Abstract

The Raman Laser Spectrometer (RLS) on board the ESA/Roscosmos ExoMars 2020 mission will provide precise identification of the mineral phases and the possibility to detect organics on the Red Planet. The RLS will work on the powdered samples prepared inside the Pasteur analytical suite and collected on the surface and subsurface by a drill system. Raman spectroscopy is a well-known analytical technique based on the inelastic scattering by matter of incident monochromatic light (the Raman effect) that has many applications in laboratory and industry, yet to be used in space applications. Raman spectrometers will be included in two Mars rovers scheduled to be launched in 2020. The Raman instrument for ExoMars 2020 consists of three main units: (1) a transmission spectrograph coupled to a CCD detector; (2) an electronics box, including the excitation laser that controls the instrument functions; and (3) an optical head with an autofocus mechanism illuminating and collecting the scattered light from the spot under investigation. The optical head is connected to the excitation laser and the spectrometer by optical fibers. The instrument also has two targets positioned inside the rover analytical laboratory for onboard Raman spectral calibration. The aim of this article was to present a detailed description of the RLS instrument, including its operation on Mars. To verify RLS operation before launch and to prepare science scenarios for the mission, a simulator of the sample analysis chain has been developed by the team. The results obtained are also discussed. Finally, the potential of the Raman instrument for use in field conditions is addressed. By using a ruggedized prototype, also developed by our team, a wide range of terrestrial analog sites across the world have been studied. These investigations allowed preparing a large collection of real, in situ spectra of samples from different geological processes and periods of Earth evolution. On this basis, we are working to develop models for interpreting analog processes on Mars during the mission. Key Words: Raman spectroscopy—ExoMars mission—Instruments and techniques—Planetary sciences—Mars mineralogy and geochemistry—Search for life on Mars. Astrobiology 17, 627–654.

Get full access to this article

View all available purchase options and get full access to this article.

