Research Article
No access
Published Online: 23 February 2011

The Influence of Microgravity on Invasive Growth in Saccharomyces cerevisiae

Publication: Astrobiology
Volume 11, Issue Number 1

Abstract

This study investigates the effects of microgravity on colony growth and the morphological transition from single cells to short invasive filaments in the model eukaryotic organism Saccharomyces cerevisiae. Two-dimensional spreading of the yeast colonies grown on semi-solid agar medium was reduced under microgravity in the Σ1278b laboratory strain but not in the CMBSESA1 industrial strain. This was supported by the Σ1278b proteome map under microgravity conditions, which revealed upregulation of proteins linked to anaerobic conditions. The Σ1278b strain showed a reduced invasive growth in the center of the yeast colony. Bud scar distribution was slightly affected, with a switch toward more random budding. Together, microgravity conditions disturb spatially programmed budding patterns and generate strain-dependent growth differences in yeast colonies on semi-solid medium. Key Words: Microgravity—Saccharomyces cerevisiae—Adhesion—Invasive growth—Budding—Proteomics. Astrobiology 11, 45–55.

Get full access to this article

View all available purchase options and get full access to this article.

Abbreviations

2D-PAGE, two-dimensional polyacrylamide gel electrophoresis; ACN, acetonitrile; IPG, immobilized pH gradient; ISS, International Space Station; LSMMG, low-shear modeled microgravity; MS/MS, tandem mass spectrometry; SDS, sodium dodecyl sulfate; SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis.

