Aims: Cytoglobin (CYGB) is a member of the mammalian globin family of respiratory proteins. Despite extensive research efforts, its physiological role remains largely unknown, but potential functions include reactive oxygen species (ROS) detoxification and signaling. Accumulating evidence suggests that ROS play a crucial role in podocyte detachment and apoptosis during diabetic kidney disease. This study aimed to explore the potential antioxidative renal role of CYGB both in vivo and in vitro.
Results: Using a Cygb-deficient mouse model, we demonstrate a Cygb-dependent reduction in renal function, coinciding with a reduced number of podocytes. To specifically assess the putative antioxidative function of CYGB in podocytes, we first confirmed high endogenous CYGB expression levels in two human podocyte cell lines and subsequently generated short hairpin RNA-mediated stable CYGB knockdown podocyte models. CYGB-deficient podocytes displayed increased cell death and accumulation of ROS as assessed by 2′7′-dichlorodihydrofluorescein diacetate assays and the redox-sensitive probe roGFP2-Orp1. CYGB-deficient cells also exhibited an impaired cellular bioenergetic status. Consistently, analysis of the CYGB-dependent transcriptome identified dysregulation of multiple genes involved in redox balance, apoptosis, as well as in chronic kidney disease (CKD). Finally, genome-wide association studies and expression studies in nephropathy biopsies indicate an association of CYGB with CKD.
Innovation: This study demonstrates a podocyte-related renal role of Cygb, confirms abundant CYGB expression in human podocyte cell lines, and describes for the first time an association between CYGB and CKD.
Conclusion: Our results provide evidence for an antioxidative role of CYGB in podocytes.

Get full access to this article

View all available purchase options and get full access to this article.