References

Bazalgette Courreges-Lacoste G., Ahlers B., and Rull Perez F. (2007). Combined Raman spectrometer/laser-induced breakdown spectrometer to the next ESA mission to Mars. Spectrochim Acta A Mol Biomol Spectrosc 68:1023–1028.
Beegle L., Bhartia R., White M., DeFlores L., Abbey W., Wu Y.-H., Cameron B., Moore J., Fries M., Burton A., Edgett K.S., Ravine M.A., Hug W., Reid R., Nelson T., Clegg S., Wiens R., Asher S., and Sobron P. (2015) SHERLOC: Scanning habitable environments with Raman and luminescence for organics and chemicals. 2015 IEEE Aerospace Conference, Big Sky, MT, USA.
Buckby T., Black S., Coleman M.L., and Hodson M.E. (2003) Fe-sulphate-rich evaporative mineral precipitates from the Rio Tinto, southwest Spain. Mineral Mag 67:263–278.
Catalá Espí A. (2015) Development of Mars Simulation Chamber in support for the science associated to the Raman Laser Spectrometer (RLS) Instrument for ESA's ExoMars mission. Thesis, University of Valladolid.
Clark B.C., Morris R.V., McLennan S.M., Gellert R., Jolliff B., Knoll A.H., Squyres S.W., Lowenstein T.K., Ming D.W., Tosca N.J., Yen A., Christensen P.R., Gorevan S., Bruckner J., Calvin W., Dreibus G., Farrand W., Klingelhoefer G., Waenke H., Zipfel J., Bell J.F. III, Grotzinger J., McSween H.Y., and Rieder R. (2005) Chemistry and mineralogy of outcrops at Meridiani Planum. Earth Planet Sci Lett 240:73–94.
Delhaye M. and Dhamelincourt P. (1975) Raman microsprobe and microscope with laser excitation. J Raman Spectrosc 3:33–43.
Delhaye M., Barbillat J., Aubard J., Bridoux M., and Da Silva E. (1996) Instrumentation. In Raman Microscopy-Developments and Applications, edited by Turrell G. and Corset J., Academic Press, London; pp 52–173.
Dhamelincourt P. (1979) Etude et réalisation d'une microsonde à effet Raman–quelques domaines d'application. Unpublished. Thesis, Université des sciences et Techniques de Lille, 200 pp.
Dubessy J., Caumon M.C., Rull F., andSharma S. (2012). Instrumentation in Raman spectroscopy: elementary theory and practice. In Raman Spectroscopy Applied to Earth Sciences and Cultural Heritage, edited by Dubessy J., Caumon M.C. and Rull F.; EMU Notes in Mineralogy V. 12; European Mineralogical Union and the Mineralogical Society of Great Britain and Ireland, London; pp 83–165.
Edwards H.G.M. and Chalmers J.M. (2005) Practical Raman spectroscopy and complementary techniques, in Raman spectroscopy in archaeology and art history. RSC Analytical Spectroscopy Monographs, Cambridge, UK, pp 41–67.
Edwards H.G., Vandenabeele P., Jorge-Villar S., Carter E., Rull Perez F., and Hargreaves M.D. (2007) The Rio Tinto Mars analogue site: an extremophilic Raman spectroscopic study. Spectrochim Acta A Mol Biomol Spectrosc 68(4):1133–1137.
Ellery A. and Wynn-Williams D. (2003) Why Raman spectroscopy on Mars?—a case of the right tool for the right job. Astrobiology 3:565–579.
ESA Progress Letter Number 3, 2004. Pasteur Instrument Payload for The ExoMars Rover Mission. 30 January 2004.
ESA Aurora Exploration Program. (2008) ExoMars Scientific Payload Requirements, Document, EXM-PL-RSD-ESA-00001 Issue 2, Rev. 0. Available online at www.esa.int/esaMI/Aurora/index.html
ExoMars Payload: confirmation of the payload suite following restructuring of the mission. (2009) Document ESAPB_HME(2009) 45.REV.1.1, May 14, 2009.
Fernández-Remolar D., Morris R., Gruener J.E., Amils R., and Knoll A.H. (2005) The Rio Tinto Basin, Spain: mineralogy, sedimentary geobiology, and implications for interpretation of outcrop rocks at Meridiani Planum, Mars. Earth Planet Sci Lett 240:149–167.
Ferrando S., Galán M., Thiele H., Glier M., and Goepel M. (2010) Innovative optical techniques used in the Raman instrument for Exomars. In International Conference on Space Optics, ICSO 2010 4–8 October 2010 Rhodes, Greece.
Ferraro J.R. and Ziomek J.S. (1969) Introductory Group Theory and Its Application to Molecular Structure, Plenum Press, New York; 291 pp.
