat Biotechnol29421-4272011. 36. Frontini MJ, Nong Z, Gros R, Drangova M, O'Neil C, Rahman MN, Akawi O, Yin H, Ellis CG, and Pickering JG. Fibroblast growth factor 9 delivery during angiogenesis produces durable, vasoresponsive microvessels wrapped by smooth muscle cells. Nat Biotechnol 29: 421–427, 2011.
37.
Geissmann FJung SLittman DR. Blood monocytes consist of two principal subsets with distinct migratory propertiesImmunity1971-822003. 37. Geissmann F, Jung S, and Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19: 71–82, 2003.
38.
Ghosh GSubramanian IVAdhikari NZhang XJoshi HPBasi DChandrashekhar YSHall JLRoy SZeng YRamakrishnan S. Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-alpha isoforms and promotes angiogenesisJ Clin Invest1204141-41542010. 38. Ghosh G, Subramanian IV, Adhikari N, Zhang X, Joshi HP, Basi D, Chandrashekhar YS, Hall JL, Roy S, Zeng Y, and Ramakrishnan S. Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-alpha isoforms and promotes angiogenesis. J Clin Invest 120: 4141–4154, 2010.
39.
Giordano FJPing PMcKirnan MDNozaki SDeMaria ANDillmann WHMathieu-Costello OHammond HK. Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heartNat Med2534-5391996. 39. Giordano FJ, Ping P, McKirnan MD, Nozaki S, DeMaria AN, Dillmann WH, Mathieu-Costello O, and Hammond HK. Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart. Nat Med 2: 534–539, 1996.
40.
Greenberg JIShields DJBarillas SGAcevedo LMMurphy EHuang JScheppke LStockmann CJohnson RSAngle NCheresh DA. A role for VEGF as a negative regulator of pericyte function and vessel maturationNature456809-8132008. 40. Greenberg JI, Shields DJ, Barillas SG, Acevedo LM, Murphy E, Huang J, Scheppke L, Stockmann C, Johnson RS, Angle N, and Cheresh DA. A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature 456: 809–813, 2008.
41.
Grundmann SHans FPKinniry SHeinke JHelbing TBluhm FSluijter JPHoefer IPasterkamp GBode CMoser M. MicroRNA-100 regulates neovascularization by suppression of mammalian target of rapamycin in endothelial and vascular smooth muscle cellsCirculation123999-10092011. 41. Grundmann S, Hans FP, Kinniry S, Heinke J, Helbing T, Bluhm F, Sluijter JP, Hoefer I, Pasterkamp G, Bode C, and Moser M. MicroRNA-100 regulates neovascularization by suppression of mammalian target of rapamycin in endothelial and vascular smooth muscle cells. Circulation 123: 999–1009, 2011.
42.
Haider HAkbar SAAshraf M. Angiomyogenesis for myocardial repairAntioxid Redox Signal111929-19442009. 42. Haider H, Akbar SA, and Ashraf M. Angiomyogenesis for myocardial repair. Antioxid Redox Signal 11: 1929–1944, 2009.
43.
Hashimoto EOgita TNakaoka TMatsuoka RTakao AKira Y. Rapid induction of vascular endothelial growth factor expression by transient ischemia in rat heartAm J Physiol267H1948-H19541994. 43. Hashimoto E, Ogita T, Nakaoka T, Matsuoka R, Takao A, and Kira Y. Rapid induction of vascular endothelial growth factor expression by transient ischemia in rat heart. Am J Physiol 267: H1948– H1954, 1994.
44.
Heeschen CLehmann RHonold JAssmus BAicher AWalter DHMartin HZeiher AMDimmeler S. Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart diseaseCirculation1091615-16222004. 44. Heeschen C, Lehmann R, Honold J, Assmus B, Aicher A, Walter DH, Martin H, Zeiher AM, and Dimmeler S. Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation 109: 1615–1622, 2004.
45.
Heil MSchaper W. Influence of mechanical, cellular, and molecular factors on collateral artery growth (arteriogenesis)Circ Res95449-4582004. 45. Heil M and Schaper W. Influence of mechanical, cellular, and molecular factors on collateral artery growth (arteriogenesis). Circ Res 95: 449–458, 2004.
46.
Heil MZiegelhoeffer TPipp FKostin SMartin SClauss MSchaper W. Blood monocyte concentration is critical for enhancement of collateral artery growthAm J Physiol Heart Circ Physiol283H2411-H24192002. 46. Heil M, Ziegelhoeffer T, Pipp F, Kostin S, Martin S, Clauss M, and Schaper W. Blood monocyte concentration is critical for enhancement of collateral artery growth. Am J Physiol Heart Circ Physiol 283: H2411– H2419, 2002.
47.
Heymans SLuttun ANuyens DTheilmeier GCreemers EMoons LDyspersin GDCleutjens JPShipley MAngellilo ALevi MNube OBaker AKeshet ELupu FHerbert JMSmits JFShapiro SDBaes MBorgers MCollen DDaemen MJCarmeliet P. Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failureNat Med51135-11421999. 47. Heymans S, Luttun A, Nuyens D, Theilmeier G, Creemers E, Moons L, Dyspersin GD, Cleutjens JP, Shipley M, Angellilo A, Levi M, Nube O, Baker A, Keshet E, Lupu F, Herbert JM, Smits JF, Shapiro SD, Baes M, Borgers M, Collen D, Daemen MJ, and Carmeliet P. Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med 5: 1135–1142, 1999.
48.
Hirschi KKIngram DAYoder MC. Assessing identity, phenotype, and fate of endothelial progenitor cellsArterioscler Thromb Vasc Biol281584-15952008. 48. Hirschi KK, Ingram DA, and Yoder MC. Assessing identity, phenotype, and fate of endothelial progenitor cells. Arterioscler Thromb Vasc Biol 28: 1584–1595, 2008.
49.
