Mitochondrial Protein Synthesis: Efficiency and Accuracy
Publication: Antioxidants & Redox Signaling
Volume 19, Issue Number 16
Abstract
Significance: The mitochondrial genetic system is responsible for the production of a few core-subunits of the respiratory chain and ATP synthase, the membrane protein complexes driving oxidative phosphorylation (OXPHOS). Efficiency and accuracy of mitochondrial protein synthesis determines how efficiently new OXPHOS complexes can be made. Recent Advances: The system responsible for expression of the mitochondrial-encoded subunits developed from that of the bacterial ancestor of mitochondria. Importantly, many aspects of genome organization, transcription, and translation have diverged during evolution. Recent research has provided new insights into the architecture, regulation, and organelle-specific features of mitochondrial translation. Mitochondrial ribosomes contain a number of proteins absent from prokaryotic ribosomes, implying that in mitochondria, ribosomes were tailored to fit the requirements of the organelle. In addition, mitochondrial gene expression is regulated post-transcriptionally by a number of mRNA-specific translational activators. At least in yeast, these factors can regulate translation in respect to OXPHOS complex assembly to adjust the level of newly synthesized proteins to amounts that can be successfully assembled into respiratory chain complexes. Critical Issues: Mitochondrial gene expression is determining aging in eukaryotes, and a number of recent reports indicate that efficiency of translation directly influences this process. Future Directions: Here we will summarize recent advances in our understanding of mitochondrial protein synthesis by comparing the knowledge acquired in the systems most commonly used to study mitochondrial biogenesis. However, many steps have not been understood mechanistically. Innovative biochemical and genetic approaches have to be elaborated to shed light on these important processes. Antioxid. Redox Signal. 19, 1928–1939.
Get full access to this article
View all available purchase options and get full access to this article.
References
1.
Atkinson GCKuzmenko AKamenski PVysokikh MYLakunina VTankov SSmirnova ESoosaar ATenson THauryliuk V. Evolutionary and genetic analyses of mitochondrial translation initiation factors identify the missing mitochondrial IF3 in S. cerevisiaeNucleic Acids Res406122-61342012. 1. Atkinson GC, Kuzmenko A, Kamenski P, Vysokikh MY, Lakunina V, Tankov S, Smirnova E, Soosaar A, Tenson T, and Hauryliuk V. Evolutionary and genetic analyses of mitochondrial translation initiation factors identify the missing mitochondrial IF3 in S. cerevisiae. Nucleic Acids Res 40: 6122–6134, 2012.
2.
Bakala HDelaval EHamelin MBismuth JBorot-Laloi CCorman BFriguet B. Changes in rat liver mitochondria with aging. Lon protease-like reactivity and N(epsilon)-carboxymethyllysine accumulation in the matrixEur J Biochem2702295-23022003. 2. Bakala H, Delaval E, Hamelin M, Bismuth J, Borot-Laloi C, Corman B, and Friguet B. Changes in rat liver mitochondria with aging. Lon protease-like reactivity and N(epsilon)-carboxymethyllysine accumulation in the matrix. Eur J Biochem 270: 2295–2302, 2003.
3.
Ballesteros MFredriksson AHenriksson JNystrom T. Bacterial senescence: Protein oxidation in non-proliferating cells is dictated by the accuracy of the ribosomesEMBO J205280-52892001. 3. Ballesteros M, Fredriksson A, Henriksson J, and Nystrom T. Bacterial senescence: Protein oxidation in non-proliferating cells is dictated by the accuracy of the ribosomes. EMBO J 20: 5280–5289, 2001.
4.
Ban NNissen PHansen JMoore PBSteitz TA. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolutionScience289905-9202000. 4. Ban N, Nissen P, Hansen J, Moore PB, and Steitz TA. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289: 905–920, 2000.
5.
Bonn FTatsuta TPetrungaro CRiemer JLanger T. Presequence-dependent folding ensures MrpL32 processing by the m-AAA protease in mitochondriaEMBO J302545-25562011. 5. Bonn F, Tatsuta T, Petrungaro C, Riemer J, and Langer T. Presequence-dependent folding ensures MrpL32 processing by the m-AAA protease in mitochondria. EMBO J 30: 2545–2556, 2011.
6.
Bonnefoy NBsat NFox TD. Mitochondrial translation of Saccharomyces cerevisiae COX2 mRNA is controlled by the nucleotide sequence specifying the pre-Cox2p leader peptideMol Cell Biol212359-23722001. 6. Bonnefoy N, Bsat N, and Fox TD. Mitochondrial translation of Saccharomyces cerevisiae COX2 mRNA is controlled by the nucleotide sequence specifying the pre-Cox2p leader peptide. Mol Cell Biol 21: 2359–2372, 2001.
7.
Bonnefoy NFox TD. In vivo analysis of mutated initiation codons in the mitochondrial COX2 gene of Saccharomyces cerevisiae fused to the reporter gene ARG8m reveals lack of downstream reinitiationMol Gen Genet2621036-10462000. 7. Bonnefoy N and Fox TD. In vivo analysis of mutated initiation codons in the mitochondrial COX2 gene of Saccharomyces cerevisiae fused to the reporter gene ARG8m reveals lack of downstream reinitiation. Mol Gen Genet 262: 1036–1046, 2000.
8.