1. Balkawade RS, Chen C, Crowley MR, Crossman DK, Clapp WL, Verlander JW, and Marshall CB. Podocyte-specific expression of Cre recombinase promotes glomerular basement membrane thickening. Am J Physiol Renal Physiol 316: F1026–F1040, 2019.
2. Betz B and Conway BR. An update on the use of animal models in diabetic nephropathy research. Curr Diab Rep 16: 18, 2016.
3. Böger CA, Chen MH, Tin A, Olden M, Kottgen A, de Boer IH, Fuchsberger C, O'Seaghdha CM, Pattaro C, Teumer A, Liu CT, Glazer NL, Li M, O'Connell JR, Tanaka T, Peralta CA, Kutalik Z, Luan J, Zhao JH, Hwang SJ, Akylbekova E, Kramer H, van der Harst P, Smith AV, Lohman K, de Andrade M, Hayward C, Kollerits B, Tonjes A, Aspelund T, Ingelsson E, Eiriksdottir G, Launer LJ, Harris TB, Shuldiner AR, Mitchell BD, Arking DE, Franceschini N, Boerwinkle E, Egan J, Hernandez D, Reilly M, Townsend RR, Lumley T, Siscovick DS, Psaty BM, Kestenbaum B, Haritunians T, Bergmann S, Vollenweider P, Waeber G, Mooser V, Waterworth D, Johnson AD, Florez JC, Meigs JB, Lu X, Turner ST, Atkinson EJ, Leak TS, Aasarod K, Skorpen F, Syvanen AC, Illig T, Baumert J, Koenig W, Kramer BK, Devuyst O, Mychaleckyj JC, Minelli C, Bakker SJ, Kedenko L, Paulweber B, Coassin S, Endlich K, Kroemer HK, Biffar R, Stracke S, Volzke H, Stumvoll M, Magi R, Campbell H, Vitart V, Hastie ND, Gudnason V, Kardia SL, Liu Y, Polasek O, Curhan G, Kronenberg F, Prokopenko I, Rudan I, Arnlov J, Hallan S, Navis G, Parsa A, Ferrucci L, Coresh J, Shlipak MG, Bull SB, Paterson NJ, Wichmann HE, Wareham NJ, Loos RJ, Rotter JI, Pramstaller PP, Cupples LA, Beckmann JS, Yang Q, Heid IM, Rettig R, Dreisbach AW, Bochud M, Fox CS, and Kao WH. CUBN is a gene locus for albuminuria. J Am Soc Nephrol 22: 555–570, 2011.
4. Bryniarski MA, Yee BM, Jaffri I, Chaves LD, Yu JA, Guan X, Ghavam N, Yacoub R, and Morris ME. Increased megalin expression in early type 2 diabetes: role of insulin signaling pathways. Am J Physiol Renal Physiol 315: F1191–F1207, 2018.
5. Burmester T, Ebner B, Weich B, and Hankeln T. Cytoglobin: a novel globin type ubiquitously expressed in vertebrate tissues. Mol Biol Evol 19: 416–421, 2002.
6. Burmester T and Hankeln T. Function and evolution of vertebrate globins. Acta Physiol (Oxf) 211: 501–514, 2014.
7. Burmester T, Weich B, Reinhardt S, and Hankeln T. A vertebrate globin expressed in the brain. Nature 407: 520–523, 2000.
8. Cohen CD, Frach K, Schlondorff D, and Kretzler M. Quantitative gene expression analysis in renal biopsies: a novel protocol for a high-throughput multicenter application. Kidney Int 61: 133–140, 2002.
9. Cohen CD, Klingenhoff A, Boucherot A, Nitsche A, Henger A, Brunner B, Schmid H, Merkle M, Saleem MA, Koller KP, Werner T, Grone HJ, Nelson PJ, and Kretzler M. Comparative promoter analysis allows de novo identification of specialized cell junction-associated proteins. Proc Natl Acad Sci U S A 103: 5682–5687, 2006.
10. Davis CA, Hitz BC, Sloan CA, Chan ET, Davidson JM, Gabdank I, Hilton JA, Jain K, Baymuradov UK, Narayanan AK, Onate KC, Graham K, Miyasato SR, Dreszer TR, Strattan JS, Jolanki O, Tanaka FY, and Cherry JM. The encyclopedia of DNA elements (ENCODE): data portal update. Nucleic Acids Res 46: D794–D801, 2018.
11. Dong L, Pietsch S, Tan Z, Perner B, Sierig R, Kruspe D, Groth M, Witzgall R, Grone HJ, Platzer M, and Englert C. Integration of cistromic and transcriptomic analyses identifies Nphs2, Mafb, and Magi2 as Wilms' tumor 1 target genes in podocyte differentiation and maintenance. J Am Soc Nephrol 26: 2118–2128, 2015.
12. Fordel E, Thijs L, Martinet W, Lenjou M, Laufs T, Van Bockstaele D, Moens L, and Dewilde S. Neuroglobin and cytoglobin overexpression protects human SH-SY5Y neuroblastoma cells against oxidative stress-induced cell death. Neurosci Lett 410: 146–151, 2006.
13. Fordel E, Thijs L, Martinet W, Schrijvers D, Moens L, and Dewilde S. Anoxia or oxygen and glucose deprivation in SH-SY5Y cells: a step closer to the unraveling of neuroglobin and cytoglobin functions. Gene 398: 114–122, 2007.
14. Fordel E, Thijs L, Moens L, and Dewilde S. Neuroglobin and cytoglobin expression in mice. Evidence for a correlation with reactive oxygen species scavenging. FEBS J 274: 1312–1317, 2007.