References

Abramoff M.D.Magelhaes P.J.Ram S.J.2004. Image processing with ImageJBiophotonics International1136-42. Abramoff, M.D., Magelhaes, P.J., and Ram, S.J. (2004) Image processing with ImageJ. Biophotonics International 11:36–42.
Altenburg S.D.Nielsen-Preiss S.M.Hyman L.E.2008. Increased filamentous growth of Candida albicans in simulated microgravityGenomics Proteomics Bioinformatics642-50. Altenburg, S.D., Nielsen-Preiss, S.M., and Hyman, L.E. (2008) Increased filamentous growth of Candida albicans in simulated microgravity. Genomics Proteomics Bioinformatics 6:42–50.
Bayly J.C.Douglas L.M.Pretorius I.S.Bauer F.F.Dranginis A.M.2005. Characteristics of Flo11-dependent flocculation in Saccharomyces cerevisiaeFEMS Yeast Res51151-1156. Bayly, J.C., Douglas, L.M., Pretorius, I.S., Bauer, F.F., and Dranginis, A.M. (2005) Characteristics of Flo11-dependent flocculation in Saccharomyces cerevisiae. FEMS Yeast Res 5:1151–1156.
Benoit M.R.Klaus D.M.2005. Can genetically modified Escherichia coli with neutral buoyancy induced by gas vesicles be used as an alternative method to clinorotation for microgravity studies?Microbiology15169-74. Benoit, M.R. and Klaus, D.M. (2005) Can genetically modified Escherichia coli with neutral buoyancy induced by gas vesicles be used as an alternative method to clinorotation for microgravity studies? Microbiology 151:69–74.
Benoit M.R.Klaus D.M.2007. Microgravity, bacteria, and the influence of motilityAdv Space Res391225-1232. Benoit, M.R. and Klaus, D.M. (2007) Microgravity, bacteria, and the influence of motility. Adv Space Res 39:1225–1232.
Blankenship J.R.Mitchell A.P.2006. How to build a biofilm: a fungal perspectiveCurr Opin Microbiol9588-594. Blankenship, J.R. and Mitchell, A.P. (2006) How to build a biofilm: a fungal perspective. Curr Opin Microbiol 9:588–594.
Bony M.Thines-Sempoux D.Barre P.Blondin B.1997. Localization and cell surface anchoring of the Saccharomyces cerevisiae flocculation protein Flo1pJ Bacteriol1794929-4936. Bony, M., Thines-Sempoux, D., Barre, P., and Blondin, B. (1997) Localization and cell surface anchoring of the Saccharomyces cerevisiae flocculation protein Flo1p. J Bacteriol 179:4929–4936.
Borchers A.T.Keen C.L.Gershwin M.E.2002. Microgravity and immune responsiveness: implications for space travelNutrition18889-898. Borchers, A.T., Keen, C.L., and Gershwin, M.E. (2002) Microgravity and immune responsiveness: implications for space travel. Nutrition 18:889–898.
Braus G.H.Grundmann O.Brückner S.Mösch H.-U.2003. Amino acid starvation and Gcn4p regulate adhesive growth and FLO11 gene expression in Saccharomyces cerevisiaeMol Biol Cell144272-4284. Braus, G.H., Grundmann, O., Brückner, S., and Mösch, H.-U. (2003) Amino acid starvation and Gcn4p regulate adhesive growth and FLO11 gene expression in Saccharomyces cerevisiae. Mol Biol Cell 14:4272–4284.
Bruckmann A.Hensbergen P.J.Balog C.I.A.Deelder A.M.Brandt R.Snoek I.S.I.Steensma H.Y.van Heusden G.P.H.2009. Proteome analysis of aerobically and anaerobically grown Saccharomyces cerevisiae cellsJ Proteomics71662-669. Bruckmann, A., Hensbergen, P.J., Balog, C.I.A., Deelder, A.M., Brandt, R., Snoek, I.S.I., Steensma, H.Y., and van Heusden, G.P.H. (2009) Proteome analysis of aerobically and anaerobically grown Saccharomyces cerevisiae cells. J Proteomics 71:662–669.
Coleman C.B.Allen P.L.Rupert M.Goulart C.Hoehn A.Stodieck L.S.Hammond T.G.2008. Novel Sfp1 transcriptional regulation of Saccharomyces cerevisiae gene expression changes during spaceflightAstrobiology81071-1078. Coleman, C.B., Allen, P.L., Rupert, M., Goulart, C., Hoehn, A., Stodieck, L.S., and Hammond, T.G. (2008) Novel Sfp1 transcriptional regulation of Saccharomyces cerevisiae gene expression changes during spaceflight. Astrobiology 8:1071–1078.
Cullen P.J.Sprague G.F.2000. Glucose depletion causes haploid invasive growth in yeastProc Natl Acad Sci USA9713619-13624. Cullen, P.J. and Sprague, G.F. (2000) Glucose depletion causes haploid invasive growth in yeast. Proc Natl Acad Sci USA 97:13619–13624.