Bonnefoy NFox TD. Directed alteration of Saccharomyces cerevisiae mitochondrial DNA by biolistic transformation and homologous recombinationMethods Mol Biol372153-1662007. 8. Bonnefoy N and Fox TD. Directed alteration of Saccharomyces cerevisiae mitochondrial DNA by biolistic transformation and homologous recombination. Methods Mol Biol 372: 153–166, 2007.
9.
Bota DADavies KJ. Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanismNat Cell Biol4674-6802002. 9. Bota DA and Davies KJ. Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat Cell Biol 4: 674–680, 2002.
10.
Bota DANgo JKDavies KJ. Downregulation of the human Lon protease impairs mitochondrial structure and function and causes cell deathFree Radic Biol Med38665-6772005. 10. Bota DA, Ngo JK, and Davies KJ. Downregulation of the human Lon protease impairs mitochondrial structure and function and causes cell death. Free Radic Biol Med 38: 665–677, 2005.
11.
Bottger ECSpringer BPrammananan TKidan YSander P. Structural basis for selectivity and toxicity of ribosomal antibioticsEMBO Rep2318-3232001. 11. Bottger EC, Springer B, Prammananan T, Kidan Y, and Sander P. Structural basis for selectivity and toxicity of ribosomal antibiotics. EMBO Rep 2: 318–323, 2001.
12.
Caballero AUgidos ALiu BOling DKvint KHao XMignat CNachin LMolin MNystrom T. Absence of mitochondrial translation control proteins extends life span by activating sirtuin-dependent silencingMol Cell42390-4002011. 12. Caballero A, Ugidos A, Liu B, Oling D, Kvint K, Hao X, Mignat C, Nachin L, Molin M, and Nystrom T. Absence of mitochondrial translation control proteins extends life span by activating sirtuin-dependent silencing. Mol Cell 42: 390–400, 2011.
13.
Christian BESpremulli LL. Preferential selection of the 5′-terminal start codon on leaderless mRNAs by mammalian mitochondrial ribosomesJ Biol Chem28528379-283862010. 13. Christian BE and Spremulli LL. Preferential selection of the 5′-terminal start codon on leaderless mRNAs by mammalian mitochondrial ribosomes. J Biol Chem 285: 28379–28386, 2010.
14.
Christian BESpremulli LL. Mechanism of protein biosynthesis in mammalian mitochondriaBiochim Biophys Acta18191035-10542012. 14. Christian BE and Spremulli LL. Mechanism of protein biosynthesis in mammalian mitochondria. Biochim Biophys Acta 1819: 1035–1054, 2012.
15.
Chrzanowska-Lightowlers ZMPajak ALightowlers RN. Termination of protein synthesis in mammalian mitochondriaJ Biol Chem28634479-344852011. 15. Chrzanowska-Lightowlers ZM, Pajak A, and Lightowlers RN. Termination of protein synthesis in mammalian mitochondria. J Biol Chem 286: 34479–34485, 2011.
16.
Dukan SFarewell ABallesteros MTaddei FRadman MNystrom T. Protein oxidation in response to increased transcriptional or translational errorsProc Natl Acad Sci USA975746-57492000. 16. Dukan S, Farewell A, Ballesteros M, Taddei F, Radman M, and Nystrom T. Protein oxidation in response to increased transcriptional or translational errors. Proc Natl Acad Sci USA 97: 5746–5749, 2000.
17.
Dunstan HMGreen-Willms NSFox TD. In vivo analysis of Saccharomyces cerevisiae COX2 mRNA 5′-untranslated leader functions in mitochondrial translation initiation and translational activationGenetics14787-1001997. 17. Dunstan HM, Green-Willms NS, and Fox TD. In vivo analysis of Saccharomyces cerevisiae COX2 mRNA 5′-untranslated leader functions in mitochondrial translation initiation and translational activation. Genetics 147: 87–100, 1997.
18.
Fabrizio PHoon SShamalnasab MGalbani AWei MGiaever GNislow CLongo VD. Genome-wide screen in Saccharomyces cerevisiae identifies vacuolar protein sorting, autophagy, biosynthetic, and tRNA methylation genes involved in life span regulationPLoS Genet.6e10010242010. 18. Fabrizio P, Hoon S, Shamalnasab M, Galbani A, Wei M, Giaever G, Nislow C, and Longo VD. Genome-wide screen in Saccharomyces cerevisiae identifies vacuolar protein sorting, autophagy, biosynthetic, and tRNA methylation genes involved in life span regulation. PLoS Genet. 6: e1001024, 2010.
19.
Fiori APerez-Martinez XFox TD. Overexpression of the COX2 translational activator, Pet111p, prevents translation of COX1 mRNA and cytochrome c oxidase assembly in mitochondria of Saccharomyces cerevisiaeMol Microbiol561689-17042005. 19. Fiori A, Perez-Martinez X, and Fox TD. Overexpression of the COX2 translational activator, Pet111p, prevents translation of COX1 mRNA and cytochrome c oxidase assembly in mitochondria of Saccharomyces cerevisiae. Mol Microbiol 56: 1689–1704, 2005.
20.
