Research Article
No access
Published Online: 1 January 2018

Flow-Responsive Vascular Endothelial Growth Factor Receptor-Protein Kinase C Isoform Epsilon Signaling Mediates Glycolytic Metabolites for Vascular Repair

Publication: Antioxidants & Redox Signaling
Volume 28, Issue Number 1


Aims: Hemodynamic shear stress participates in maintaining vascular redox status. Elucidating flow-mediated endothelial metabolites enables us to discover metabolic biomarkers and therapeutic targets. We posited that flow-responsive vascular endothelial growth factor receptor (VEGFR)-protein kinase C isoform epsilon (PKCɛ)-6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) signaling modulates glycolytic metabolites for vascular repair.
Results: Bidirectional oscillatory flow (oscillatory shear stress [OSS]: 0.1 ± 3 dyne·cm−2 at 1 Hz) upregulated VEGFR-dependent PKCɛ expression to a greater degree than did unidirectional pulsatile flow (pulsatile shear stress [PSS]: 23 ± 8 dyne·cm−2 at 1 Hz) in human aortic endothelial cells (p < 0.05, n = 3). PSS and OSS further upregulated PKCɛ-dependent PFKFB3 expression for glycolysis (p < 0.05, n = 4). Constitutively active PKCɛ increased, whereas dominant-negative PKCɛ reduced both basal and maximal extracellular acidification rates for glycolytic flux (p < 0.01, n = 4). Metabolomic analysis demonstrated an increase in PKCɛ-dependent glycolytic metabolite, dihydroxyacetone (DHA), but a decrease in gluconeogenic metabolite, aspartic acid (p < 0.05 vs. control, n = 6). In a New Zealand White rabbit model, both PKCɛ and PFKFB3 immunostaining was prominent in the PSS- and OSS-exposed aortic arch and descending aorta. In a transgenic Tg(flk-1:EGFP) zebrafish model, GATA-1a morpholino oligonucleotide injection (to reduce viscosity-dependent shear stress) impaired vascular regeneration after tail amputation (p < 0.01, n = 20), which was restored with PKCɛ messenger RNA (mRNA) rescue (p < 0.05, n = 5). As a corollary, siPKCɛ inhibited tube formation and vascular repair, which were restored by DHA treatment in our Matrigel and zebrafish models.
Innovation and Conclusion: Flow-sensitive VEGFR-PKCɛ-PFKFB3 signaling increases the glycolytic metabolite, dihydroxyacetone, to promote vascular repair. Antioxid. Redox Signal. 28, 31–43.

Get full access to this article

View all available purchase options and get full access to this article.