Douglas L.M.Li L.Yang Y.Dranginis A.M.2007. Expression and characterization of the flocculin Flo11/Muc1, a Saccharomyces cerevisiae mannoprotein with homotypic properties of adhesionEukaryot Cell62214-2221. Douglas, L.M., Li, L., Yang, Y., and Dranginis, A.M. (2007) Expression and characterization of the flocculin Flo11/Muc1, a Saccharomyces cerevisiae mannoprotein with homotypic properties of adhesion. Eukaryot Cell 6:2214–2221.
Dranginis A.M.Rauceo J.M.Coronado J.E.Lipke P.N.2007. A biochemical guide to yeast adhesins: glycoproteins for social and antisocial occasionsMicrobiol Mol Biol Rev71282-294. Dranginis, A.M., Rauceo, J.M., Coronado, J.E., and Lipke, P.N. (2007) A biochemical guide to yeast adhesins: glycoproteins for social and antisocial occasions. Microbiol Mol Biol Rev 71:282–294.
Evans S.E.2010. Coping with Candida infectionsProc Am Thorac Soc7197-203. Evans, S.E. (2010) Coping with Candida infections. Proc Am Thorac Soc 7:197–203.
Fichtner L.Schulze F.Braus G.H.2007. Differential Flo8p-dependent regulation of FLO1 and FLO11 for cell-cell and cell-substrate adherence of S. cerevisiaeMol Microbiol661276-1289. Fichtner, L., Schulze, F., and Braus, G.H. (2007) Differential Flo8p-dependent regulation of FLO1 and FLO11 for cell-cell and cell-substrate adherence of S. cerevisiae. Mol Microbiol 66:1276–1289.
Galitski T.Saldanha A.J.Styles C.A.Lander E.S.Fink G.R.1999. Ploidy regulation of gene expressionScience285251-254. Galitski, T., Saldanha, A.J., Styles, C.A., Lander, E.S., and Fink, G.R. (1999) Ploidy regulation of gene expression. Science 285:251–254.
Gao Q.Fang A.Pierson D.L.Mishra S.K.Demain A.L.2001. Shear stress enhances microcin B17 production in a rotating wall bioreactor, but ethanol stress does notAppl Microbiol Biotechnol56384-387. Gao, Q., Fang, A., Pierson, D.L., Mishra, S.K., and Demain, A.L. (2001) Shear stress enhances microcin B17 production in a rotating wall bioreactor, but ethanol stress does not. Appl Microbiol Biotechnol 56:384–387.
Goldstein A.L.McCusker J.H.2001. Development of Saccharomyces cerevisiae as a model pathogen: a system for the genetic identification of gene products required for survival in the mammalian host environmentGenetics159499-513. Goldstein, A.L. and McCusker, J.H. (2001) Development of Saccharomyces cerevisiae as a model pathogen: a system for the genetic identification of gene products required for survival in the mammalian host environment. Genetics 159:499–513.
Goossens O.Vanhavere F.Leys N.De Boever P.O'Sullivan D.Zhou D.Spurny F.Yukihara E.G.Gaza R.McKeever S.W.S.2006. Radiation dosimetry for microbial experiments in the International Space Station using different etched track and luminescent detectorsRadiat Prot Dosimetry120433-437. Goossens, O., Vanhavere, F., Leys, N., De Boever, P., O'Sullivan, D., Zhou, D., Spurny, F., Yukihara, E.G., Gaza, R., and McKeever, S.W.S. (2006) Radiation dosimetry for microbial experiments in the International Space Station using different etched track and luminescent detectors. Radiat Prot Dosimetry 120:433–437.
Graf C.Gavazzi G.2007. Saccharomyces cerevisiae fungemia in an immunocompromised patient not treated with Saccharomyces boulardii preparationJ Infect54310-311. Graf, C. and Gavazzi, G. (2007) Saccharomyces cerevisiae fungemia in an immunocompromised patient not treated with Saccharomyces boulardii preparation. J Infect 54:310–311.
Granek J.A.Magwene P.M.2010. Environmental and genetic determinants of colony morphology in yeastPLoS Genet6e1000823. Granek, J.A. and Magwene, P.M. (2010) Environmental and genetic determinants of colony morphology in yeast. PLoS Genet 6:e1000823.
Gullo A.2009. Invasive fungal infections: the challenge continuesDrugs6965-73. Gullo, A. (2009) Invasive fungal infections: the challenge continues. Drugs 69:65–73.
Guo B.Styles C.A.Feng Q.Fink G.R.2000. A Saccharomyces cerevisiae gene family involved in invasive growth, cell-cell adhesion, and matingProc Natl Acad Sci USA9712158-12163. Guo, B., Styles, C.A., Feng, Q., and Fink, G.R. (2000) A Saccharomyces cerevisiae gene family involved in invasive growth, cell-cell adhesion, and mating. Proc Natl Acad Sci USA 97:12158–12163.
Horneck G.Klaus D.M.Mancinelli R.L.2010. Space microbiologyMicrobiol Mol Biol Rev74121-156. Horneck, G., Klaus, D.M., and Mancinelli, R.L. (2010) Space microbiology. Microbiol Mol Biol Rev 74:121–156.