15. Fuady JH, Bordoli MR, Abreu-Rodriguez I, Kristiansen G, Hoogewijs D, Stiehl DP, and Wenger RH. Hypoxia-inducible factor-mediated induction of WISP-2 contributes to attenuated progression of breast cancer. Hypoxia (Auckl) 2: 23–33, 2014.
16. Fuady JH, Gutsche K, Santambrogio S, Varga Z, Hoogewijs D, and Wenger RH. Estrogen-dependent downregulation of hypoxia-inducible factor (HIF)-2alpha in invasive breast cancer cells. Oncotarget 7: 31153–31165, 2016.
17. Gardner AM, Cook MR, and Gardner PR. Nitric-oxide dioxygenase function of human cytoglobin with cellular reductants and in rat hepatocytes. J Biol Chem 285: 23850–23857, 2010.
18. Geuens E, Brouns I, Flamez D, Dewilde S, Timmermans JP, and Moens L. A globin in the nucleus! J Biol Chem 278: 30417–30420, 2003.
19. Gnudi L. Cellular and molecular mechanisms of diabetic glomerulopathy. Nephrol Dial Transplant 27: 2642–2649, 2012.
20. Guo JK, Menke AL, Gubler MC, Clarke AR, Harrison D, Hammes A, Hastie ND, and Schedl A. WT1 is a key regulator of podocyte function: reduced expression levels cause crescentic glomerulonephritis and mesangial sclerosis. Hum Mol Genet 11: 651–659, 2002.
21. Gutsche K, Randi EB, Blank V, Fink D, Wenger RH, Leo C, and Scholz CC. Intermittent hypoxia confers pro-metastatic gene expression selectively through NF-kappaB in inflammatory breast cancer cells. Free Radic Biol Med 101: 129–142, 2016.
22. Gutscher M, Sobotta MC, Wabnitz GH, Ballikaya S, Meyer AJ, Samstag Y, and Dick TP. Proximity-based protein thiol oxidation by H2O2-scavenging peroxidases. J Biol Chem 284: 31532–31540, 2009.
23. Ha H, Hwang IA, Park JH, and Lee HB. Role of reactive oxygen species in the pathogenesis of diabetic nephropathy. Diabetes Res Clin Pract 82 Suppl 1: S42–S45, 2008.
24. Halligan KE, Jourd'heuil FL, and Jourd'heuil D. Cytoglobin is expressed in the vasculature and regulates cell respiration and proliferation via nitric oxide dioxygenation. J Biol Chem 284: 8539–8547, 2009.
25. Hankeln T, Ebner B, Fuchs C, Gerlach F, Haberkamp M, Laufs TL, Roesner A, Schmidt M, Weich B, Wystub S, Saaler-Reinhardt S, Reuss S, Bolognesi M, De Sanctis D, Marden MC, Kiger L, Moens L, Dewilde S, Nevo E, Avivi A, Weber RE, Fago A, and Burmester T. Neuroglobin and cytoglobin in search of their role in the vertebrate globin family. J Inorg Biochem 99: 110–119, 2005.
26. Hodges NJ, Innocent N, Dhanda S, and Graham M. Cellular protection from oxidative DNA damage by over-expression of the novel globin cytoglobin in vitro. Mutagenesis 23: 293–298, 2008.
27. Hoogewijs D, Ebner B, Germani F, Hoffmann FG, Fabrizius A, Moens L, Burmester T, Dewilde S, Storz JF, Vinogradov SN, and Hankeln T. Androglobin: a chimeric globin in metazoans that is preferentially expressed in mammalian testes. Mol Biol Evol 29: 1105–1114, 2012.
28. Hoogewijs D, Houthoofd K, Matthijssens F, Vandesompele J, and Vanfleteren JR. Selection and validation of a set of reliable reference genes for quantitative SOD gene expression analysis in C. elegans. BMC Mol Biol 9: 9, 2008.
29. Hoogewijs D, Vogler M, Zwenger E, Krull S, and Zieseniss A. Oxygen-dependent regulation of aquaporin-3 expression. Hypoxia (Auckl) 4: 91–97, 2016.
30. Jefferson JA, Shankland SJ, and Pichler RH. Proteinuria in diabetic kidney disease: a mechanistic viewpoint. Kidney Int 74: 22–36, 2008.
31. Latina A, Viticchiè G, Lena AM, Piro MC, Annicchiarico-Petruzzelli M, Melino G, and Candi E. ΔNp63 targets cytoglobin to inhibit oxidative stress-induced apoptosis in keratinocytes and lung cancer. Oncogene 35: 1493–1503, 2015.
32. Lee JW, Chou CL, and Knepper MA. Deep sequencing in microdissected renal tubules identifies nephron segment-specific transcriptomes. J Am Soc Nephrol 26: 2669–2677, 2015.
33. Li D, Chen XQ, Li WJ, Yang YH, Wang JZ, and Yu AC. Cytoglobin up-regulated by hydrogen peroxide plays a protective role in oxidative stress. Neurochem Res 32: 1375–1380, 2007.
34. Ling Q, Shi W, Huang C, Zheng J, Cheng Q, Yu K, Chen S, Zhang H, Li N, and Chen M. Epigenetic silencing of dual oxidase 1 by promoter hypermethylation in human hepatocellular carcinoma. Am J Cancer Res 4: 508–517, 2014.