Parkinson disease. Metablomics study reveals novel biomarkers for PD. Nat Rev Neurol 9: 484, 2013.
Stroke. Molecular markers could help predict stroke risk after TIA. Nat Rev Neurol 11: 3, 2015.
Bakker JL, Meijers-Heijboer H, and Verheul H. Novel strategies towards the use of anti-angiogenic agents in breast cancer. Eur J Pharmacol 717: 36–39, 2013.
Boo YC, Sorescu G, Boyd N, Shiojima I, Walsh K, Du J, and Jo H. Shear stress stimulates phosphorylation of endothelial nitric-oxide synthase at Ser1179 by Akt-independent mechanisms: Role of protein kinase A. J Biol Chem 277: 3388–3396, 2002.
Boselli F, Freund JB, and Vermot J. Blood flow mechanics in cardiovascular development. Cell Mol Life Sci 72: 2545–2559, 2015.
Budas G, Costa HM Jr, Ferreira JC, Teixeira da Silva Ferreira A, Perales J, Krieger JE, Mochly-Rosen D, and Schechtman D. Identification of epsilonPKC targets during cardiac ischemic injury. Circ J 76: 1476–1485, 2012.
Cao H, Yu F, Zhao Y, Scianmarello N, Lee J, Dai W, Jen N, Beebe T, Li R, Ebrahimi R, Chang DS, Mody FV, Pacella J, Tai YC, and Hsiai T. Stretchable electrochemical impedance sensors for intravascular detection of lipid-rich lesions in New Zealand White rabbits. Biosens Bioelectron 54: 610–616, 2014.
Chiu JJ, Wang DL, Chien S, Skalak R, and Usami S. Effects of disturbed flow on endothelial cells. J Biomech Eng 120: 2–8, 1998.
Chu CY, Cheng CH, Chen GD, Chen YC, Hung CC, Huang KY, and Huang CJ. The zebrafish erythropoietin: Functional identification and biochemical characterization. FEBS Lett 581: 4265–4271, 2007.
Clyne M. Kidney cancer: Metabolomics for targeted therapy. Nat Rev Urol 9: 355, 2012.
Culic O, Gruwel ML, and Schrader J. Energy turnover of vascular endothelial cells. Am J Physiol 273: C205–C213, 1997.
De Bock K, Georgiadou M, and Carmeliet P. Role of endothelial cell metabolism in vessel sprouting. Cell Metab 18: 634–647, 2013.
De Bock K, Georgiadou M, Schoors S, Kuchnio A, Wong BW, Cantelmo AR, Quaegebeur A, Ghesquiere B, Cauwenberghs S, Eelen G, Phng LK, Betz I, Tembuyser B, Brepoels K, Welti J, Geudens I, Segura I, Cruys B, Bifari F, Decimo I, Blanco R, Wyns S, Vangindertael J, Rocha S, Collins RT, Munck S, Daelemans D, Imamura H, Devlieger R, Rider M, Van Veldhoven PP, Schuit F, Bartrons R, Hofkens J, Fraisl P, Telang S, Deberardinis RJ, Schoonjans L, Vinckier S, Chesney J, Gerhardt H, Dewerchin M, and Carmeliet P. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154: 651–663, 2013.
Dejana E. The role of wnt signaling in physiological and pathological angiogenesis. Circ Res 107: 943–952, 2010.
Doddaballapur A, Michalik KM, Manavski Y, Lucas T, Houtkooper RH, You X, Chen W, Zeiher AM, Potente M, Dimmeler S, and Boon RA. Laminar shear stress inhibits endothelial cell metabolism via KLF2-mediated repression of PFKFB3. Arterioscler Thromb Vasc Biol 35: 137–145, 2015.
Dorn GW, 2nd, and Mochly-Rosen D. Intracellular transport mechanisms of signal transducers. Annu Rev Physiol 64: 407–429, 2002.
Dunn J, Qiu H, Kim S, Jjingo D, Hoffman R, Kim CW, Jang I, Son DJ, Kim D, Pan C, Fan Y, Jordan IK, and Jo H. Flow-dependent epigenetic DNA methylation regulates endothelial gene expression and atherosclerosis. J Clin Invest 124: 3187–3199, 2014.
Fiehn O, Wohlgemuth G, Scholz M, Kind T, Lee do Y, Lu Y, Moon S, and Nikolau B. Quality control for plant metabolomics: Reporting MSI-compliant studies. Plant J 53: 691–704, 2008.
Frangos JA, McIntire LV, and Eskin SG. Shear stress induced stimulation of mammalian cell metabolism. Biotechnol Bioeng 32: 1053–1060, 1988.
Go YM, Kim CW, Walker DI, Kang DW, Kumar S, Orr M, Uppal K, Quyyumi AA, Jo H, and Jones DP. Disturbed flow induces systemic changes in metabolites in mouse plasma: A metabolomics study using ApoE(-)/(-) mice with partial carotid ligation. Am J Physiol Regul Integr Comp Physiol 308: R62–R72, 2015.
Guo D, Chien S, and Shyy JY. Regulation of endothelial cell cycle by laminar versus oscillatory flow: Distinct modes of interactions of AMP-activated protein kinase and Akt pathways. Circ Res 100: 564–571, 2007.