Hube B.2004. From commensal to pathogen: stage- and tissue-specific gene expression of Candida albicansCurr Opin Microbiol7336-341. Hube, B. (2004) From commensal to pathogen: stage- and tissue-specific gene expression of Candida albicans. Curr Opin Microbiol 7:336–341.
Johanson K.Allen P.L.Gonzalez-Villalobos R.A.Nesbit J.Nickerson C.A.Höner zu Bentrup K.Wilson J.W.Ramamurthy R.D'Elia R.Muse K.E.Hammond J.Freeman J.Stodieck L.S.Hammond T.G.2007. Haploid deletion strains of Saccharomyces cerevisiae that determine survival during space flightActa Astronaut60460-471. Johanson, K., Allen, P.L., Gonzalez-Villalobos, R.A., Nesbit, J., Nickerson, C.A., Höner zu Bentrup, K., Wilson, J.W., Ramamurthy, R., D'Elia, R., Muse, K.E., Hammond, J., Freeman, J., Stodieck, L.S., and Hammond, T.G. (2007) Haploid deletion strains of Saccharomyces cerevisiae that determine survival during space flight. Acta Astronaut 60:460–471.
Kacena M.Todd P.1997. Growth characteristics of E. coli and B. subtilis cultured on an agar substrate in microgravityMicrogravity Sci Technol1058-62. Kacena, M. and Todd, P. (1997) Growth characteristics of E. coli and B. subtilis cultured on an agar substrate in microgravity. Microgravity Sci Technol 10:58–62.
Kacena M.A.Manfredi B.Todd P.1999. Effects of space flight and mixing on bacterial growth in low volume culturesMicrogravity Sci Technol1274-77. Kacena, M.A., Manfredi, B., and Todd, P. (1999) Effects of space flight and mixing on bacterial growth in low volume cultures. Microgravity Sci Technol 12:74–77.
Klaus D.M.1998. Microgravity and its implications for fermentation biotechnologyTrends Biotechnol16369-373. Klaus, D.M. (1998) Microgravity and its implications for fermentation biotechnology. Trends Biotechnol 16:369–373.
Klaus D.M.2002. Space microbiology: microgravity and microorganismsEncyclopedia of Environmental MicrobiologyG. BrittonJohn Wiley & SonsNew York22996-23004. Klaus, D.M. (2002) Space microbiology: microgravity and microorganisms. In Encyclopedia of Environmental Microbiology, edited by G. Britton, John Wiley & Sons, New York, pp 22996–23004.
Klis F.M.Sosinska G.J.de Groot P.W.J.Brul S.2009. Covalently linked cell wall proteins of Candida albicans and their role in fitness and virulenceFEMS Yeast Res91013-1028. Klis, F.M., Sosinska, G.J., de Groot, P.W.J., and Brul, S. (2009) Covalently linked cell wall proteins of Candida albicans and their role in fitness and virulence. FEMS Yeast Res 9:1013–1028.
Kobayashi O.Hayashi N.Kuroki R.Sone H.1998. Region of Flo1 proteins responsible for sugar recognitionJ Bacteriol1806503-6510. Kobayashi, O., Hayashi, N., Kuroki, R., and Sone, H. (1998) Region of Flo1 proteins responsible for sugar recognition. J Bacteriol 180:6503–6510.
Kobi D.Zugmeyer S.Potier S.Jaquet-Gutfreund L.2004. Two-dimensional protein map of an “ale”-brewing yeast strain: proteome dynamics during fermentationFEMS Yeast Res5210-230. Kobi, D., Zugmeyer, S., Potier, S., and Jaquet-Gutfreund, L. (2004) Two-dimensional protein map of an “ale”-brewing yeast strain: proteome dynamics during fermentation. FEMS Yeast Res 5:210–230.
Kojic E.M.Darouiche R.O.2004. Candida infections of medical devicesClin Microbiol Rev17255-267. Kojic, E.M. and Darouiche, R.O. (2004) Candida infections of medical devices. Clin Microbiol Rev 17:255–267.
Kron S.J.Styles C.A.Fink G.R.1994. Symmetric cell division in pseudohyphae of the yeast Saccharomyces cerevisiaeMol Biol Cell51003-1022. Kron, S.J., Styles, C.A., and Fink, G.R. (1994) Symmetric cell division in pseudohyphae of the yeast Saccharomyces cerevisiae. Mol Biol Cell 5:1003–1022.
Kumamoto C.A.Vinces M.D.2005. Contributions of hyphae and hypha-co-regulated genes to Candida albicans virulenceCell Microbiol71546-1554. Kumamoto, C.A. and Vinces, M.D. (2005) Contributions of hyphae and hypha-co-regulated genes to Candida albicans virulence. Cell Microbiol 7:1546–1554.
Lambrechts M.G.Bauer F.F.Marmur J.Pretorius I.S.1996. Muc1, a mucin-like protein that is regulated by Mss10, is critical for pseudophyphal differentiation in yeastProc Natl Acad Sci USA938419-8424. Lambrechts, M.G., Bauer, F.F., Marmur, J., and Pretorius, I.S. (1996) Muc1, a mucin-like protein that is regulated by Mss10, is critical for pseudophyphal differentiation in yeast. Proc Natl Acad Sci USA 93:8419–8424.