Fredriksson ABallesteros MDukan SNystrom T. Defense against protein carbonylation by DnaK/DnaJ and proteases of the heat shock regulonJ Bacteriol1874207-42132005. 20. Fredriksson A, Ballesteros M, Dukan S, and Nystrom T. Defense against protein carbonylation by DnaK/DnaJ and proteases of the heat shock regulon. J Bacteriol 187: 4207–4213, 2005.
21.
Gaur RGrasso DDatta PPKrishna PDDas GSpencer AAgrawal RKSpremulli LVarshney U. A single mammalian mitochondrial translation initiation factor functionally replaces two bacterial factorsMol Cell29180-1902008. 21. Gaur R, Grasso D, Datta PP, Krishna PD, Das G, Spencer A, Agrawal RK, Spremulli L, and Varshney U. A single mammalian mitochondrial translation initiation factor functionally replaces two bacterial factors. Mol Cell 29: 180–190, 2008.
22.
Gems DHde la Guardia YI. Alternative perspectives on aging in Caenorhabditis elegans: Reactive oxygen species or hyperfunction?Antioxid Redox Signal19321-3292013. 22. Gems DH and de la Guardia YI. Alternative perspectives on aging in Caenorhabditis elegans: Reactive oxygen species or hyperfunction? Antioxid Redox Signal 19: 321–329, 2013.
23.
Gruschke SGrone KHeublein MHolz SIsrael LImhof AHerrmann JMOtt M. Proteins at the polypeptide tunnel exit of the yeast mitochondrial ribosomeJ Biol Chem28519022-190282010. 23. Gruschke S, Grone K, Heublein M, Holz S, Israel L, Imhof A, Herrmann JM, and Ott M. Proteins at the polypeptide tunnel exit of the yeast mitochondrial ribosome. J Biol Chem 285: 19022–19028, 2010.
24.
Gruschke SKehrein KRömpler KGröne KIsrael LImhof AHerrmann JMOtt M. Cbp3-Cbp6 interacts with the yeast mitochondrial ribosomal tunnel exit and promotes cytochrome b synthesis and assemblyJ Cell Biol1931101-11142011. 24. Gruschke S, Kehrein K, Römpler K, Gröne K, Israel L, Imhof A, Herrmann JM, and Ott M. Cbp3-Cbp6 interacts with the yeast mitochondrial ribosomal tunnel exit and promotes cytochrome b synthesis and assembly. J Cell Biol 193: 1101–1114, 2011.
25.
Gruschke SOtt M. The polypeptide tunnel exit of the mitochondrial ribosome is tailored to meet the specific requirements of the organelleBioessays321050-10572010. 25. Gruschke S and Ott M. The polypeptide tunnel exit of the mitochondrial ribosome is tailored to meet the specific requirements of the organelle. Bioessays 32: 1050–1057, 2010.
26.
Gruschke SRömpler KHildenbeutel MKehrein KKühl IBonnefoy NOtt M. The Cbp3–Cbp6 complex coordinates cytochrome b synthesis with bc1 complex assembly in yeast mitochondriaJ Cell Biol199137-11502012. 26. Gruschke S, Römpler K, Hildenbeutel M, Kehrein K, Kühl I, Bonnefoy N, and Ott M. The Cbp3–Cbp6 complex coordinates cytochrome b synthesis with bc1 complex assembly in yeast mitochondria. J Cell Biol 199: 137–1150, 2012.
27.
Haffter PMcMullin TWFox TD. Functional interactions among two yeast mitochondrial ribosomal proteins and an mRNA-specific translational activatorGenetics127319-3261991. 27. Haffter P, McMullin TW, and Fox TD. Functional interactions among two yeast mitochondrial ribosomal proteins and an mRNA-specific translational activator. Genetics 127: 319–326, 1991.
28.
Harman D. The biologic clock: The mitochondria?J Am Geriatr Soc20145-1471972. 28. Harman D. The biologic clock: The mitochondria? J Am Geriatr Soc 20: 145–147, 1972.
29.
Heeren GRinnerthaler MLaun Pvon Seyerl PKossler SKlinger HHager MBogengruber EJarolim SSimon-Nobbe BSchuller CCarmona-Gutierrez DBreitenbach-Koller LMuck CJansen-Durr PCriollo AKroemer GMadeo FBreitenbach M. The mitochondrial ribosomal protein of the large subunit, Afo1p, determines cellular longevity through mitochondrial back-signaling via TOR1Aging (Albany NY)1622-6362009. 29. Heeren G, Rinnerthaler M, Laun P, von Seyerl P, Kossler S, Klinger H, Hager M, Bogengruber E, Jarolim S, Simon-Nobbe B, Schuller C, Carmona-Gutierrez D, Breitenbach-Koller L, Muck C, Jansen-Durr P, Criollo A, Kroemer G, Madeo F, and Breitenbach M. The mitochondrial ribosomal protein of the large subunit, Afo1p, determines cellular longevity through mitochondrial back-signaling via TOR1. Aging (Albany NY) 1: 622–636, 2009.
30.
Hewitt VAlcock FLithgow T. Minor modifications and major adaptations: The evolution of molecular machines driving mitochondrial protein importBiochim Biophys Acta1808947-9542011. 30. Hewitt V, Alcock F, and Lithgow T. Minor modifications and major adaptations: The evolution of molecular machines driving mitochondrial protein import. Biochim Biophys Acta 1808: 947–954, 2011.
31.