Hwang J, Ing MH, Salazar A, Lassegue B, Griendling K, Navab M, Sevanian A, and Hsiai TK. Pulsatile versus oscillatory shear stress regulates NADPH oxidase subunit expression: Implication for native LDL oxidation. Circ Res 93: 1225–1232, 2003.
Jalali S, Li YS, Sotoudeh M, Yuan S, Li S, Chien S, and Shyy JY. Shear stress activates p60src-Ras-MAPK signaling pathways in vascular endothelial cells. Arterioscler Thromb Vasc Biol 18: 227–234, 1998.
Jen N, Yu F, Lee J, Wasmund S, Dai X, Chen C, Chawareeyawong P, Yang Y, Li R, Hamdan MH, and Hsiai TK. Atrial fibrillation pacing decreases intravascular shear stress in a New Zealand white rabbit model: Implications in endothelial function. Biomech Model Mechanobiol 12: 735–745, 2013.
Jones R, Baker MB, Weber M, Harrison DG, Bao G, and Searles CD. Molecular beacons can assess changes in expression and 3′-polyadenylation of human eNOS mRNA. Am J Physiol Cell Physiol 296: C498–C504, 2009.
Kang M and Walker JW. Protein kinase C delta and epsilon mediate positive inotropy in adult ventricular myocytes. J Mol Cell Cardiol 38: 753–764, 2005.
Kluge MA, Fetterman JL, and Vita JA. Mitochondria and endothelial function. Circ Res 112: 1171–1188, 2013.
Koh W, Sachidanandam K, Stratman AN, Sacharidou A, Mayo AM, Murphy EA, Cheresh DA, and Davis GE. Formation of endothelial lumens requires a coordinated PKCepsilon-, Src-, Pak- and Raf-kinase-dependent signaling cascade downstream of Cdc42 activation. J Cell Sci 122: 1812–1822, 2009.
Kulkeaw K and Sugiyama D. Zebrafish erythropoiesis and the utility of fish as models of anemia. Stem Cell Res Ther 3: 55, 2012.
Kumar S and Hedges SB. A molecular timescale for vertebrate evolution. Nature 392: 917–920, 1998.
Lee J, Fei P, Sevag Packard RR, Kang H, Xu H, Baek KI, Jen N, Chen J, Yen H, Kuo CC, Chi NC, Ho CM, Li R, and Hsiai TK. 4-Dimensional light-sheet microscopy to elucidate shear stress modulation of cardiac trabeculation. J Clin Invest 126: 3158, 2016.
Lee J, Packard RR, and Hsiai TK. Blood flow modulation of vascular dynamics. Curr Opin Lipidol 26: 376–383, 2015.
Li R, Beebe T, Jen N, Yu F, Takabe W, Harrison M, Cao H, Lee J, Yang H, Han P, Wang K, Shimizu H, Chen J, Lien CL, Chi NC, and Hsiai TK. Shear stress-activated Wnt-angiopoietin-2 signaling recapitulates vascular repair in zebrafish embryos. Arterioscler Thromb Vasc Biol 34: 2268–2275, 2014.
Li R, Jen N, Wu L, Lee J, Fang K, Quigley K, Lee K, Wang S, Zhou B, Vergnes L, Chen YR, Li Z, Reue K, Ann DK, and Hsiai TK. Disturbed flow induces autophagy, but impairs autophagic flux to perturb mitochondrial homeostasis. Antioxid Redox Signal 23: 1207–1219, 2015.
Ma J, Luo Y, Sevag Packard RR, Ma T, Ding Y, Abiri P, Tai YC, Zhou Q, Shung KK, Li R, and Hsiai T. Ultrasonic transducer-guided electrochemical impedance spectroscopy to assess lipid-laden plaques. Sens Actuators B Chem 235: 154–161, 2016.
Mayr M, Liem D, Zhang J, Li X, Avliyakulov NK, Yang JI, Young G, Vondriska TM, Ladroue C, Madhu B, Griffiths JR, Gomes A, Xu Q, and Ping P. Proteomic and metabolomic analysis of cardioprotection: Interplay between protein kinase C epsilon and delta in regulating glucose metabolism of murine hearts. J Mol Cell Cardiol 46: 268–277, 2009.
Milan DJ, Jones IL, Ellinor PT, and MacRae CA. In vivo recording of adult zebrafish electrocardiogram and assessment of drug-induced QT prolongation. Am J Physiol Heart Circ Physiol 291: H269–H273, 2006.
Morbiducci U, Kok AM, Kwak BR, Stone PH, Steinman DA, and Wentzel JJ. Atherosclerosis at arterial bifurcations: Evidence for the role of haemodynamics and geometry. Thromb Haemost 115: 484–492, 2016.
Neufer PD, Bamman MM, Muoio DM, Bouchard C, Cooper DM, Goodpaster BH, Booth FW, Kohrt WM, Gerszten RE, Mattson MP, Hepple RT, Kraus WE, Reid MB, Bodine SC, Jakicic JM, Fleg JL, Williams JP, Joseph L, Evans M, Maruvada P, Rodgers M, Roary M, Boyce AT, Drugan JK, Koenig JI, Ingraham RH, Krotoski D, Garcia-Cazarin M, McGowan JA, and Laughlin MR. Understanding the cellular and molecular mechanisms of physical activity-induced health benefits. Cell Metab 22: 4–11, 2015.