Huang MNguyen PJia FHu SGong Yde Almeida PEWang LNag DKay MAGiaccia AJRobbins RCWu JC. Double knockdown of prolyl hydroxylase and factor-inhibiting hypoxia-inducible factor with nonviral minicircle gene therapy enhances stem cell mobilization and angiogenesis after myocardial infarctionCirculation124S46-S542011. 49. Huang M, Nguyen P, Jia F, Hu S, Gong Y, de Almeida PE, Wang L, Nag D, Kay MA, Giaccia AJ, Robbins RC, and Wu JC. Double knockdown of prolyl hydroxylase and factor-inhibiting hypoxia-inducible factor with nonviral minicircle gene therapy enhances stem cell mobilization and angiogenesis after myocardial infarction. Circulation 124: S46–S54, 2011.
50.
Hur JYoon CHKim HSChoi JHKang HJHwang KKOh BHLee MMPark YB. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesisArterioscler Thromb Vasc Biol24288-2932004. 50. Hur J, Yoon CH, Kim HS, Choi JH, Kang HJ, Hwang KK, Oh BH, Lee MM, and Park YB. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol 24: 288–293, 2004.
51.
Iba OMatsubara HNozawa YFujiyama SAmano KMori YKojima HIwasaka T. Angiogenesis by implantation of peripheral blood mononuclear cells and platelets into ischemic limbsCirculation1062019-20252002. 51. Iba O, Matsubara H, Nozawa Y, Fujiyama S, Amano K, Mori Y, Kojima H, and Iwasaka T. Angiogenesis by implantation of peripheral blood mononuclear cells and platelets into ischemic limbs. Circulation 106: 2019–2025, 2002.
52.
Iwasaki HKawamoto ATjwa MHorii MHayashi SOyamada AMatsumoto TSuehiro SCarmeliet PAsahara T. PlGF repairs myocardial ischemia through mechanisms of angiogenesis, cardioprotection and recruitment of myo-angiogenic competent marrow progenitorsPLoS One6e248722011. 52. Iwasaki H, Kawamoto A, Tjwa M, Horii M, Hayashi S, Oyamada A, Matsumoto T, Suehiro S, Carmeliet P, and Asahara T. PlGF repairs myocardial ischemia through mechanisms of angiogenesis, cardioprotection and recruitment of myo-angiogenic competent marrow progenitors. PLoS One 6: e24872, 2011.
53.
Johnson CSung HJLessner SMFini MEGalis ZS. Matrix metalloproteinase-9 is required for adequate angiogenic revascularization of ischemic tissues: potential role in capillary branchingCirc Res94262-2682004. 53. Johnson C, Sung HJ, Lessner SM, Fini ME, and Galis ZS. Matrix metalloproteinase-9 is required for adequate angiogenic revascularization of ischemic tissues: potential role in capillary branching. Circ Res 94: 262–268, 2004.
54.
Jurgensen JSRosenberger CWiesener MSWarnecke CHorstrup JHGrafe MPhilipp SGriethe WMaxwell PHFrei UBachmann SWillenbrock REckardt KU. Persistent induction of HIF-1alpha and -2alpha in cardiomyocytes and stromal cells of ischemic myocardiumFASEB J181415-14172004. 54. Jurgensen JS, Rosenberger C, Wiesener MS, Warnecke C, Horstrup JH, Grafe M, Philipp S, Griethe W, Maxwell PH, Frei U, Bachmann S, Willenbrock R, and Eckardt KU. Persistent induction of HIF-1alpha and -2alpha in cardiomyocytes and stromal cells of ischemic myocardium. FASEB J 18: 1415–1417, 2004.
55.
Kido MDu LSullivan CCLi XDeutsch RJamieson SWThistlethwaite PA. Hypoxia-inducible factor 1-alpha reduces infarction and attenuates progression of cardiac dysfunction after myocardial infarction in the mouseJ Am Coll Cardiol462116-21242005. 55. Kido M, Du L, Sullivan CC, Li X, Deutsch R, Jamieson SW, and Thistlethwaite PA. Hypoxia-inducible factor 1-alpha reduces infarction and attenuates progression of cardiac dysfunction after myocardial infarction in the mouse. J Am Coll Cardiol 46: 2116–2124, 2005.
56.
Kumar AHCaplice NM. Clinical potential of adult vascular progenitor cellsArterioscler Thromb Vasc Biol301080-10872010. 56. Kumar AH and Caplice NM. Clinical potential of adult vascular progenitor cells. Arterioscler Thromb Vasc Biol 30: 1080–1087, 2010.
57.
Laakkonen PWaltari MHolopainen TTakahashi TPytowski BSteiner PHicklin DPersaud KTonra JRWitte LAlitalo K. Vascular endothelial growth factor receptor 3 is involved in tumor angiogenesis and growthCancer Res67593-5992007. 57. Laakkonen P, Waltari M, Holopainen T, Takahashi T, Pytowski B, Steiner P, Hicklin D, Persaud K, Tonra JR, Witte L, and Alitalo K. Vascular endothelial growth factor receptor 3 is involved in tumor angiogenesis and growth. Cancer Res 67: 593–599, 2007.
58.
Lahteenvuo JELahteenvuo MTKivela ARosenlew CFalkevall AKlar JHeikura TRissanen TTVahakangas EKorpisalo PEnholm BCarmeliet PAlitalo KEriksson UYla-Herttuala S. Vascular endothelial growth factor-B induces myocardium-specific angiogenesis and arteriogenesis via vascular endothelial growth factor receptor-1- and neuropilin receptor-1-dependent mechanismsCirculation119845-8562009. 58. Lahteenvuo JE, Lahteenvuo MT, Kivela A, Rosenlew C, Falkevall A, Klar J, Heikura T, Rissanen TT, Vahakangas E, Korpisalo P, Enholm B, Carmeliet P, Alitalo K, Eriksson U, and Yla-Herttuala S. Vascular endothelial growth factor-B induces myocardium-specific angiogenesis and arteriogenesis via vascular endothelial growth factor receptor-1- and neuropilin receptor-1-dependent mechanisms. Circulation 119: 845–856, 2009.
59.