Leys N.Baatout S.Rosier C.Dams A.s'Heeren C.Wattiez R.Mergeay M.2009. The response of Cupriavidus metallidurans CH34 to spaceflight in the international space stationAntonie van Leeuwenhoek96227-245. Leys, N., Baatout, S., Rosier, C., Dams, A., s'Heeren, C., Wattiez, R., and Mergeay, M. (2009) The response of Cupriavidus metallidurans CH34 to spaceflight in the international space station. Antonie van Leeuwenhoek 96:227–245.
Liu H.-Z.Wang Q.Liu X.-Y.Tan S.-S.2008. Effects of spaceflight on polysaccharides of Saccharomyces cerevisiae cell wallAppl Microbiol Biotechnol81543-550. Liu, H.-Z., Wang, Q., Liu, X.-Y., and Tan, S.-S. (2008) Effects of spaceflight on polysaccharides of Saccharomyces cerevisiae cell wall. Appl Microbiol Biotechnol 81:543–550.
Lo W.-S.Dranginis A.M.1996. FLO11, a yeast gene related to the STA genes, encodes a novel cell surface flocculinJ Bacteriol1787144-7151. Lo, W.-S. and Dranginis, A.M. (1996) FLO11, a yeast gene related to the STA genes, encodes a novel cell surface flocculin. J Bacteriol 178:7144–7151.
Lord M.Chen T.Fujita A.Chant J.2002. Analysis of budding patternsMethods Enzymol350131-141. Lord, M., Chen, T., Fujita, A., and Chant, J. (2002) Analysis of budding patterns. Methods Enzymol 350:131–141.
Lynch S.V.Mukundakrishnan K.Benoit M.R.Ayyaswamy P.S.Matin A.2006. Escherichia coli biofilms formed under low-shear modeled microgravity in a ground-based systemAppl Environ Microbiol727701-7710. Lynch, S.V., Mukundakrishnan, K., Benoit, M.R., Ayyaswamy, P.S., and Matin, A. (2006) Escherichia coli biofilms formed under low-shear modeled microgravity in a ground-based system. Appl Environ Microbiol 72:7701–7710.
McCusker J.H.Clemons K.V.Stevens D.A.Davis R.W.1994a. Saccharomyces cerevisiae virulence phenotype as determined with CD-1 mice is associated with the ability to grow at 42°C and for pseudohyphaeInfect Immun625447-5455. McCusker, J.H., Clemons, K.V., Stevens, D.A., and Davis, R.W. (1994a) Saccharomyces cerevisiae virulence phenotype as determined with CD-1 mice is associated with the ability to grow at 42°C and for pseudohyphae. Infect Immun 62:5447–5455.
McCusker J.H.Clemons K.V.Stevens D.A.Davis R.W.1994b. Genetic characterization of pathogenic Saccharomyces cerevisiae isolatesGenetics1361261-1269. McCusker, J.H., Clemons, K.V., Stevens, D.A., and Davis, R.W. (1994b) Genetic characterization of pathogenic Saccharomyces cerevisiae isolates. Genetics 136:1261–1269.
Nickerson C.A.Ott C.M.Mister S.J.Morrow B.J.Burns-Keliher L.Pierson D.L.2000. Microgravity as a novel environmental signal affecting Salmonella enterica serovar typhimurium virulenceInfect Immun683147-3152. Nickerson, C.A., Ott, C.M., Mister, S.J., Morrow, B.J., Burns-Keliher, L., and Pierson, D.L. (2000) Microgravity as a novel environmental signal affecting Salmonella enterica serovar typhimurium virulence. Infect Immun 68:3147–3152.
Nickerson C.A.Ott C.M.Wilson J.W.Ramamurthy R.Pierson D.L.2004. Microbial responses to microgravity and other low-shear environmentsMicrobiol Mol Biol Rev68345-361. Nickerson, C.A., Ott, C.M., Wilson, J.W., Ramamurthy, R., and Pierson, D.L. (2004) Microbial responses to microgravity and other low-shear environments. Microbiol Mol Biol Rev 68:345–361.
Palková Z.Vachová L.2006. Life within a community: benefit to yeast long-term survivalFEMS Microbiol Rev30806-824. Palková, Z. and Vachová, L. (2006) Life within a community: benefit to yeast long-term survival. FEMS Microbiol Rev 30:806–824.
Pirt S.J.1967. A kinetic study of the mode of growth of surface colonies of bacteria and fungiJ Gen Microbiol47181-197. Pirt, S.J. (1967) A kinetic study of the mode of growth of surface colonies of bacteria and fungi. J Gen Microbiol 47:181–197.
Pringle J.R.1991. Staining of bud scars and other cell wall chitin with calcofluorMethods Enzymol194732-735. Pringle, J.R. (1991) Staining of bud scars and other cell wall chitin with calcofluor. Methods Enzymol 194:732–735.