35. Liu BC, Song X, Lu XY, Li DT, Eaton DC, Shen BZ, Li XQ, and Ma HP. High glucose induces podocyte apoptosis by stimulating TRPC6 via elevation of reactive oxygen species. Biochim Biophys Acta 1833: 1434–1442, 2013.
36. Liu X, El-Mahdy MA, Boslett J, Varadharaj S, Hemann C, Abdelghany TM, Ismail RS, Little SC, Zhou D, Thuy LT, Kawada N, and Zweier JL. Cytoglobin regulates blood pressure and vascular tone through nitric oxide metabolism in the vascular wall. Nat Commun 8: 14807, 2017.
37. Liu X, Follmer D, Zweier JR, Huang X, Hemann C, Liu K, Druhan LJ, and Zweier JL. Characterization of the function of cytoglobin as an oxygen-dependent regulator of nitric oxide concentration. Biochemistry 51: 5072–5082, 2012.
38. Love MI, Huber W, and Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15: 550, 2014.
39. Lu Y, Ye Y, Bao W, Yang Q, Wang J, Liu Z, and Shi S. Genome-wide identification of genes essential for podocyte cytoskeletons based on single-cell RNA sequencing. Kidney Int 92: 1119–1129, 2017.
40. Luxen S, Belinsky SA, and Knaus UG. Silencing of DUOX NADPH oxidases by promoter hypermethylation in lung cancer. Cancer Res 68: 1037–1045, 2008.
41. MacIsaac RJ, Tsalamandris C, Panagiotopoulos S, Smith TJ, McNeil KJ, and Jerums G. Nonalbuminuric renal insufficiency in type 2 diabetes. Diabetes Care 27: 195–200, 2004.
42. Mimura I, Nangaku M, Nishi H, Inagi R, Tanaka T, and Fujita T. Cytoglobin, a novel globin, plays an antifibrotic role in the kidney. Am J Physiol Renal Physiol 299: F1120–F1133, 2010.
43. Miner JH. Podocyte biology in 2015: new insights into the mechanisms of podocyte health. Nat Rev Nephrol 12: 63–64, 2016.
44. Morgan B, Sobotta MC, and Dick TP. Measuring E(GSH) and H2O2 with roGFP2-based redox probes. Free Radic Biol Med 51: 1943–1951, 2011.
45. Moriguchi T, Hamada M, Morito N, Terunuma T, Hasegawa K, Zhang C, Yokomizo T, Esaki R, Kuroda E, Yoh K, Kudo T, Nagata M, Greaves DR, Engel JD, Yamamoto M, and Takahashi S. MafB is essential for renal development and F4/80 expression in macrophages. Mol Cell Biol 26: 5715–5727, 2006.
46. Morito N, Yoh K, Ojima M, Okamura M, Nakamura M, Hamada M, Shimohata H, Moriguchi T, Yamagata K, and Takahashi S. Overexpression of Mafb in podocytes protects against diabetic nephropathy. J Am Soc Nephrol 25: 2546–2557, 2014.
47. Müller-Edenborn K, Leger K, Glaus Garzon JF, Oertli C, Mirsaidi A, Richards PJ, Rehrauer H, Spielmann P, Hoogewijs D, Borsig L, Hottiger MO, and Wenger RH. Hypoxia attenuates the proinflammatory response in colon cancer cells by regulating IkappaB. Oncotarget 6: 20288–20301, 2015.
48. Nakatani K, Okuyama H, Shimahara Y, Saeki S, Kim DH, Nakajima Y, Seki S, Kawada N, and Yoshizato K. Cytoglobin/STAP, its unique localization in splanchnic fibroblast-like cells and function in organ fibrogenesis. Lab Invest 84: 91–101, 2004.
49. Nishi H, Inagi R, Kawada N, Yoshizato K, Mimura I, Fujita T, and Nangaku M. Cytoglobin, a novel member of the globin family, protects kidney fibroblasts against oxidative stress under ischemic conditions. Am J Pathol 178: 128–139, 2011.
50. O'Seaghdha CM and Fox CS. Genome-wide association studies of chronic kidney disease: what have we learned? Nat Rev Nephrol 8: 89–99, 2011.
51. Petersen MG, Dewilde S, and Fago A. Reactions of ferrous neuroglobin and cytoglobin with nitrite under anaerobic conditions. J Inorg Biochem 102: 1777–1782, 2008.
52. Pill J, Kraenzlin B, Jander J, Sattelkau T, Sadick M, Kloetzer HM, Deus C, Kraemer U, and Gretz N. Fluorescein-labeled sinistrin as marker of glomerular filtration rate. Eur J Med Chem 40: 1056–1061, 2005.
53. Qi Z, Fujita H, Jin J, Davis LS, Wang Y, Fogo AB, and Breyer MD. Characterization of susceptibility of inbred mouse strains to diabetic nephropathy. Diabetes 54: 2628–2637, 2005.
54. Qi ZH, Whitt I, Mehta A, Jin JP, Zhao M, Harris RC, Fogo AB, and Breyer MD. Serial determination of glomerular filtration rate in conscious mice using FITC-inulin clearance. Am J Physiol Renal Physiol 286: F590–F596, 2004.
55. Robinson MD, McCarthy DJ, and Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139–140, 2010.