Landmesser UEngberding NBahlmann FHSchaefer AWiencke AHeineke ASpiekermann SHilfiker-Kleiner DTemplin CKotlarz DMueller MFuchs MHornig BHaller HDrexler H. Statin-induced improvement of endothelial progenitor cell mobilization, myocardial neovascularization, left ventricular function, and survival after experimental myocardial infarction requires endothelial nitric oxide synthaseCirculation1101933-19392004. 59. Landmesser U, Engberding N, Bahlmann FH, Schaefer A, Wiencke A, Heineke A, Spiekermann S, Hilfiker-Kleiner D, Templin C, Kotlarz D, Mueller M, Fuchs M, Hornig B, Haller H, and Drexler H. Statin-induced improvement of endothelial progenitor cell mobilization, myocardial neovascularization, left ventricular function, and survival after experimental myocardial infarction requires endothelial nitric oxide synthase. Circulation 110: 1933–1939, 2004.
60.
Lassaletta ADChu LMSellke FW. Therapeutic neovascularization for coronary disease: current state and future prospectsBasic Res Cardiol106897-9092011. 60. Lassaletta AD, Chu LM, and Sellke FW. Therapeutic neovascularization for coronary disease: current state and future prospects. Basic Res Cardiol 106: 897–909, 2011.
61.
Latronico MVCondorelli G. Therapeutic use of microRNAs in myocardial diseasesCurr Heart Fail Rep8193-1972011. 61. Latronico MV and Condorelli G. Therapeutic use of microRNAs in myocardial diseases. Curr Heart Fail Rep 8: 193–197, 2011.
62.
Lee SHWolf PLEscudero RDeutsch RJamieson SWThistlethwaite PA. Early expression of angiogenesis factors in acute myocardial ischemia and infarctionN Engl J Med342626-6332000. 62. Lee SH, Wolf PL, Escudero R, Deutsch R, Jamieson SW, and Thistlethwaite PA. Early expression of angiogenesis factors in acute myocardial ischemia and infarction. N Engl J Med 342: 626–633, 2000.
63.
Leri AKajstura JAnversa P. Role of cardiac stem cells in cardiac pathophysiology: a paradigm shift in human myocardial biologyCirc Res109941-9612011. 63. Leri A, Kajstura J, and Anversa P. Role of cardiac stem cells in cardiac pathophysiology: a paradigm shift in human myocardial biology. Circ Res 109: 941–961, 2011.
64.
Leucker TMBienengraeber MMuravyeva MBaotic IWeihrauch DBrzezinska AKWarltier DCKersten JRPratt PF Jr. Endothelial-cardiomyocyte crosstalk enhances pharmacological cardioprotectionJ Mol Cell Cardiol51803-8112011. 64. Leucker TM, Bienengraeber M, Muravyeva M, Baotic I, Weihrauch D, Brzezinska AK, Warltier DC, Kersten JR, and Pratt PF, Jr. Endothelial-cardiomyocyte crosstalk enhances pharmacological cardioprotection. J Mol Cell Cardiol 51: 803–811, 2011.
65.
Li JHampton TMorgan JPSimons M. Stretch-induced VEGF expression in the heartJ Clin Invest10018-241997. 65. Li J, Hampton T, Morgan JP, and Simons M. Stretch-induced VEGF expression in the heart. J Clin Invest 100: 18–24, 1997.
66.
Li XTjwa MVan Hove IEnholm BNeven EPaavonen KJeltsch MJuan TDSievers REChorianopoulos EWada HVanwildemeersch MNoel AFoidart JMSpringer MLvon Degenfeld GDewerchin MBlau HMAlitalo KEriksson UCarmeliet PMoons L. Reevaluation of the role of VEGF-B suggests a restricted role in the revascularization of the ischemic myocardiumArterioscler Thromb Vasc Biol281614-16202008. 66. Li X, Tjwa M, Van Hove I, Enholm B, Neven E, Paavonen K, Jeltsch M, Juan TD, Sievers RE, Chorianopoulos E, Wada H, Vanwildemeersch M, Noel A, Foidart JM, Springer ML, von Degenfeld G, Dewerchin M, Blau HM, Alitalo K, Eriksson U, Carmeliet P, and Moons L. Reevaluation of the role of VEGF-B suggests a restricted role in the revascularization of the ischemic myocardium. Arterioscler Thromb Vasc Biol 28: 1614–1620, 2008.
67.
Loinard CGinouves AVilar JCochain CZouggari YRecalde ADuriez MLevy BIPouyssegur JBerra ESilvestre JS. Inhibition of prolyl hydroxylase domain proteins promotes therapeutic revascularizationCirculation12050-592009. 67. Loinard C, Ginouves A, Vilar J, Cochain C, Zouggari Y, Recalde A, Duriez M, Levy BI, Pouyssegur J, Berra E, and Silvestre JS. Inhibition of prolyl hydroxylase domain proteins promotes therapeutic revascularization. Circulation 120: 50–59, 2009.
68.
Losordo DWDimmeler S. Therapeutic angiogenesis and vasculogenesis for ischemic disease: part II: cell-based therapiesCirculation1092692-26972004. 68. Losordo DW and Dimmeler S. Therapeutic angiogenesis and vasculogenesis for ischemic disease: part II: cell-based therapies. Circulation 109: 2692–2697, 2004.
69.
Losordo DWDimmeler S. Therapeutic angiogenesis and vasculogenesis for ischemic disease. Part I: angiogenic cytokinesCirculation1092487-24912004. 69. Losordo DW and Dimmeler S. Therapeutic angiogenesis and vasculogenesis for ischemic disease. Part I: angiogenic cytokines. Circulation 109: 2487–2491, 2004.
70.
Lu HXu XZhang MCao RBrakenhielm ELi CLin HYao GSun HQi LTang MDai HZhang YSu RBi YCao Y. Combinatorial protein therapy of angiogenic and arteriogenic factors remarkably improves collaterogenesis and cardiac function in pigsProc Natl Acad Sci U S A10412140-121452007. 70. Lu H, Xu X, Zhang M, Cao R, Brakenhielm E, Li C, Lin H, Yao G, Sun H, Qi L, Tang M, Dai H, Zhang Y, Su R, Bi Y, and Cao Y. Combinatorial protein therapy of angiogenic and arteriogenic factors remarkably improves collaterogenesis and cardiac function in pigs. Proc Natl Acad Sci U S A 104: 12140–12145, 2007.