Foucher F., Lopez-Reyes G., Bost N., Rull-Perez F., Ruessmann P., and Westall F. (2013) Effect of grain size distribution on Raman analyses and the consequences for in situ planetary missions. J Raman Spectrosc 44:916–925.
Frost R.L., Weier M.L., Kloprogge J.T., Rull F., and Frias M. (2005) Raman spectroscopy of halotrichite from Jaroso, Spain. Spectrochim Acta A 62:66–180.
Frost R.L., Wain D.L., Reddy B.J., Martens W., Martinez-Frias J., and Rull F. (2006) Sulphate efflorescent minerals from El Jaroso Ravine, Sierra Almagrera, Spain - A scanning electron microscopic and infrared spectroscopic study. J Near Infrared Spectrosc 14:167–178.
Frost R.L., Weiera M., Martinez-Frias J., Rull F., and Reddy J. (2007) Sulphate efflorescent minerals from El Jaroso Ravine, Sierra Almagrera—an SEM and Raman spectroscopic study. Spectrochim Acta A Mol Biomol Spectrosc 66:177–183.
Gasnault O., LeMouleic S., Herkenhoff K.E., Bridges N., Rapin W., Langevin Y., Mangold N., Maurice S. Wiens R., Pinet P., Newsom H., and the ChemCam Team. (2015). SuperCam Remote Micro-Imager on Mars 2020. In Lunar and Planetary Science Conference, Houston, TX, USA. XLVI:2990.
González-Toril E., Martínez-Frías J., Gómez Gómez J.M., Rull F., and Amils R. (2005) Iron meteorites can support the growth of acidophilic chemolithoautotrophic microorganisms. Astrobiology 5:406–414.
Jessberger E.K. and Castellucci E.M. and the Gentner team. (2003) GENTNER – a Miniaturised Laser Instrument for Planetary in-situ Analysis. Call for Ideas: Pasteur Instrument Payload for the ExoMars Rover Mission. CI-Pasteur-13.
Klingelhöfer G., Morris R.V., Bernhardt B., Schröder C., Rodionov D.S., de Souza P.A. Jr., Yen A., Gellert R., Evlanov E.N., Zubkov B., Foh J., Bonnes U., Kankeleit E., Gütlich P., Ming D.W., Renz F., Wdowiak T., Squyres S.W., and Arvidson R.E. (2004) Jarosite and hematite at Meridiani Planum from Opportunity's Mössbauer spectrometer. Science 306:1740–1745.
Klingelhöfer G., Rull F., Venegas G., Gázquez F., and Medina J. (2016) Mössbauer and Raman spectroscopic in situ characterisation of iron-bearing minerals in Mars Exploration and cultural heritage. Chapter 3, In Redox-active Minerals: Properties, Reactions and Applications in Natural Systems and Clean Technologies, edited by Ahmed I.A.M. and Hudson-Edwards K.A.; EMU Notes in Meneralogy, V. 16; European Mineralogical Union and the Mineralogical Society of Great Britain and Ireland.
Landsberg G., and Mandelstam L. (1928) A novel effect of light scattering in crystal. Naturwissenchaften 16:557–558.
Lewis I.R., and Edwards H.G.M. (2001) Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line, Marcel Dekker, New York.
Long D.A. (1977) Raman Spectroscopy, McGraw-Hill International Book Company, New York.
Long D.A. (2002) The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules, John Wiley & Sons, Ltd. Chichester, UK.
Lopez-Reyes G. (2015) Development of algorithms and methodological analyses for the definition of the operation mode of the Raman Laser Spectrometer Instrument. Thesis, University of Valladolid, January-2015.
Lopez-Reyes G., Rull F., Catala A., Sanz A., Medina J., Hermosilla I., and Lafuente B. (2012) A simple statistical method for the pseudo-quantification of mineral phases within the ExoMars Raman RLS instrument. In GeoRaman 2012. Nancy.
Lopez-Reyes G., Rull F., Venegas G., Westall F., Foucher F., Bost N., Sanz A., Catalá-Espí A., Vegas A., Hermosilla I., Sansano A., and Medina J. (2013a) Analysis of the scientific capabilities of the ExoMars Raman Laser Spectrometer instrument. Eur J Mineral 25:721–733.
Lopez-Reyes G., Catala A., and Rull F. (2013b) SPDS-RLS-E2E test report 1.0, November 28, 2013.
Martinez-Frías J., Lunar R., Rodriguez-Losada J.A., Delgado A., and Rull F. (2004) The volcanism related multistage hydrothermal system of El Jaroso (SE Spain): implications for the exploration of Mars. Earth Planet Space 56:v–viii.