Prusty R.Grisafi P.Fink G.R.2004. The plant hormone indoleacetic acid induces invasive growth in Saccharomyces cerevisiaeProc Natl Acad Sci USA1014153-4157. Prusty, R., Grisafi, P., and Fink, G.R. (2004) The plant hormone indoleacetic acid induces invasive growth in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 101:4153–4157.
Purevdorj-Gage B.Sheehan K.B.Hyman L.E.2006. Effects of low-shear modeled microgravity on cell function, gene expression and phenotype in Saccharomyces cerevisiaeAppl Environ Microbiol724569-4575. Purevdorj-Gage, B., Sheehan, K.B., and Hyman, L.E. (2006) Effects of low-shear modeled microgravity on cell function, gene expression and phenotype in Saccharomyces cerevisiae. Appl Environ Microbiol 72:4569–4575.
Ramage G.Martínez J.P.López-Ribot J.L.2006. Candida biofilms on implanted biomaterials: a clinically significant problemFEMS Yeast Res6979-986. Ramage, G., Martínez, J.P., and López-Ribot, J.L. (2006) Candida biofilms on implanted biomaterials: a clinically significant problem. FEMS Yeast Res 6:979–986.
Reynolds T.B.Fink G.R.2001. Bakers' yeast, a model for fungal biofilm formationScience291878-881. Reynolds, T.B. and Fink, G.R. (2001) Bakers' yeast, a model for fungal biofilm formation. Science 291:878–881.
Reynolds T.B.Jansen A.Peng X.Fink G.R.2008. Mat formation in Saccharomyces cerevisiae requires nutrient and pH gradientsEukaryot Cell7122-130. Reynolds, T.B., Jansen, A., Peng, X., and Fink, G.R. (2008) Mat formation in Saccharomyces cerevisiae requires nutrient and pH gradients. Eukaryot Cell 7:122–130.
Roberts R.L.Fink G.R.1994. Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growthGenes Dev82974-2985. Roberts, R.L. and Fink, G.R. (1994) Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. Genes Dev 8:2974–2985.
Rosenzweig J.A.Abogunde O.Thomas K.Lawal A.Nguyen Y.-U.Sodipe A.Jejelowo O.2010. Spaceflight and modeled microgravity effects on microbial growth and virulenceAppl Microbiol Biotechnol85885-891. Rosenzweig, J.A., Abogunde, O., Thomas, K., Lawal, A., Nguyen, Y.-U., Sodipe, A., and Jejelowo, O. (2010) Spaceflight and modeled microgravity effects on microbial growth and virulence. Appl Microbiol Biotechnol 85:885–891.
Sheehan K.B.McInnerney K.Purevdorj-Gage B.Altenburg S.D.Hyman L.E.2007. Yeast genomic expression patterns in response to low-shear modeled microgravityBMC Genomics83. Sheehan, K.B., McInnerney, K., Purevdorj-Gage, B., Altenburg, S.D., and Hyman, L.E. (2007) Yeast genomic expression patterns in response to low-shear modeled microgravity. BMC Genomics 8:3.
Sliwa P.Kluz J.Korona R.2004. Mutational load and the transition between diploidy and haploidy in experimental populations of the yeast Saccharomyces cerevisiaeGenetica121285-293. Sliwa, P., Kluz, J., and Korona, R. (2004) Mutational load and the transition between diploidy and haploidy in experimental populations of the yeast Saccharomyces cerevisiae. Genetica 121:285–293.
Smukalla S.Caldara M.Pochet N.Beauvais A.Guadagnini S.Yan C.Vinces M.D.Jansen A.Prevost M.-C.Latgé J.P.Fink G.R.Foster K.R.Verstrepen K.J.2008. FLO1 is a hyper-variable green beard gene that drives a transition to multicellularity in budding yeastCell135726-737. Smukalla, S., Caldara, M., Pochet, N., Beauvais, A., Guadagnini, S., Yan, C., Vinces, M.D., Jansen, A., Prevost, M.-C., Latgé, J.P., Fink, G.R., Foster, K.R., and Verstrepen, K.J. (2008) FLO1 is a hyper-variable green beard gene that drives a transition to multicellularity in budding yeast. Cell 135:726–737.
Sonnenfeld G.1999. Space flight, microgravity, stress, and immune responsesAdv Space Res231945-1953. Sonnenfeld, G. (1999) Space flight, microgravity, stress, and immune responses. Adv Space Res 23:1945–1953.
Sonnenfeld G.2002. The immune system in space and microgravityMed Sci Sports Exerc342021-2027. Sonnenfeld, G. (2002) The immune system in space and microgravity. Med Sci Sports Exerc 34:2021–2027.
Stanhill A.Schick N.Engelberg D.1999. The yeast ras/cyclic AMP pathway induces invasive growth by suppressing the cellular stress responseMol Cell Biol197529-7538. Stanhill, A., Schick, N., and Engelberg, D. (1999) The yeast ras/cyclic AMP pathway induces invasive growth by suppressing the cellular stress response. Mol Cell Biol 19:7529–7538.