71.
Lunde KSolheim SAakhus SArnesen HAbdelnoor MEgeland TEndresen KIlebekk AMangschau AFjeld JGSmith HJTaraldsrud EGrogaard HKBjornerheim RBrekke MMuller CHopp ERagnarsson ABrinchmann JEForfang K. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarctionN Engl J Med3551199-12092006. 71. Lunde K, Solheim S, Aakhus S, Arnesen H, Abdelnoor M, Egeland T, Endresen K, Ilebekk A, Mangschau A, Fjeld JG, Smith HJ, Taraldsrud E, Grogaard HK, Bjornerheim R, Brekke M, Muller C, Hopp E, Ragnarsson A, Brinchmann JE, and Forfang K. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med 355: 1199–1209, 2006.
72.
Luttun ATjwa MMoons LWu YAngelillo-Scherrer ALiao FNagy JAHooper APriller JDe Klerck BCompernolle VDaci EBohlen PDewerchin MHerbert JMFava RMatthys PCarmeliet GCollen DDvorak HFHicklin DJCarmeliet P. Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1Nat Med8831-8402002. 72. Luttun A, Tjwa M, Moons L, Wu Y, Angelillo-Scherrer A, Liao F, Nagy JA, Hooper A, Priller J, De Klerck B, Compernolle V, Daci E, Bohlen P, Dewerchin M, Herbert JM, Fava R, Matthys P, Carmeliet G, Collen D, Dvorak HF, Hicklin DJ, and Carmeliet P. Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med 8: 831–840, 2002.
73.
Lyngbaek SSchneider MHansen JLSheikh SP. Cardiac regeneration by resident stem and progenitor cells in the adult heartBasic Res Cardiol102101-1142007. 73. Lyngbaek S, Schneider M, Hansen JL, and Sheikh SP. Cardiac regeneration by resident stem and progenitor cells in the adult heart. Basic Res Cardiol 102: 101–114, 2007.
74.
Makkar RRSmith RRCheng KMalliaras KThomson LEBerman DCzer LSMarban LMendizabal AJohnston PVRussell SDSchuleri KHLardo ACGerstenblith GMarban E. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trialLancet379895-9042012. 74. Makkar RR, Smith RR, Cheng K, Malliaras K, Thomson LE, Berman D, Czer LS, Marban L, Mendizabal A, Johnston PV, Russell SD, Schuleri KH, Lardo AC, Gerstenblith G, and Marban E. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379: 895–904, 2012.
75.
Martin-Rendon EBrunskill SJHyde CJStanworth SJMathur AWatt SM. Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic reviewEur Heart J291807-18182008. 75. Martin-Rendon E, Brunskill SJ, Hyde CJ, Stanworth SJ, Mathur A, and Watt SM. Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review. Eur Heart J 29: 1807–1818, 2008.
76.
Meloni MCaporali AGraiani GLagrasta CKatare RVan Linthout SSpillmann FCampesi IMadeddu PQuaini FEmanueli C. Nerve growth factor promotes cardiac repair following myocardial infarctionCirc Res1061275-12842010. 76. Meloni M, Caporali A, Graiani G, Lagrasta C, Katare R, Van Linthout S, Spillmann F, Campesi I, Madeddu P, Quaini F, and Emanueli C. Nerve growth factor promotes cardiac repair following myocardial infarction. Circ Res 106: 1275–1284, 2010.
77.
Meyer GPWollert KCLotz JSteffens JLippolt PFichtner SHecker HSchaefer AArseniev LHertenstein BGanser ADrexler H. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months' follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trialCirculation1131287-12942006. 77. Meyer GP, Wollert KC, Lotz J, Steffens J, Lippolt P, Fichtner S, Hecker H, Schaefer A, Arseniev L, Hertenstein B, Ganser A, and Drexler H. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months' follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation 113: 1287–1294, 2006.
78.
Miyagawa SSawa YTaketani SKawaguchi NNakamura TMatsuura NMatsuda H. Myocardial regeneration therapy for heart failure: hepatocyte growth factor enhances the effect of cellular cardiomyoplastyCirculation1052556-25612002. 78. Miyagawa S, Sawa Y, Taketani S, Kawaguchi N, Nakamura T, Matsuura N, and Matsuda H. Myocardial regeneration therapy for heart failure: hepatocyte growth factor enhances the effect of cellular cardiomyoplasty. Circulation 105: 2556–2561, 2002.
79.
Murakami MSimons M. Fibroblast growth factor regulation of neovascularizationCurr Opin Hematol15215-2202008. 79. Murakami M and Simons M. Fibroblast growth factor regulation of neovascularization. Curr Opin Hematol 15: 215–220, 2008.
80.
Nahrendorf MSwirski FKAikawa EStangenberg LWurdinger TFigueiredo JLLibby PWeissleder RPittet MJ. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functionsJ Exp Med2043037-30472007. 80. Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, Libby P, Weissleder R, and Pittet MJ. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204: 3037–3047, 2007.
81.
Narazaki GUosaki HTeranishi MOkita KKim BMatsuoka SYamanaka SYamashita JK. Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cellsCirculation118498-5062008. 81. Narazaki G, Uosaki H, Teranishi M, Okita K, Kim B, Matsuoka S, Yamanaka S, and Yamashita JK. Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation 118: 498–506, 2008.
82.
Nelson TJMartinez-Fernandez AYamada SPerez-Terzic CIkeda YTerzic A. Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cellsCirculation120408-4162009. 82. Nelson TJ, Martinez-Fernandez A, Yamada S, Perez-Terzic C, Ikeda Y, and Terzic A. Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation 120: 408–416, 2009.
83.
Oh YWei HMa DSun XLiew R. Clinical applications of patient-specific induced pluripotent stem cells in cardiovascular medicineHeart98443-4492012. 83. Oh Y, Wei H, Ma D, Sun X, and Liew R. Clinical applications of patient-specific induced pluripotent stem cells in cardiovascular medicine. Heart 98: 443–449, 2012.