Holbrook MAMenninger JR. Erythromycin slows aging of Saccharomyces cerevisiaeJ Gerontol A Biol Sci Med Sci57B29-362002. 31. Holbrook MA and Menninger JR. Erythromycin slows aging of Saccharomyces cerevisiae. J Gerontol A Biol Sci Med Sci 57: B29–36, 2002.
32.
Jazwinski SMKriete A. The yeast retrograde response as a model of intracellular signaling of mitochondrial dysfunctionFront Physiol31392012. 32. Jazwinski SM and Kriete A. The yeast retrograde response as a model of intracellular signaling of mitochondrial dysfunction. Front Physiol 3: 139, 2012.
33.
Kamada YYoshino KKondo CKawamata TOshiro NYonezawa KOhsumi Y. Tor directly controls the Atg1 kinase complex to regulate autophagyMol Cell Biol301049-582010. 33. Kamada Y, Yoshino K, Kondo C, Kawamata T, Oshiro N, Yonezawa K, Ohsumi Y. Tor directly controls the Atg1 kinase complex to regulate autophagy. Mol Cell Biol 30: 1049–58, 2010.
34.
Kaur JStuart RA. Truncation of the Mrp20 protein reveals new ribosome-assembly subcomplex in mitochondriaEMBO Rep12950-9552011. 34. Kaur J and Stuart RA. Truncation of the Mrp20 protein reveals new ribosome-assembly subcomplex in mitochondria. EMBO Rep 12: 950–955, 2011.
35.
Kawai SUrban JPiccolis MPanchaud NDe Virgilio CLoewith R. Mitochondrial genomic dysfunction causes dephosphorylation of Sch9 in the yeast Saccharomyces cerevisiaeEukaryot Cell101367-13692011. 35. Kawai S, Urban J, Piccolis M, Panchaud N, De Virgilio C, and Loewith R. Mitochondrial genomic dysfunction causes dephosphorylation of Sch9 in the yeast Saccharomyces cerevisiae. Eukaryot Cell 10: 1367–1369, 2011.
36.
Koc ECBurkhart WBlackburn KMoyer MBSchlatzer DMMoseley ASpremulli LL. The large subunit of the mammalian mitochondrial ribosome. Analysis of the complement of ribosomal proteins presentJ Biol Chem27643958-439692001. 36. Koc EC, Burkhart W, Blackburn K, Moyer MB, Schlatzer DM, Moseley A, and Spremulli LL. The large subunit of the mammalian mitochondrial ribosome. Analysis of the complement of ribosomal proteins present. J Biol Chem 276: 43958–43969, 2001.
37.
Kokotas HPetersen MBWillems PJ. Mitochondrial deafnessClin Genet71379-3912007. 37. Kokotas H, Petersen MB, and Willems PJ. Mitochondrial deafness. Clin Genet 71: 379–391, 2007.
38.
Komeili AWedaman KPO'Shea EKPowers T. Mechanism of metabolic control. Target of rapamycin signaling links nitrogen quality to the activity of the Rtg1 and Rtg3 transcription factorsJ Cell Biol151863-8782000. 38. Komeili A, Wedaman KP, O'Shea EK, and Powers T. Mechanism of metabolic control. Target of rapamycin signaling links nitrogen quality to the activity of the Rtg1 and Rtg3 transcription factors. J Cell Biol 151: 863–878, 2000.
39.
Kuhl IFox TDBonnefoy N. Schizosaccharomyces pombe homologs of the Saccharomyces cerevisiae mitochondrial proteins Cbp6 and Mss51 function at a post-translational step of respiratory complex biogenesisMitochondrion12381-3902012. 39. Kuhl I, Fox TD, and Bonnefoy N. Schizosaccharomyces pombe homologs of the Saccharomyces cerevisiae mitochondrial proteins Cbp6 and Mss51 function at a post-translational step of respiratory complex biogenesis. Mitochondrion 12: 381–390, 2012.
40.
Kühl IDujeancourt LGaisne MHerbert CJBonnefoy N. A genome wide study in fission yeast reveals nine PPR proteins that regulate mitochondrial gene expressionNucleic Acids Res398029-80412011. 40. Kühl I, Dujeancourt L, Gaisne M, Herbert CJ, and Bonnefoy N. A genome wide study in fission yeast reveals nine PPR proteins that regulate mitochondrial gene expression. Nucleic Acids Res 39: 8029–8041, 2011.
41.
Laurberg MAsahara HKorostelev AZhu JTrakhanov SNoller HF. Structural basis for translation termination on the 70S ribosomeNature454852-8572008. 41. Laurberg M, Asahara H, Korostelev A, Zhu J, Trakhanov S, and Noller HF. Structural basis for translation termination on the 70S ribosome. Nature 454: 852–857, 2008.
42.
Lipinski KAPuchta OSurendranath VKudla MGolik P. Revisiting the yeast PPR proteins—application of an Iterative Hidden Markov Model algorithm reveals new members of the rapidly evolving familyMol Biol Evol282935-29482011. 42. Lipinski KA, Puchta O, Surendranath V, Kudla M, and Golik P. Revisiting the yeast PPR proteins—application of an Iterative Hidden Markov Model algorithm reveals new members of the rapidly evolving family. Mol Biol Evol 28: 2935–2948, 2011.
43.