Novellasdemunt L, Tato I, Navarro-Sabate A, Ruiz-Meana M, Mendez-Lucas A, Perales JC, Garcia-Dorado D, Ventura F, Bartrons R, and Rosa JL. Akt-dependent activation of the heart 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB2) isoenzyme by amino acids. J Biol Chem 288: 10640–10651, 2013.
Packard RR, Zhang X, Luo Y, Ma T, Jen N, Ma J, Demer LL, Zhou Q, Sayre JW, Li R, Tai YC, and Hsiai TK. Two-point stretchable electrode array for endoluminal electrochemical impedance spectroscopy measurements of lipid-laden atherosclerotic plaques. Ann Biomed Eng 44: 2695–2706, 2016.
Painter RM, Pearson DM, and Waymouth RM. Selective catalytic oxidation of glycerol to dihydroxyacetone. Angew Chem Int Ed Engl 49: 9456–9459, 2010.
Prokopiou EM, Ryder SA, and Walsh JJ. Tumour vasculature targeting agents in hybrid/conjugate drugs. Angiogenesis 16: 503–524, 2013.
Rask-Madsen C and King GL. Differential regulation of VEGF signaling by PKC-alpha and PKC-epsilon in endothelial cells. Arterioscler Thromb Vasc Biol 28: 919–924, 2008.
Roman BL and Pekkan K. Mechanotransduction in embryonic vascular development. Biomech Model Mechanobiol 11: 1149–1168, 2012.
Schoors S, De Bock K, Cantelmo AR, Georgiadou M, Ghesquiere B, Cauwenberghs S, Kuchnio A, Wong BW, Quaegebeur A, Goveia J, Bifari F, Wang X, Blanco R, Tembuyser B, Cornelissen I, Bouche A, Vinckier S, Diaz-Moralli S, Gerhardt H, Telang S, Cascante M, Chesney J, Dewerchin M, and Carmeliet P. Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis. Cell Metab 19: 37–48, 2014.
Sedmera D, Reckova M, deAlmeida A, Sedmerova M, Biermann M, Volejnik J, Sarre A, Raddatz E, McCarthy RA, Gourdie RG, and Thompson RP. Functional and morphological evidence for a ventricular conduction system in zebrafish and Xenopus hearts. Am J Physiol Heart Circ Physiol 284: H1152–H1160, 2003.
Simmons RD, Kumar S, and Jo H. The role of endothelial mechanosensitive genes in atherosclerosis and omics approaches. Arch Biochem Biophys 591: 111–131, 2016.
Suarez J and Rubio R. Regulation of glycolytic flux by coronary flow in guinea pig heart. Role of vascular endothelial cell glycocalyx. Am J Physiol 261: H1994–H2000, 1991.
Subramaniam SR, Vergnes L, Franich NR, Reue K, and Chesselet M-F. Region specific mitochondrial impairment in mice with widespread overexpression of alpha-synuclein. Neurobiol Dis 70: 204–213, 2014.
Sun X and Feinberg MW. Regulation of endothelial cell metabolism: Just go with the flow. Arterioscler Thromb Vasc Biol 35: 13–15, 2015.
Takabe W, Li R, Ai L, Yu F, Berliner JA, and Hsiai TK. Oxidized low-density lipoprotein-activated c-Jun NH2-terminal kinase regulates manganese superoxide dismutase ubiquitination: Implication for mitochondrial redox status and apoptosis. Arterioscler Thromb Vasc Biol 30: 436–441, 2010.
TeSlaa T and Teitell MA. Techniques to monitor glycolysis. Methods Enzymol 542: 91–114, 2014.
Wang S, Iring A, Strilic B, Albarran Juarez J, Kaur H, Troidl K, Tonack S, Burbiel JC, Muller CE, Fleming I, Lundberg JO, Wettschureck N, and Offermanns S. P2Y2 and Gq/G11 control blood pressure by mediating endothelial mechanotransduction. J Clin Invest 125: 3077–3086, 2015.
Wang Y and Ashraf M. Role of protein kinase C in mitochondrial KATP channel-mediated protection against Ca2+ overload injury in rat myocardium. Circ Res 84: 1156–1165, 1999.
Wang Y, Zang QS, Liu Z, Wu Q, Maass D, Dulan G, Shaul PW, Melito L, Frantz DE, Kilgore JA, Williams NS, Terada LS, and Nwariaku FE. Regulation of VEGF-induced endothelial cell migration by mitochondrial reactive oxygen species. Am J Physiol Cell Physiol 301: C695–C704, 2011.
Wu M, Neilson A, Swift AL, Moran R, Tamagnine J, Parslow D, Armistead S, Lemire K, Orrell J, Teich J, Chomicz S, and Ferrick DA. Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol 292: C125–C136, 2007.
Yu F, Lee J, Jen N, Li X, Zhang Q, Tang R, Zhou Q, Kim ES, and Hsiai TK. Elevated electrochemical impedance in the endoluminal regions with high shear stress: Implication for assessing lipid-rich atherosclerotic lesions. Biosens Bioelectron 43: 237–244, 2013.