84.
Ohki YHeissig BSato YAkiyama HZhu ZHicklin DJShimada KOgawa HDaida HHattori KOhsaka A. Granulocyte colony-stimulating factor promotes neovascularization by releasing vascular endothelial growth factor from neutrophilsFaseb J192005-20072005. 84. Ohki Y, Heissig B, Sato Y, Akiyama H, Zhu Z, Hicklin DJ, Shimada K, Ogawa H, Daida H, Hattori K, and Ohsaka A. Granulocyte colony-stimulating factor promotes neovascularization by releasing vascular endothelial growth factor from neutrophils. Faseb J 19: 2005–2007, 2005.
85.
Onimaru MYonemitsu YFujii TTanii MNakano TNakagawa KKohno RHasegawa MNishikawa SSueishi K. VEGF-C regulates lymphangiogenesis and capillary stability by regulation of PDGF-BAm J Physiol Heart Circ Physiol297H1685-H16962009. 85. Onimaru M, Yonemitsu Y, Fujii T, Tanii M, Nakano T, Nakagawa K, Kohno R, Hasegawa M, Nishikawa S, and Sueishi K. VEGF-C regulates lymphangiogenesis and capillary stability by regulation of PDGF-B. Am J Physiol Heart Circ Physiol 297: H1685–H1696, 2009.
86.
Ono KMatsumori AShioi TFurukawa YSasayama S. Enhanced expression of hepatocyte growth factor/c-Met by myocardial ischemia and reperfusion in a rat modelCirculation952552-25581997. 86. Ono K, Matsumori A, Shioi T, Furukawa Y, and Sasayama S. Enhanced expression of hepatocyte growth factor/c-Met by myocardial ischemia and reperfusion in a rat model. Circulation 95: 2552–2558, 1997.
87.
Patten ISRana SShahul SRowe GCJang CLiu LHacker MRRhee JSMitchell JMahmood FHess PFarrell CKoulisis NKhankin EVBurke SDTudorache IBauersachs Jdel Monte FHilfiker-Kleiner DKarumanchi SAArany Z. Cardiac angiogenic imbalance leads to peripartum cardiomyopathyNature485333-3382012. 87. Patten IS, Rana S, Shahul S, Rowe GC, Jang C, Liu L, Hacker MR, Rhee JS, Mitchell J, Mahmood F, Hess P, Farrell C, Koulisis N, Khankin EV, Burke SD, Tudorache I, Bauersachs J, del Monte F, Hilfiker-Kleiner D, Karumanchi SA, and Arany Z. Cardiac angiogenic imbalance leads to peripartum cardiomyopathy. Nature 485: 333–338, 2012.
88.
Pearlman JDHibberd MGChuang MLHarada KLopez JJGladstone SRFriedman MSellke FWSimons M. Magnetic resonance mapping demonstrates benefits of VEGF-induced myocardial angiogenesisNat Med11085-10891995. 88. Pearlman JD, Hibberd MG, Chuang ML, Harada K, Lopez JJ, Gladstone SR, Friedman M, Sellke FW, and Simons M. Magnetic resonance mapping demonstrates benefits of VEGF-induced myocardial angiogenesis. Nat Med 1: 1085–1089, 1995.
89.
Planat-Benard VSilvestre JSCousin BAndre MNibbelink MTamarat RClergue MManneville CSaillan-Barreau CDuriez MTedgui ALevy BPenicaud LCasteilla L. Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectivesCirculation109656-6632004. 89. Planat-Benard V, Silvestre JS, Cousin B, Andre M, Nibbelink M, Tamarat R, Clergue M, Manneville C, Saillan-Barreau C, Duriez M, Tedgui A, Levy B, Penicaud L, and Casteilla L. Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 109: 656–663, 2004.
90.
Potente MGerhardt HCarmeliet P. Basic and therapeutic aspects of angiogenesisCell146873-8872011. 90. Potente M, Gerhardt H, and Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell 146: 873–887, 2011.
91.
Pugh CWRatcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF systemNat Med9677-6842003. 91. Pugh CW and Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 9: 677–684, 2003.
92.
Qing GSimon MC. Hypoxia inducible factor-2alpha: a critical mediator of aggressive tumor phenotypesCurr Opin Genet Dev1960-662009. 92. Qing G and Simon MC. Hypoxia inducible factor-2alpha: a critical mediator of aggressive tumor phenotypes. Curr Opin Genet Dev 19: 60–66, 2009.
93.
Rufaihah AJHuang NFJame SLee JCNguyen HNByers BDe AOkogbaa JRollins MReijo-Pera RGambhir SSCooke JP. Endothelial cells derived from human iPSCS increase capillary density and improve perfusion in a mouse model of peripheral arterial diseaseArterioscler Thromb Vasc Biol31e72-e792011. 93. Rufaihah AJ, Huang NF, Jame S, Lee JC, Nguyen HN, Byers B, De A, Okogbaa J, Rollins M, Reijo-Pera R, Gambhir SS, and Cooke JP. Endothelial cells derived from human iPSCS increase capillary density and improve perfusion in a mouse model of peripheral arterial disease. Arterioscler Thromb Vasc Biol 31: e72–e79, 2011.
94.
Safi J Jr.DiPaula AF Jr.Riccioni TKajstura JAmbrosio GBecker LCAnversa PCapogrossi MC. Adenovirus-mediated acidic fibroblast growth factor gene transfer induces angiogenesis in the nonischemic rabbit heartMicrovasc Res58238-2491999. 94. Safi J, Jr., DiPaula AF, Jr., Riccioni T, Kajstura J, Ambrosio G, Becker LC, Anversa P, and Capogrossi MC. Adenovirus-mediated acidic fibroblast growth factor gene transfer induces angiogenesis in the nonischemic rabbit heart. Microvasc Res 58: 238–249, 1999.
95.
Schachinger VErbs SElsasser AHaberbosch WHambrecht RHolschermann HYu JCorti RMathey DGHamm CWSuselbeck TAssmus BTonn TDimmeler SZeiher AM. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarctionN Engl J Med3551210-12212006. 95. Schachinger V, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, Holschermann H, Yu J, Corti R, Mathey DG, Hamm CW, Suselbeck T, Assmus B, Tonn T, Dimmeler S, and Zeiher AM. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 355: 1210–1221, 2006.