Luce KOsiewacz HD. Increasing organismal healthspan by enhancing mitochondrial protein quality controlNat Cell Biol11852-8582009. 43. Luce K and Osiewacz HD. Increasing organismal healthspan by enhancing mitochondrial protein quality control. Nat Cell Biol 11: 852–858, 2009.
44.
Maret W. Zinc coordination environments in proteins as redox sensors and signal transducersAntioxid Redox Signal81419-14412006. 44. Maret W. Zinc coordination environments in proteins as redox sensors and signal transducers. Antioxid Redox Signal 8: 1419–1441, 2006.
45.
Martinez-Pastor MTMarchler GSchuller CMarchler-Bauer ARuis HEstruch F. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE)EMBO J152227-22351996. 45. Martinez-Pastor MT, Marchler G, Schuller C, Marchler-Bauer A, Ruis H, and Estruch F. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J 15: 2227–2235, 1996.
46.
Mears JASharma MRGutell RRMcCook ASRichardson PECaulfield TRAgrawal RKHarvey SC. A structural model for the large subunit of the mammalian mitochondrial ribosomeJ Mol Biol358193-2122006. 46. Mears JA, Sharma MR, Gutell RR, McCook AS, Richardson PE, Caulfield TR, Agrawal RK, and Harvey SC. A structural model for the large subunit of the mammalian mitochondrial ribosome. J Mol Biol 358: 193–212, 2006.
47.
Miceli MVJiang JCTiwari ARodriguez-Quinones JFJazwinski SM. Loss of mitochondrial membrane potential triggers the retrograde response extending yeast replicative lifespanFront Genet21022011. 47. Miceli MV, Jiang JC, Tiwari A, Rodriguez-Quinones JF, and Jazwinski SM. Loss of mitochondrial membrane potential triggers the retrograde response extending yeast replicative lifespan. Front Genet 2: 102, 2011.
48.
Mick DUFox TDRehling P. Inventory control: Cytochrome c oxidase assembly regulates mitochondrial translationNat Rev Mol Cell Biol1214-202011. 48. Mick DU, Fox TD, and Rehling P. Inventory control: Cytochrome c oxidase assembly regulates mitochondrial translation. Nat Rev Mol Cell Biol 12: 14–20, 2011.
49.
Myers AMPape LKTzagoloff A. Mitochondrial protein synthesis is required for maintenance of intact mitochondrial genomes in Saccharomyces cerevisiaeEMBO J42087-20921985. 49. Myers AM, Pape LK, and Tzagoloff A. Mitochondrial protein synthesis is required for maintenance of intact mitochondrial genomes in Saccharomyces cerevisiae. EMBO J 4: 2087–2092, 1985.
50.
Naithani SSaracco SAButler CAFox TD. Interactions among COX1, COX2, and COX3 mRNA-specific translational activator proteins on the inner surface of the mitochondrial inner membrane of Saccharomyces cerevisiaeMol Biol Cell14324-3332003. 50. Naithani S, Saracco SA, Butler CA, and Fox TD. Interactions among COX1, COX2, and COX3 mRNA-specific translational activator proteins on the inner surface of the mitochondrial inner membrane of Saccharomyces cerevisiae. Mol Biol Cell 14: 324–333, 2003.
51.
Nissen PHansen JBan NMoore PBSteitz TA. The structural basis of ribosome activity in peptide bond synthesisScience289920-9302000. 51. Nissen P, Hansen J, Ban N, Moore PB, and Steitz TA. The structural basis of ribosome activity in peptide bond synthesis. Science 289: 920–930, 2000.
52.
Orgel LE. The maintenance of the accuracy of protein synthesis and its relevance to ageingProc Natl Acad Sci USA49517-5211963. 52. Orgel LE. The maintenance of the accuracy of protein synthesis and its relevance to ageing. Proc Natl Acad Sci USA 49: 517–521, 1963.
53.
Orr WCSohal RS. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogasterScience2631128-11301994. 53. Orr WC and Sohal RS. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263: 1128–1130, 1994.
54.
Orrenius SGogvadze VZhivotovsky B. Mitochondrial oxidative stress: Implications for cell deathAnnu Rev Pharmacol Toxicol47143-1832007. 54. Orrenius S, Gogvadze V, and Zhivotovsky B. Mitochondrial oxidative stress: Implications for cell death. Annu Rev Pharmacol Toxicol 47: 143–183, 2007.
55.
Ott MHerrmann JM. Co-translational membrane insertion of mitochondrially encoded proteinsBiochim Biophys Acta1803767-7752010. 55. Ott M and Herrmann JM. Co-translational membrane insertion of mitochondrially encoded proteins. Biochim Biophys Acta 1803: 767–775, 2010.
56.
Pagliarini DJCalvo SEChang BSheth SAVafai SBOng SEWalford GASugiana CBoneh AChen WKHill DEVidal MEvans JGThorburn DRCarr SAMootha VK. A mitochondrial protein compendium elucidates complex I disease biologyCell134112-1232008. 56. Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong SE, Walford GA, Sugiana C, Boneh A, Chen WK, Hill DE, Vidal M, Evans JG, Thorburn DR, Carr SA, and Mootha VK. A mitochondrial protein compendium elucidates complex I disease biology. Cell 134: 112–123, 2008.
57.