Taylor G.R.Konstantinova I.Sonnenfeld G.Jennings R.Sjoerd L.B.1997. Changes in the immune system during and after spaceflightAdv Space Res61-32. Taylor, G.R., Konstantinova, I., Sonnenfeld, G., Jennings, R., and Sjoerd, L.B. (1997) Changes in the immune system during and after spaceflight. Adv Space Res 6:1–32.
Teunissen A.W.R.H.Steensma H.Y.1995. Review: the dominant flocculation genes of Saccharomyces cerevisiae constitute a new subtelomeric gene familyYeast111001-1013. Teunissen, A.W.R.H., and Steensma, H.Y. (1995) Review: the dominant flocculation genes of Saccharomyces cerevisiae constitute a new subtelomeric gene family. Yeast 11:1001–1013.
Van Mulders S.E.Christianen E.Saerens S.M.G.Daenen L.Verbelen P.J.Willaert R.Verstrepen K.J.Delvaux F.R.2009. Phenotypic diversity of Flo protein family-mediated adhesion in Saccharomyces cerevisiaeFEMS Yeast Res9178-190. Van Mulders, S.E., Christianen, E., Saerens, S.M.G., Daenen, L., Verbelen, P.J., Willaert, R., Verstrepen, K.J., and Delvaux, F.R. (2009) Phenotypic diversity of Flo protein family-mediated adhesion in Saccharomyces cerevisiae. FEMS Yeast Res 9:178–190.
Vanhavere F.Genicot J.L.O'Sullivan D.Zhou D.Spurný F.Jadrnícková I.Sawakuchi G.O.Yukihara E.G.2008. DOsimetry of BIological EXperiments in SPace (DOBIES) with luminescence (OSL and TL) and track etch detectorsRadiat Meas43694-697. Vanhavere, F., Genicot, J.L., O'Sullivan, D., Zhou, D., Spurný, F., Jadrnícková, I., Sawakuchi, G.O., and Yukihara, E.G. (2008) DOsimetry of BIological EXperiments in SPace (DOBIES) with luminescence (OSL and TL) and track etch detectors. Radiat Meas 43:694–697.
Verstrepen K.J.Klis F.M.2006. Flocculation, adhesion and biofilm formation in yeastsMol Microbiol605-15. Verstrepen, K.J. and Klis, F.M. (2006) Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol 60:5–15.
Walther I.Bechler B.Müller O.Hunzinger E.Cogoli A.1996. Cultivation of Saccharomyces cerevisiae in a bioreactor in microgravityJ Biotechnol47113-127. Walther, I., Bechler, B., Müller, O., Hunzinger, E., and Cogoli, A. (1996) Cultivation of Saccharomyces cerevisiae in a bioreactor in microgravity. J Biotechnol 47:113–127.
West J.B.2000. Physiology of a microgravity environment historical perspectives: physiology in microgravityJ Appl Physiol89379-384. West, J.B. (2000) Physiology of a microgravity environment historical perspectives: physiology in microgravity. J Appl Physiol 89:379–384.
Wilson J.W.Ott C.M.Ramamurthy R.Porwollik S.McClelland M.Pierson D.L.Nickerson C.A.2002. Low-shear modeled microgravity alters the Salmonella enterica serovar Typhimurium stress response in an RpoS-independent mannerAppl Microbiol Biotechnol685408-5416. Wilson, J.W., Ott, C.M., Ramamurthy, R., Porwollik, S., McClelland, M., Pierson, D.L., and Nickerson, C.A. (2002) Low-shear modeled microgravity alters the Salmonella enterica serovar Typhimurium stress response in an RpoS-independent manner. Appl Microbiol Biotechnol 68:5408–5416.
Wilson J.W.Ott C.M.zu Bentrup K.H.n.Ramamurthy R.Quick L.Porwollik S.Cheng P.McClelland M.Tsaprailis G.Radabaugh T.Hunt A.Fernandez D.Richter E.Shah M.Kilcoyne M.Joshi L.Nelman-Gonzalez M.Hing S.Parra M.Dumars P.Norwood K.Bober R.Devich J.Ruggles A.Goulart C.Rupert M.Stodieck L.Stafford P.Catella L.Schurr M.J.Buchanan K.Morici L.McCracken J.Allen P.Baker-Coleman C.Hammond T.Vogel J.Nelson R.Pierson D.L.Stefanyshyn-Piper H.M.Nickerson C.A.2007. Space flight alters bacterial gene expression and virulence and reveals a role for global regulator HfqProc Natl Acad Sci USA10416299-16304. Wilson, J.W., Ott, C.M., zu Bentrup, K.H.n., Ramamurthy, R., Quick, L., Porwollik, S., Cheng, P., McClelland, M., Tsaprailis, G., Radabaugh, T., Hunt, A., Fernandez, D., Richter, E., Shah, M., Kilcoyne, M., Joshi, L., Nelman-Gonzalez, M., Hing, S., Parra, M., Dumars, P., Norwood, K., Bober, R., Devich, J., Ruggles, A., Goulart, C., Rupert, M., Stodieck, L., Stafford, P., Catella, L., Schurr, M.J., Buchanan, K., Morici, L., McCracken, J., Allen, P., Baker-Coleman, C., Hammond, T., Vogel, J., Nelson, R., Pierson, D.L., Stefanyshyn-Piper, H.M., and Nickerson, C.A. (2007) Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc Natl Acad Sci USA 104:16299–16304.