96.
Schirmer SHvan Nooijen FCPiek JJvan Royen N. Stimulation of collateral artery growth: travelling further down the road to clinical applicationHeart95191-1972009. 96. Schirmer SH, van Nooijen FC, Piek JJ, and van Royen N. Stimulation of collateral artery growth: travelling further down the road to clinical application. Heart 95: 191–197, 2009.
97.
Schwarz ERSpeakman MTPatterson MHale SSIsner JMKedes LHKloner RA. Evaluation of the effects of intramyocardial injection of DNA expressing vascular endothelial growth factor (VEGF) in a myocardial infarction model in the rat—angiogenesis and angioma formationJ Am Coll Cardiol351323-13302000. 97. Schwarz ER, Speakman MT, Patterson M, Hale SS, Isner JM, Kedes LH, and Kloner RA. Evaluation of the effects of intramyocardial injection of DNA expressing vascular endothelial growth factor (VEGF) in a myocardial infarction model in the rat—angiogenesis and angioma formation. J Am Coll Cardiol 35: 1323–1330, 2000.
98.
Seeger FHTonn TKrzossok NZeiher AMDimmeler S. Cell isolation procedures matter: a comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myocardial infarctionEur Heart J28766-7722007. 98. Seeger FH, Tonn T, Krzossok N, Zeiher AM, and Dimmeler S. Cell isolation procedures matter: a comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myocardial infarction. Eur Heart J 28: 766–772, 2007.
99.
Shah AMMann DL. In search of new therapeutic targets and strategies for heart failure: recent advances in basic scienceLancet378704-7122011. 99. Shah AM and Mann DL. In search of new therapeutic targets and strategies for heart failure: recent advances in basic science. Lancet 378: 704–712, 2011.
100.
Shimazu TOtani HYoshioka KFujita MOkazaki TIwasaka T. Sepiapterin enhances angiogenesis and functional recovery in mice after myocardial infarctionAm J Physiol Heart Circ Physiol301H2061-H20722011. 100. Shimazu T, Otani H, Yoshioka K, Fujita M, Okazaki T, and Iwasaka T. Sepiapterin enhances angiogenesis and functional recovery in mice after myocardial infarction. Am J Physiol Heart Circ Physiol 301: H2061–H2072, 2011.
101.
Shiojima ISato KIzumiya YSchiekofer SIto MLiao RColucci WSWalsh K. Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failureJ Clin Invest1152108-21182005. 101. Shiojima I, Sato K, Izumiya Y, Schiekofer S, Ito M, Liao R, Colucci WS, and Walsh K. Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J Clin Invest 115: 2108–2118, 2005.
102.
Silvestre JSMallat ZTedgui ALevy BI. Post-ischaemic neovascularization and inflammationCardiovasc Res78242-2492008. 102. Silvestre JS, Mallat Z, Tedgui A, and Levy BI. Post-ischaemic neovascularization and inflammation. Cardiovasc Res 78: 242–249, 2008.
103.
Silvestre JSTamarat REbrahimian TGLe-Roux AClergue MEmmanuel FDuriez MSchwartz BBranellec DLevy BI. Vascular endothelial growth factor-B promotes in vivo angiogenesisCirc Res93114-1232003. 103. Silvestre JS, Tamarat R, Ebrahimian TG, Le-Roux A, Clergue M, Emmanuel F, Duriez M, Schwartz B, Branellec D, and Levy BI. Vascular endothelial growth factor-B promotes in vivo angiogenesis. Circ Res 93: 114–123, 2003.
104.
Skuli NMajmundar AJKrock BLMesquita RCMathew LKQuinn ZLRunge ALiu LKim MNLiang JSchenkel SYodh AGKeith BSimon MC. Endothelial HIF-2alpha regulates murine pathological angiogenesis and revascularization processesJ Clin Invest1221427-14432012. 104. Skuli N, Majmundar AJ, Krock BL, Mesquita RC, Mathew LK, Quinn ZL, Runge A, Liu L, Kim MN, Liang J, Schenkel S, Yodh AG, Keith B, and Simon MC. Endothelial HIF-2alpha regulates murine pathological angiogenesis and revascularization processes. J Clin Invest 122:1427–1443, 2012.
105.
Spinetti GKraenkel NEmanueli CMadeddu P. Diabetes and vessel wall remodelling: from mechanistic insights to regenerative therapiesCardiovasc Res78265-2732008. 105. Spinetti G, Kraenkel N, Emanueli C, and Madeddu P. Diabetes and vessel wall remodelling: from mechanistic insights to regenerative therapies. Cardiovasc Res 78: 265–273, 2008.
106.
Stockmann CDoedens AWeidemann AZhang NTakeda NGreenberg JICheresh DAJohnson RS. Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesisNature456814-8182008. 106. Stockmann C, Doedens A, Weidemann A, Zhang N, Takeda N, Greenberg JI, Cheresh DA, and Johnson RS. Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature 456: 814–818, 2008.
107.
Takahashi KTanabe KOhnuki MNarita MIchisaka TTomoda KYamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factorsCell131861-8722007. 107. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, and Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131: 861–872, 2007.
108.
Tammela TZarkada GWallgard EMurtomaki ASuchting SWirzenius MWaltari MHellstrom MSchomber TPeltonen RFreitas CDuarte AIsoniemi HLaakkonen PChristofori GYla-Herttuala SShibuya MPytowski BEichmann ABetsholtz CAlitalo K. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formationNature454656-6602008. 108. Tammela T, Zarkada G, Wallgard E, Murtomaki A, Suchting S, Wirzenius M, Waltari M, Hellstrom M, Schomber T, Peltonen R, Freitas C, Duarte A, Isoniemi H, Laakkonen P, Christofori G, Yla-Herttuala S, Shibuya M, Pytowski B, Eichmann A, Betsholtz C, and Alitalo K. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454: 656–660, 2008.
109.