Maurice S. and Rull F. (2003) Exlibris: EXomars laser induced breakdown/Raman integrated spectrometers. Call For Ideas Pasteur Instrument Payload For The Exomars Rover Mission.
McCreery R.L. (2000) Raman Spectroscopy for Chemical Analysis. Wiley-Interscience, John Wiley & Sons, Inc., New York; 420 pp.
Musso F. (2013) SPDS and RLS bread boards E2E test est-up and test plan description 1.0.
Paul S. (2013) SPDS-RLS combined BB test procedure (EXM-RM-TRR-KT-004).
Pelletier M.J., editor. (1999) Analytical Applications of Raman Spectroscopy, Blackbell Science, Paris.
Popp J. and Schmitt M. (2004) Raman spectroscopy breaking terrestrial barriers! J. Raman Spectrosc 35:429–432.
Popp J. and Thomas N. (2003) Extended-MIRAS: the instrumental approach for the in situ search of traces of extinct and extant life on Mars. Call for ideas pasteur instrument payload for the exomars rover mission.
Poulet H. and Mathieu J.P. (1970) Spectres de vibration et symetrie des cristaux, Gordon and Breach, Paris.
Raman C.V. and Krishnan K.S. (1928) A new type of secondary radiation. Nature 121:501–502.
Rocard M.Y. (1928) Les nouvelles radiations diffussees. Comptes Rendus 186:1107.
Rogero C., Gonzalez-Toril E., Martinez-Frias J., Rull F., and Amils R. (2007) Surface composition evolution of Toluca because of the action of the bacteria: X-ray photoelectron spectroscopy study. Astrobiology 7:528–529.
Rosasco G.J. (1980) Raman microprobe spectroscopy. In Advances in Infrared and Raman Spectroscopy, edited by Clark R.J.H. and Hester R.E. Vol. 7, Chichester, Wiley Heydon, pp 223–282.
Rull F. (2012) The Raman effect and the vibrational dynamics of molecules and crystalline solids. In “Raman Spectroscopy Applied to Earth Sciences and Cultural Heritage, edited by Dubessy J. Caumon M.C., and Rull F.; EMU Notes in Mineralogy V. 12; European Mineralogical Union and the Mineralogical Society of Great Britain and Ireland, London; pp 1–58.
Rull F. and Martinez-Frias J. (2003) Identification of calcite grains in the Vaca Muerta mesosiderite by Raman spectroscopy. J Raman Spectrosc 34:367–370.
Rull F. and Martinez-Frías J. (2006) Raman spectroscopy goes to mars. Spectrosc Eur 18:18–21.
Rull F., Martinez Frias J., Sansano A., Medina J., and Edwards H.G.M. (2004) Comparative micro-Raman study of the Nakhla and Vaca muerta meteorites. J Raman Spectrosc 35:497–503.
Rull F., Fleischer I., Martinez-Frias J., Sanz A., Upadhyay C., and Klingelhöfer G. (2008) Raman and Mössbauer spectroscopic characterisation of sulfate minerals from the mars analogue sites at Rio Tinto and jaroso ravine, Spain. Lunar and Planetary Science XXXIX, No. 1616.
Rull F., Klingelhöfer G., Sarrrazin P., Medina J., Fleischer I., Blake D., Martin Ramos D. (2010a) Combined Raman-LIBS, Moessbauer and XRD in-situ mineral analysis of evaporite minerals at rio tinto (SPAIN), Astrobiology Science Conference. No. 5472.
Rull F., Sansano A., and Sobron P. (2010b) In-situ Raman-LIBS analysis of regoliths during AMASE 2008 and 2009 expeditions. 41st Lunar and Planetary Science Conference, No. 2731.
Rull F. Muñoz-Espadas M.J.R., Lunar R., and Martínez-Frías J. (2010c) Raman spectroscopic study of four Spanish shocked ordinary chondrites: Cañellas, Olmedilla de Alarcón, Reliegos and Olivenza., Phil Trans R Soc A 368:3153–3166.
Rull F., Guerrero J., Venegas G., Gázquez F., and Medina J. (2014) Spectroscopic Raman study of sulphate precipitation sequence in Rio Tinto mining district (SW Spain). Environ Sci Pollut Res 21:6783–6792.
Sansano A., Lopez-Reyes G., Medina J., Rull F., and AMASE’10 Team. Analysis of Arctic Carbonates Profiles by Raman Spectroscopy using Exomars's RLS set up in European Planetary Science Congress EPSC-DPS. 2011. Nantes.