Perocchi FJensen LJGagneur JAhting Uvon Mering CBork PProkisch HSteinmetz LM. Assessing systems properties of yeast mitochondria through an interaction map of the organellePLoS Genet2e1702006. 57. Perocchi F, Jensen LJ, Gagneur J, Ahting U, von Mering C, Bork P, Prokisch H, and Steinmetz LM. Assessing systems properties of yeast mitochondria through an interaction map of the organelle. PLoS Genet 2: e170, 2006.
58.
Pisani DCotton JAMcInerney JO. Supertrees disentangle the chimerical origin of eukaryotic genomesMol Biol Evol241752-17602007. 58. Pisani D, Cotton JA, and McInerney JO. Supertrees disentangle the chimerical origin of eukaryotic genomes. Mol Biol Evol 24: 1752–1760, 2007.
59.
Poutre CGFox TD. PET111, a Saccharomyces cerevisiae nuclear gene required for translation of the mitochondrial mRNA encoding cytochrome c oxidase subunit IIGenetics115637-6471987. 59. Poutre CG and Fox TD. PET111, a Saccharomyces cerevisiae nuclear gene required for translation of the mitochondrial mRNA encoding cytochrome c oxidase subunit II. Genetics 115: 637–647, 1987.
60.
Rak MTzagoloff A. F1-dependent translation of mitochondrially encoded Atp6p and Atp8p subunits of yeast ATP synthaseProc Natl Acad Sci USA10618509-185142009. 60. Rak M and Tzagoloff A. F1-dependent translation of mitochondrially encoded Atp6p and Atp8p subunits of yeast ATP synthase. Proc Natl Acad Sci USA 106: 18509–18514, 2009.
61.
Richter RRorbach JPajak ASmith PMWessels HJHuynen MASmeitink JALightowlers RNChrzanowska-Lightowlers ZM. A functional peptidyl-tRNA hydrolase, ICT1, has been recruited into the human mitochondrial ribosomeEMBO J291116-11252010. 61. Richter R, Rorbach J, Pajak A, Smith PM, Wessels HJ, Huynen MA, Smeitink JA, and Lightowlers RN, Chrzanowska-Lightowlers ZM. A functional peptidyl-tRNA hydrolase, ICT1, has been recruited into the human mitochondrial ribosome. EMBO J 29: 1116–1125, 2010.
62.
Rotig A. Human diseases with impaired mitochondrial protein synthesisBiochim Biophys Acta18071198-12052011. 62. Rotig A. Human diseases with impaired mitochondrial protein synthesis. Biochim Biophys Acta 1807: 1198–1205, 2011.
63.
Ruzzenente BMetodiev MDWredenberg ABratic APark CBCamara YMilenkovic DZickermann VWibom RHultenby KErdjument-Bromage HTempst PBrandt UStewart JBGustafsson CMLarsson NG. LRPPRC is necessary for polyadenylation and coordination of translation of mitochondrial mRNAsEMBO J31443-4562012. 63. Ruzzenente B, Metodiev MD, Wredenberg A, Bratic A, Park CB, Camara Y, Milenkovic D, Zickermann V, Wibom R, Hultenby K, Erdjument-Bromage H, Tempst P, Brandt U, Stewart JB, Gustafsson CM, and Larsson NG. LRPPRC is necessary for polyadenylation and coordination of translation of mitochondrial mRNAs. EMBO J. 31: 443–456, 2012.
64.
Sanchirico MEFox TDMason TL. Accumulation of mitochondrially synthesized Saccharomyces cerevisiae Cox2p and Cox3p depends on targeting information in untranslated portions of their mRNAsEMBO J175796-58041998. 64. Sanchirico ME, Fox TD, and Mason TL. Accumulation of mitochondrially synthesized Saccharomyces cerevisiae Cox2p and Cox3p depends on targeting information in untranslated portions of their mRNAs. EMBO J. 17: 5796–5804, 1998.
65.
Scialo FMallikarjun VStefanatos RSanz A. Regulation of lifespan by the mitochondrial electron transport chain: ROS-dependent and ROS-independent mechanismsAntioxid Redox Signal191953-19692013. 65. Scialo F, Mallikarjun V, Stefanatos R, and Sanz A. Regulation of lifespan by the mitochondrial electron transport chain: ROS-dependent and ROS-independent mechanisms. Antioxid Redox Signal, 19: 1953–1969, 2013.
66.
Sanz AStefanatos RK. The mitochondrial free radical theory of aging: A critical viewCurr Aging Sci110-212008. 66. Sanz A and Stefanatos RK. The mitochondrial free radical theory of aging: A critical view. Curr Aging Sci 1: 10–21, 2008.
67.
Sasarman FBrunel-Guitton CAntonicka HWai TShoubridge EA. LRPPRC and SLIRP interact in a ribonucleoprotein complex that regulates posttranscriptional gene expression in mitochondriaMol Biol Cell211315-13232010. 67. Sasarman F, Brunel-Guitton C, Antonicka H, Wai T, and Shoubridge EA. LRPPRC and SLIRP interact in a ribonucleoprotein complex that regulates posttranscriptional gene expression in mitochondria. Mol Biol Cell 21: 1315–1323, 2010.
68.