Tang XLRokosh GSanganalmath SKYuan FSato HMu JDai SLi CChen NPeng YDawn BHunt GLeri AKajstura JTiwari SShirk GAnversa PBolli R. Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarctionCirculation121293-3052010. 109. Tang XL, Rokosh G, Sanganalmath SK, Yuan F, Sato H, Mu J, Dai S, Li C, Chen N, Peng Y, Dawn B, Hunt G, Leri A, Kajstura J, Tiwari S, Shirk G, Anversa P, and Bolli R. Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction. Circulation 121: 293–305, 2010.
110.
Tepper OMGaliano RDCapla JMKalka CGagne PJJacobowitz GRLevine JPGurtner GC. Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structuresCirculation1062781-27862002. 110. Tepper OM, Galiano RD, Capla JM, Kalka C, Gagne PJ, Jacobowitz GR, Levine JP, and Gurtner GC. Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 106: 2781–2786, 2002.
111.
Tirziu DChorianopoulos EMoodie KLPalac RTZhuang ZWTjwa MRoncal CEriksson UFu QElfenbein AHall AECarmeliet PMoons LSimons M. Myocardial hypertrophy in the absence of external stimuli is induced by angiogenesis in miceJ Clin Invest1173188-31972007. 111. Tirziu D, Chorianopoulos E, Moodie KL, Palac RT, Zhuang ZW, Tjwa M, Roncal C, Eriksson U, Fu Q, Elfenbein A, Hall AE, Carmeliet P, Moons L, and Simons M. Myocardial hypertrophy in the absence of external stimuli is induced by angiogenesis in mice. J Clin Invest 117: 3188–3197, 2007.
112.
Tongers JLosordo DWLandmesser U. Stem and progenitor cell-based therapy in ischaemic heart disease: promise, uncertainties, and challengesEur Heart J321197-12062011. 112. Tongers J, Losordo DW, and Landmesser U. Stem and progenitor cell-based therapy in ischaemic heart disease: promise, uncertainties, and challenges. Eur Heart J 32: 1197–1206, 2011.
113.
Traverse JHHenry TDEllis SGPepine CJWillerson JTZhao DXForder JRByrne BJHatzopoulos AKPenn MSPerin ECBaran KWChambers JLambert CRaveendran GSimon DIVaughan DESimpson LMGee APTaylor DACogle CRThomas JDSilva GVJorgenson BCOlson REBowman SFrancescon JGeither CHandberg ESmith DXBaraniuk SPiller LBLoghin CAguilar DRichman SZierold CBettencourt JSayre SLVojvodic RWSkarlatos SIGordon DJEbert RFKwak MMoye LASimari RD. Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function: the LateTIME randomized trialJAMA3062110-21192011. 113. Traverse JH, Henry TD, Ellis SG, Pepine CJ, Willerson JT, Zhao DX, Forder JR, Byrne BJ, Hatzopoulos AK, Penn MS, Perin EC, Baran KW, Chambers J, Lambert C, Raveendran G, Simon DI, Vaughan DE, Simpson LM, Gee AP, Taylor DA, Cogle CR, Thomas JD, Silva GV, Jorgenson BC, Olson RE, Bowman S, Francescon J, Geither C, Handberg E, Smith DX, Baraniuk S, Piller LB, Loghin C, Aguilar D, Richman S, Zierold C, Bettencourt J, Sayre SL, Vojvodic RW, Skarlatos SI, Gordon DJ, Ebert RF, Kwak M, Moye LA, and Simari RD. Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function: the LateTIME randomized trial. JAMA 306: 2110–2119, 2011.
114.
van der Laan AMPiek JJvan Royen N. Targeting angiogenesis to restore the microcirculation after reperfused MINat Rev Cardiol6515-5232009. 114. van der Laan AM, Piek JJ, and van Royen N. Targeting angiogenesis to restore the microcirculation after reperfused MI. Nat Rev Cardiol 6: 515–523, 2009.
115.
van Solingen Cde Boer HCBijkerk RMonge Mvan Oeveren-Rietdijk AMSeghers Lde Vries MRvan der Veer EPQuax PHRabelink TJvan Zonneveld AJ. MicroRNA-126 modulates endothelial SDF-1 expression and mobilization of Sca-1(+)/Lin(−) progenitor cells in ischaemiaCardiovasc Res92449-4552011. 115. van Solingen C, de Boer HC, Bijkerk R, Monge M, van Oeveren-Rietdijk AM, Seghers L, de Vries MR, van der Veer EP, Quax PH, Rabelink TJ, and van Zonneveld AJ. MicroRNA-126 modulates endothelial SDF-1 expression and mobilization of Sca-1(+)/Lin(−) progenitor cells in ischaemia. Cardiovasc Res 92: 449–455, 2011.
116.
Wang JHoshijima MLam JZhou ZJokiel ADalton NDHultenby KRuiz-Lozano PRoss J Jr.Tryggvason KChien KR. Cardiomyopathy associated with microcirculation dysfunction in laminin alpha4 chain-deficient miceJ Biol Chem281213-2202006. 116. Wang J, Hoshijima M, Lam J, Zhou Z, Jokiel A, Dalton ND, Hultenby K, Ruiz-Lozano P, Ross J, Jr., Tryggvason K, and Chien KR. Cardiomyopathy associated with microcirculation dysfunction in laminin alpha4 chain-deficient mice. J Biol Chem 281: 213–220, 2006.
117.
Watanabe ESmith DMSun JSmart FWDelcarpio JBRoberts TBVan Meter CH Jr.Claycomb WC. Effect of basic fibroblast growth factor on angiogenesis in the infarcted porcine heartBasic Res Cardiol9330-371998. 117. Watanabe E, Smith DM, Sun J, Smart FW, Delcarpio JB, Roberts TB, Van Meter CH, Jr., and Claycomb WC. Effect of basic fibroblast growth factor on angiogenesis in the infarcted porcine heart. Basic Res Cardiol 93: 30–37, 1998.
118.