56. Robinson MD and Smyth GK. Small-sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics 9: 321–332, 2008.
57. Saleem MA, O'Hare MJ, Reiser J, Coward RJ, Inward CD, Farren T, Xing CY, Ni L, Mathieson PW, and Mundel P. A conditionally immortalized human podocyte cell line demonstrating nephrin and podocin expression. J Am Soc Nephrol 13: 630–638, 2002.
58. Samuel T, Hoy WE, Douglas-Denton R, Hughson MD, and Bertram JF. Applicability of the glomerular size distribution coefficient in assessing human glomerular volume: the Weibel and Gomez method revisited. J Anat 210: 578–582, 2007.
59. Schörg A, Santambrogio S, Platt JL, Schödel J, Lindenmeyer MT, Cohen CD, Schrödter K, Mole DR, Wenger RH, and Hoogewijs D. Destruction of a distal hypoxia response element abolishes trans-activation of the PAG1 gene mediated by HIF-independent chromatin looping. Nucleic Acids Res 43: 5810–5823, 2015.
60. Singh S, Canseco DC, Manda SM, Shelton JM, Chirumamilla RR, Goetsch SC, Ye Q, Gerard RD, Schneider JW, Richardson JA, Rothermel BA, and Mammen PP. Cytoglobin modulates myogenic progenitor cell viability and muscle regeneration. Proc Natl Acad Sci U S A 111: E129–E138, 2014.
61. Stagner JI, Seelan RS, Parthasarathy RN, and White K. Reduction of ischemic cell death in cultured Islets of Langerhans by the induction of cytoglobin. Islets 1: 50–54, 2009.
62. Storti F, Santambrogio S, Crowther LM, Otto T, Abreu-Rodriguez I, Kaufmann M, Hu CJ, Dame C, Fandrey J, Wenger RH, and Hoogewijs D. A novel distal upstream hypoxia response element regulating oxygen-dependent erythropoietin gene expression. Haematologica 99: e45–e48, 2014.
63. Susztak K, Raff AC, Schiffer M, and Bottinger EP. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes 55: 225–233, 2006.
64. Thuy LT, Matsumoto Y, Van Thuy TT, Hai H, Suoh M, Urahara Y, Motoyama H, Fujii H, Tamori A, Kubo S, Takemura S, Morita T, Yoshizato K, and Kawada N. Cytoglobin deficiency promotes liver cancer development from hepatosteatosis through activation of the oxidative stress pathway. Am J Pathol 185: 1045–1060, 2015.
65. Thuy le TT, Morita T, Yoshida K, Wakasa K, Iizuka M, Ogawa T, Mori M, Sekiya Y, Momen S, Motoyama H, Ikeda K, Yoshizato K, and Kawada N. Promotion of liver and lung tumorigenesis in DEN-treated cytoglobin-deficient mice. Am J Pathol 179: 1050–1060, 2011.
66. Thuy le TT, Van Thuy TT, Matsumoto Y, Hai H, Ikura Y, Yoshizato K, and Kawada N. Absence of cytoglobin promotes multiple organ abnormalities in aged mice. Sci Rep 6: 24990, 2016.
67. Tian SF, Yang HH, Xiao DP, Huang YJ, He GY, Ma HR, Xia F, and Shi XC. Mechanisms of neuroprotection from hypoxia-ischemia (HI) brain injury by up-regulation of cytoglobin (CYGB) in a neonatal rat model. J Biol Chem 288: 15988–16003, 2013.
68. Trandafir F, Hoogewijs D, Altieri F, Rivetti di Val Cervo P, Ramser K, Van Doorslaer S, Vanfleteren JR, Moens L, and Dewilde S. Neuroglobin and cytoglobin as potential enzyme or substrate. Gene 398: 103–113, 2007.
69. Trent JT, 3rd, and Hargrove MS. A ubiquitously expressed human hexacoordinate hemoglobin. J Biol Chem 277: 19538–19545, 2002.
70. Tsachaki M, Birk J, Egert A, and Odermatt A. Determination of the topology of endoplasmic reticulum membrane proteins using redox-sensitive green-fluorescence protein fusions. Biochim Biophys Acta 1853: 1672–1682, 2015.
71. Tusher VG, Tibshirani R, and Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98: 5116–5121, 2001.
72. Vinogradov SN and Moens L. Diversity of globin function: enzymatic, transport, storage, and sensing. J Biol Chem 283: 8773–8777, 2008.
73. Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag, 2016.
74. Xu R, Harrison PM, Chen M, Li L, Tsui TY, Fung PC, Cheung PT, Wang G, Li H, Diao Y, Krissansen GW, Xu S, and Farzaneh F. Cytoglobin overexpression protects against damage-induced fibrosis. Mol Ther 13: 1093–1100, 2006.
75. Yassin M, Kissow H, Vainer B, Joseph PD, Hay-Schmidt A, Olsen J, and Pedersen AE. Cytoglobin affects tumorigenesis and the expression of ulcerative colitis-associated genes under chemically induced colitis in mice. Sci Rep 8: 6905, 2018.