Schluenzen FTocilj AZarivach RHarms JGluehmann MJanell DBashan ABartels HAgmon IFranceschi FYonath A. Structure of functionally activated small ribosomal subunit at 3.3 angstroms resolutionCell102615-6232000. 68. Schluenzen F, Tocilj A, Zarivach R, Harms J, Gluehmann M, Janell D, Bashan A, Bartels H, Agmon I, Franceschi F, and Yonath A. Structure of functionally activated small ribosomal subunit at 3.3 angstroms resolution. Cell 102: 615–623, 2000.
69.
Schriner SELinford NJMartin GMTreuting POgburn CEEmond MCoskun PELadiges WWolf NVan Remmen HWallace DCRabinovitch PS. Extension of murine life span by overexpression of catalase targeted to mitochondriaScience3081909-19112005. 69. Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, Coskun PE, Ladiges W, Wolf N, Van Remmen H, Wallace DC, and Rabinovitch PS. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308: 1909–1911, 2005.
70.
Schäfer B. Genetic conservation versus variability in mitochondria: The architecture of the mitochondrial genome in the petite-negative yeast Schizosaccharomyces pombeCurr Genet43311-3262003. 70. Schäfer B. Genetic conservation versus variability in mitochondria: The architecture of the mitochondrial genome in the petite-negative yeast Schizosaccharomyces pombe. Curr Genet 43: 311–326, 2003.
71.
Sharma MRKoc ECDatta PPBooth TMSpremulli LLAgrawal RK. Structure of the mammalian mitochondrial ribosome reveals an expanded functional role for its component proteinsCell11597-1082003. 71. Sharma MR, Koc EC, Datta PP, Booth TM, Spremulli LL, and Agrawal RK. Structure of the mammalian mitochondrial ribosome reveals an expanded functional role for its component proteins. Cell 115: 97–108, 2003.
72.
Shutt TEShadel GS. A compendium of human mitochondrial gene expression machinery with links to diseaseEnviron Mol Mutagen51360-3792010. 72. Shutt TE and Shadel GS. A compendium of human mitochondrial gene expression machinery with links to disease. Environ Mol Mutagen 51: 360–379, 2010.
73.
Sickmann AReinders JWagner YJoppich CZahedi RMeyer HESchonfisch BPerschil IChacinska AGuiard BRehling PPfanner NMeisinger C. The proteome of Saccharomyces cerevisiae mitochondriaProc Natl Acad Sci USA10013207-132122003. 73. Sickmann A, Reinders J, Wagner Y, Joppich C, Zahedi R, Meyer HE, Schonfisch B, Perschil I, Chacinska A, Guiard B, Rehling P, Pfanner N, and Meisinger C. The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci USA 100: 13207–13212, 2003.
74.
Smits PSmeitink JAvan den Heuvel LPHuynen MAEttema TJ. Reconstructing the evolution of the mitochondrial ribosomal proteomeNucleic Acids Res.354686-47032007. 74. Smits P, Smeitink JA, van den Heuvel LP, Huynen MA, and Ettema TJ. Reconstructing the evolution of the mitochondrial ribosomal proteome. Nucleic Acids Res. 35: 4686–4703, 2007.
75.
Spremulli LLCoursey ANavratil THunter SE. Initiation and elongation factors in mammalian mitochondrial protein biosynthesisProg Nucleic Acid Res Mol Biol77211-2612004. 75. Spremulli LL, Coursey A, Navratil T, and Hunter SE. Initiation and elongation factors in mammalian mitochondrial protein biosynthesis. Prog Nucleic Acid Res Mol Biol 77: 211–261, 2004.
76.
Suzuki CKSuda KWang NSchatz G. Requirement for the yeast gene LON in intramitochondrial proteolysis and maintenance of respirationScience2641994. 76. Suzuki CK, Suda K, Wang N, and Schatz G. Requirement for the yeast gene LON in intramitochondrial proteolysis and maintenance of respiration. Science 264, 1994.
77.
Suzuki TTerasaki MTakemoto-Hori CHanada TUeda TWada AWatanabe K. Proteomic analysis of the mammalian mitochondrial ribosome. Identification of protein components in the 28 S small subunitJ Biol Chem27633181-331952001. 77. Suzuki T, Terasaki M, Takemoto-Hori C, Hanada T, Ueda T, Wada A, and Watanabe K. Proteomic analysis of the mammalian mitochondrial ribosome. Identification of protein components in the 28 S small subunit. J Biol Chem 276: 33181–33195, 2001.
78.
Tatsuta TLanger T. Quality control of mitochondria: Protection against neurodegeneration and ageingEMBO J27306-3142008. 78. Tatsuta T and Langer T. Quality control of mitochondria: Protection against neurodegeneration and ageing. EMBO J 27: 306–314, 2008.
79.
Temperley RJWydro MLightowlers RNChrzanowska-Lightowlers ZM. Human mitochondrial mRNAs-like members of all families, similar but differentBiochim Biophys Acta17971081-10852010. 79. Temperley RJ, Wydro M, Lightowlers RN, and Chrzanowska-Lightowlers ZM. Human mitochondrial mRNAs-like members of all families, similar but different. Biochim Biophys Acta 1797: 1081–1085, 2010.
80.
Tenson TMankin A. Antibiotics and the ribosomeMol Microbiol591664-16772006. 80. Tenson T and Mankin A. Antibiotics and the ribosome. Mol Microbiol 59: 1664–1677, 2006.