Information & Authors


Published In

cover image Antioxidants & Redox Signaling
Antioxidants & Redox Signaling
Volume 28Issue Number 1January 1, 2018
Pages: 31 - 43
PubMed: 28762754


Published in print: January 1, 2018
Published online: 1 January 2018
Published ahead of print: 21 September 2017
Published ahead of production: 1 August 2017
Accepted: 31 July 2017
Revision received: 31 July 2017
Received: 8 March 2017


Request permissions for this article.




Kyung In Baek
Department of Bioengineering, School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, California.
Rongsong Li
Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, California.
Nelson Jen
Department of Bioengineering, School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, California.
Howard Choi
Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, California.
Amir Kaboodrangi
Department of Bioengineering, School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, California.
Peipei Ping
Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, California.
Department of Physiology, School of Medicine, University of California, Los Angeles, Los Angeles, California.
David Liem
Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, California.
Tyler Beebe
Department of Bioengineering, School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, California.
Tzung K. Hsiai
Department of Bioengineering, School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, California.
Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, California.
Department of Physiology, School of Medicine, University of California, Los Angeles, Los Angeles, California.
Greater Los Angeles VA Healthcare System, Los Angeles, California.
Department of Medical Engineering, California Institute of Technology, Pasadena, California.


Address correspondence to:Prof. Tzung K. HsiaiDivision of CardiologyDepartment of MedicineUniversity of California, Los Angeles10833 Le Conte Avenue, CHS17-054ALos Angeles, CA 90095-1679
Department of BioengineeringUniversity of California, Los Angeles10833 Le Conte Avenue, CHS17-054ALos Angeles, CA 90095-1679E-mail: [email protected]

Author Disclosure Statement

No competing financial interests exist.

Metrics & Citations



Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options


View PDF/ePub

Full Text

View Full Text







Copy the content Link

Share on social media

Back to Top