Information & Authors

Information

Published In

cover image Astrobiology
Astrobiology
Volume 11Issue Number 1January/February 2011
Pages: 45 - 55
PubMed: 21345087

History

Published online: 23 February 2011
Published in print: January/February 2011
Accepted: 25 October 2010
Received: 12 July 2010

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Sebastiaan E. Van Mulders
*
Centre for Malting and Brewing, Katholieke Universiteit Leuven, Heverlee, Belgium.
Catherine Stassen*
Laboratory for Protein Biochemistry and Biomolecular Engineering, Ghent University, Ghent, Belgium.
Luk Daenen
Centre for Malting and Brewing, Katholieke Universiteit Leuven, Heverlee, Belgium.
Bart Devreese
Laboratory for Protein Biochemistry and Biomolecular Engineering, Ghent University, Ghent, Belgium.
Verena Siewers
Systems Biology, Chalmers University of Technology, Göteborg, Sweden.
Rudy G.E. van Eijsden
VIB Microarray Facility, Leuven, Belgium.
Jens Nielsen
Systems Biology, Chalmers University of Technology, Göteborg, Sweden.
Freddy R. Delvaux
Centre for Malting and Brewing, Katholieke Universiteit Leuven, Heverlee, Belgium.
Ronnie Willaert
Laboratory of Structural Biology, Vrije Universiteit Brussel, Brussels, Belgium.

Notes

Address correspondence to:Ronnie WillaertLaboratory of Structural Biology (SBB)Vrije Universiteit BrusselPleinlaan 2, B-1050 BrusselBelgium
E-mail: [email protected]

Author Disclosure Statement

No competing financial interests exist.

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top