81.
Trifunovic AWredenberg AFalkenberg MSpelbrink JNRovio ATBruder CEBohlooly YMGidlof SOldfors AWibom RTornell JJacobs HTLarsson NG. Premature ageing in mice expressing defective mitochondrial DNA polymeraseNature429417-4232004. 81. Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, Bohlooly YM, Gidlof S, Oldfors A, Wibom R, Tornell J, Jacobs HT, and Larsson NG. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429: 417–423, 2004.
82.
Urban JSoulard AHuber ALippman SMukhopadhyay DDeloche OWanke VAnrather DAmmerer GRiezman HBroach JRDe Virgilio CHall MNLoewith R. Sch9 is a major target of TORC1 in Saccharomyces cerevisiaeMol Cell26663-6742007. 82. Urban J, Soulard A, Huber A, Lippman S, Mukhopadhyay D, Deloche O, Wanke V, Anrather D, Ammerer G, Riezman H, Broach JR, De Virgilio C, Hall MN, and Loewith R. Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol Cell 26: 663–674, 2007.
83.
Weraarpachai WAntonicka HSasarman FSeeger JSchrank BKolesar JELochmuller HChevrette MKaufman BAHorvath RShoubridge EA. Mutation in TACO1, encoding a translational activator of COX I, results in cytochrome c oxidase deficiency and late-onset Leigh syndromeNat Genet41833-8372009. 83. Weraarpachai W, Antonicka H, Sasarman F, Seeger J, Schrank B, Kolesar JE, Lochmuller H, Chevrette M, Kaufman BA, Horvath R, and Shoubridge EA. Mutation in TACO1, encoding a translational activator of COX I, results in cytochrome c oxidase deficiency and late-onset Leigh syndrome. Nat Genet 41: 833–837, 2009.
84.
Williams EHButler CABonnefoy NFox TD. Translation initiation in Saccharomyces cerevisiae mitochondria: Functional interactions among mitochondrial ribosomal protein Rsm28p, initiation factor 2, methionyl-tRNA-formyltransferase and novel protein Rmd9pGenetics1751117-11262007. 84. Williams EH, Butler CA, Bonnefoy N, and Fox TD. Translation initiation in Saccharomyces cerevisiae mitochondria: Functional interactions among mitochondrial ribosomal protein Rsm28p, initiation factor 2, methionyl-tRNA-formyltransferase and novel protein Rmd9p. Genetics 175: 1117–1126, 2007.
85.
Wohlgemuth IPohl CMittelstaet JKonevega ALRodnina MV. Evolutionary optimization of speed and accuracy of decoding on the ribosomePhilos Trans R Soc Lond B Biol Sci3662979-29862011. 85. Wohlgemuth I, Pohl C, Mittelstaet J, Konevega AL, and Rodnina MV. Evolutionary optimization of speed and accuracy of decoding on the ribosome. Philos Trans R Soc Lond B Biol Sci 366: 2979–2986, 2011.
86.
Xu FAddis JBCameron JMRobinson BH. LRPPRC mutation suppresses cytochrome oxidase activity by altering mitochondrial RNA transcript stability in a mouse modelBiochem J441275-2832012. 86. Xu F, Addis JB, Cameron JM, and Robinson BH. LRPPRC mutation suppresses cytochrome oxidase activity by altering mitochondrial RNA transcript stability in a mouse model. Biochem J 441: 275–283, 2012.
87.
Zagorski WBoguta MMieszczak MClaisse MGuiard BSpyridakis ASlonimski PP. Phenotypic suppression and nuclear accommodation of the mit- oxi1-V25 mutation in isolated yeast mitochondriaCurr Genet12305-3101987. 87. Zagorski W, Boguta M, Mieszczak M, Claisse M, Guiard B, Spyridakis A, and Slonimski PP. Phenotypic suppression and nuclear accommodation of the mit- oxi1-V25 mutation in isolated yeast mitochondria. Curr Genet 12: 305–310, 1987.
88.
Zhang HKong XKang JSu JLi YZhong JSun L. Oxidative stress induces parallel autophagy and mitochondria dysfunction in human glioma U251 cellsToxicol Sci110376-3882009. 88. Zhang H, Kong X, Kang J, Su J, Li Y, Zhong J, and Sun L. Oxidative stress induces parallel autophagy and mitochondria dysfunction in human glioma U251 cells. Toxicol Sci 110: 376–388, 2009.
Information & Authors
Information
Published In
Antioxidants & Redox Signaling
Volume 19 • Issue Number 16 • December 1, 2013
Pages: 1928 - 1939
PubMed: 23088322
Copyright
Copyright 2013, Mary Ann Liebert, Inc.
History
Published in print: December 1, 2013
Published online: 26 November 2013
Published ahead of print: 22 January 2013
Published ahead of production: 22 October 2012
Accepted: 22 October 2012
Revision received: 1 October 2012
Received: 15 August 2012
Topics
Authors
Author Disclosure Statement
No competing financial interests exist.
Metrics & Citations
Metrics
Citations
Export Citation
Export citation
Select the format you want to export the citations of this publication.
View Options
Get Access
Access content
To read the fulltext, please use one of the options below to sign in or purchase access.⚠ Society Access
If you are a member of a society that has access to this content please log in via your society website and then return to this publication.