Information & Authors


Published In

cover image Antioxidants & Redox Signaling
Antioxidants & Redox Signaling
Volume 32Issue Number 16June 1, 2020
Pages: 1155 - 1171
PubMed: 31910047


Published in print: June 1, 2020
Published online: 28 April 2020
Published ahead of print: 6 February 2020
Published ahead of production: 7 January 2020
Accepted: 18 December 2019
Revision received: 28 November 2019
Received: 6 September 2019


Request permissions for this article.




    Elisa B. Randi
    Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland.
    Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.
    National Centre of Competence in Research (NCCR) “Kidney.CH”, Zurich, Switzerland.
    Benjamin Vervaet
    Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
    Maria Tsachaki
    National Centre of Competence in Research (NCCR) “Kidney.CH”, Zurich, Switzerland.
    Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
    Elena Porto
    Institute of Organismal and Molecular Evolutionary Biology, University of Mainz, Mainz, Germany.
    Stijn Vermeylen
    Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
    Maja T. Lindenmeyer
    Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.
    National Centre of Competence in Research (NCCR) “Kidney.CH”, Zurich, Switzerland.
    Nephrological Center, Medical Clinic and Policlinic IV, University of Munich, Munich, Germany.
    Le Thi Thanh Thuy
    Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan.
    Clemens D. Cohen
    Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.
    National Centre of Competence in Research (NCCR) “Kidney.CH”, Zurich, Switzerland.
    Nephrological Center, Medical Clinic and Policlinic IV, University of Munich, Munich, Germany.
    Olivier Devuyst
    Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.
    National Centre of Competence in Research (NCCR) “Kidney.CH”, Zurich, Switzerland.
    Andreas D. Kistler
    Division of Nephrology, Kantonsspital Frauenfeld, Frauenfeld, Switzerland.
    Csaba Szabo
    Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
    Norifumi Kawada
    Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan.
    Thomas Hankeln
    Institute of Organismal and Molecular Evolutionary Biology, University of Mainz, Mainz, Germany.
    Alex Odermatt
    National Centre of Competence in Research (NCCR) “Kidney.CH”, Zurich, Switzerland.
    Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
    Sylvia Dewilde
    Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
    Roland H. Wenger
    Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.
    National Centre of Competence in Research (NCCR) “Kidney.CH”, Zurich, Switzerland.
    David Hoogewijs [email protected]
    Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland.
    National Centre of Competence in Research (NCCR) “Kidney.CH”, Zurich, Switzerland.


    Address correspondence to: Prof. David Hoogewijs, Department of Medicine/Physiology, University of Fribourg, Fribourg 1700, Switzerland [email protected]

    Author Disclosure Statement

    No competing financial interests exist.

    Funding Information

    This work was supported by the Swiss National Science Foundation (grant 173000) and the German Research Foundation (grant HO5837/1-1) to D.H., a University Research Priority Program “Integrative Human Physiology” grant to E.B.R., the Biobank ERCB-KFB (Else Kröner-Fresenius-Foundation) to C.D.C., an intramural grant (Center for Computer Sciences, JGU Mainz) to T.H., the International PhD Program (IMB Mainz) to E.P. and T.H., a Grant-in-Aid for Scientific Research from JSPS (No. 25293177 and No. 16H05290) and a Grant for Research Program on Hepatitis from the Japan Agency for Medical Research and Development (18fk0210004h0003) to N.K., and the NCCR Kidney.CH financed by the SNF to C.D.C., O.D., A.O., R.H.W., and D.H.

    Metrics & Citations



    Export citation

    Select the format you want to export the citations of this publication.

    View Options

    Get Access

    Access content

    To read the fulltext, please use one of the options below to sign in or purchase access.

    Society Access

    If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

    Restore your content access

    Enter your email address to restore your content access:

    Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

    View options


    View PDF/ePub

    Full Text

    View Full Text







    Copy the content Link

    Share on social media

    Back to Top