Winegrad SHenrion DRappaport LSamuel JL. Vascular endothelial cell-cardiac myocyte crosstalk in achieving a balance between energy supply and energy useAdv Exp Med Biol453507-5141998. 118. Winegrad S, Henrion D, Rappaport L, and Samuel JL. Vascular endothelial cell-cardiac myocyte crosstalk in achieving a balance between energy supply and energy use. Adv Exp Med Biol 453: 507–514, 1998.
119.
Witzenbichler BAsahara TMurohara TSilver MSpyridopoulos IMagner MPrincipe NKearney MHu JSIsner JM. Vascular endothelial growth factor-C (VEGF-C/VEGF-2) promotes angiogenesis in the setting of tissue ischemiaAm J Pathol153381-3941998. 119. Witzenbichler B, Asahara T, Murohara T, Silver M, Spyridopoulos I, Magner M, Principe N, Kearney M, Hu JS, and Isner JM. Vascular endothelial growth factor-C (VEGF-C/VEGF-2) promotes angiogenesis in the setting of tissue ischemia. Am J Pathol 153: 381–394, 1998.
120.
Yang JJKettritz RFalk RJJennette JCGaido ML. Apoptosis of endothelial cells induced by the neutrophil serine proteases proteinase 3 and elastaseAm J Pathol1491617-16261996. 120. Yang JJ, Kettritz R, Falk RJ, Jennette JC, and Gaido ML. Apoptosis of endothelial cells induced by the neutrophil serine proteases proteinase 3 and elastase. Am J Pathol 149: 1617–1626, 1996.
121.
Yellon DMHausenloy DJ. Myocardial reperfusion injuryN Engl J Med3571121-11352007. 121. Yellon DM and Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med 357: 1121–1135, 2007.
122.
Yoon CHHur JPark KWKim JHLee CSOh IYKim TYCho HJKang HJChae IHYang HKOh BHPark YBKim HS. Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells: the role of angiogenic cytokines and matrix metalloproteinasesCirculation1121618-16272005. 122. Yoon CH, Hur J, Park KW, Kim JH, Lee CS, Oh IY, Kim TY, Cho HJ, Kang HJ, Chae IH, Yang HK, Oh BH, Park YB, and Kim HS. Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells: the role of angiogenic cytokines and matrix metalloproteinases. Circulation 112: 1618–1627, 2005.
123.
Yoon CHKoyanagi MIekushi KSeeger FUrbich CZeiher AMDimmeler S. Mechanism of improved cardiac function after bone marrow mononuclear cell therapy: role of cardiovascular lineage commitmentCirculation1212001-20112010. 123. Yoon CH, Koyanagi M, Iekushi K, Seeger F, Urbich C, Zeiher AM, and Dimmeler S. Mechanism of improved cardiac function after bone marrow mononuclear cell therapy: role of cardiovascular lineage commitment. Circulation 121: 2001–2011, 2010.
124.
You DCochain CLoinard CVilar JMees BDuriez MLevy BISilvestre JS. Hypertension impairs postnatal vasculogenesis: role of antihypertensive agentsHypertension511537-15442008. 124. You D, Cochain C, Loinard C, Vilar J, Mees B, Duriez M, Levy BI, and Silvestre JS. Hypertension impairs postnatal vasculogenesis: role of antihypertensive agents. Hypertension 51: 1537–1544, 2008.
125.
Zemani FSilvestre JSFauvel-Lafeve FBruel AVilar JBieche ILaurendeau IGaly-Fauroux IFischer AMBoisson-Vidal C. Ex vivo priming of endothelial progenitor cells with SDF-1 before transplantation could increase their proangiogenic potentialArterioscler Thromb Vasc Biol28644-6502008. 125. Zemani F, Silvestre JS, Fauvel-Lafeve F, Bruel A, Vilar J, Bieche I, Laurendeau I, Galy-Fauroux I, Fischer AM, and Boisson-Vidal C. Ex vivo priming of endothelial progenitor cells with SDF-1 before transplantation could increase their proangiogenic potential. Arterioscler Thromb Vasc Biol 28: 644–650, 2008.
126.
Zhang FTang ZHou XLennartsson JLi YKoch AWScotney PLee CArjunan PDong LKumar ARissanen TTWang BNagai NFons PFariss RZhang YWawrousek ETansey GRaber JFong GHDing HGreenberg DABecker KGHerbert JMNash AYla-Herttuala SCao YWatts RJLi X. VEGF-B is dispensable for blood vessel growth but critical for their survival, and VEGF-B targeting inhibits pathological angiogenesisProc Natl Acad Sci U S A1066152-61572009. 126. Zhang F, Tang Z, Hou X, Lennartsson J, Li Y, Koch AW, Scotney P, Lee C, Arjunan P, Dong L, Kumar A, Rissanen TT, Wang B, Nagai N, Fons P, Fariss R, Zhang Y, Wawrousek E, Tansey G, Raber J, Fong GH, Ding H, Greenberg DA, Becker KG, Herbert JM, Nash A, Yla-Herttuala S, Cao Y, Watts RJ, and Li X. VEGF-B is dispensable for blood vessel growth but critical for their survival, and VEGF-B targeting inhibits pathological angiogenesis. Proc Natl Acad Sci U S A 106: 6152–6157, 2009.

Information & Authors

Information

Published In

cover image Antioxidants & Redox Signaling
Antioxidants & Redox Signaling
Volume 18Issue Number 9March 20, 2013
Pages: 1100 - 1113
PubMed: 22870932

History

Published in print: March 20, 2013
Published online: 14 February 2013
Published ahead of print: 25 September 2012
Published ahead of production: 7 August 2012
Accepted: 7 August 2012
Received: 24 July 2012

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Clement Cochain
Paris Cardiovascular Research Center, INSERM UMR-S 970, Paris Descartes University, Paris, France.
Keith M. Channon
Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Jean-Sébastien Silvestre
Paris Cardiovascular Research Center, INSERM UMR-S 970, Paris Descartes University, Paris, France.

Notes

Address correspondence to:Dr. Jean-Sebastien SilvestreParis Cardiovascular Research CenterINSERM U970Université Paris Descartes56 rue LeblancParis 75015France
E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top