Slater J.B., Tedesco J.M., Fairchild R.C., and Lewis I.R. (2001) Raman spectrometry and its applications to the industrial environments—from the research laboratory to the process line. In Handbook of Raman Spectroscopy, edited by Lewis I.R. and Edwards H.G.M., Marcel Dekker, Inc., New York; pp 41–144.
Smekal A. (1923) Zur quantentheorie der dispersion. Naturwissenschaften 11: 873–875.
Sobron P., Sobron F., Eide U.M., Nielsen C.J., and Rull F. (2009) Model-based measurements of diffusion of sulfuric acid into water using Raman spectroscopy. Appl Spectrosc 63:1382–1388.
Sobron P., Bishop J.L., Blake D., and Rull F. (2014) Natural Fe-bearing oxides and sulfates from the Rio Tinto Mars analog site: critical assessment of VNIR spectroscopy, laser Raman spectroscopy and XRD as mineral identification tools. Am Mineral 99:1199–1205.
Squyres S.W., Arvidson R.E., Bell J.F. III, Calvin W.M., Christensen P.R., Clark B.C., Crisp J.A., Farrand W.H., Herkenhoff K.E., Johnson J.R., Klingelhoefer G., Knoll A.H., McLennan S.M., McSween H.Y., Morris R.V., Rice J.W., Rieder R., and Soderblom L.A. (2004) In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars. Science 306:1709–1714.
Steele A.A., Amundsen H.E.F., Conrad P.G., Benning L., and Fogel M. (2008) Arctic Mars Analogue Svalbard Expedition (AMASE) 2007. Lunar and Planetary Science XXXIX, No. 2368.
Szymanski H.A. (1967) Raman spectroscopy: Theory and Practice. Plenum Press, New York.
Turrell G., Delhaye M., and Dhamelincourt P. (1996) Characteristics of Raman microscopy. In Raman Microscopy-Developments and Applications, edited by Turrell G. and Corset J., Academic Press, New York; pp 27–49.
Vago J.L., Gardini B., Kminek G., Baglioni P., Gianfiglio G., Santovincenzo A., Bayon S., and van Winnendael M. (2006) ExoMars – Searching for life on the red planet. ESA Bulletin, European Space Agency 126(May):16–23.
Vago J.L, Westall F., Pasteur Teams, Landing Site Selection Working Group, and Other Contributors. (2017) Habitability on early Mars and the search for biosignatures with the ExoMars Rover. Astrobiology 17:471–510.
Venegas G. (2014) Raman study of sulphates formed by hydrothermal, evaporitic and weathering processes in the south east of Spain: implications for the exploration of Mars. Thesis, University of Valladolid.
Wang A., Haskin A.L., and Cortez E. (1998) A Raman spectroscopic sensor for in situ mineral characterization on planetary surface. Appl Spectrosc 52:477–487.
Wang A., Haskin L.A., Lane A.L., Wdowiak T.J., Squyres S.W., Wilson R.J., Hovland L.E., Manatt K.S., Raouf N., and Smith C.D. (2003) Development of the Mars Microbeam Raman Spectrometer (MMRS). J Geophys Res 108(E1):5005–5025.
Wilson E.B., Decius J.C., and Cross P.C. (1955) Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra. McGraw Hill Co., New York.

Information & Authors

Information

Published In

cover image Astrobiology
Astrobiology
Volume 17Issue Number 6-7June/July 2017
Pages: 627 - 654

History

Published ahead of print: 6 July 2017
Published in print: June/July 2017
Published online: 1 July 2017
Accepted: 22 March 2017
Received: 23 July 2016

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Fernando Rull
Unidad Asociada UVa-CSIC al Centro de Astobiología, University of Valladolid, Valladolid, Spain.
Sylvestre Maurice
IRAP, University Paul Sabatier—CNRS—Obs. Midi-Pyrénées, Toulouse, France.
Ian Hutchinson
Department of Physics and Astronomy, Space Research Centre, University of Leicester, Leicester, United Kingdom.
Andoni Moral
Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain.
Carlos Perez
Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain.
Carlos Diaz
Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain.
Maria Colombo
Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain.
Tomas Belenguer
Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain.
Guillermo Lopez-Reyes
Unidad Asociada UVa-CSIC al Centro de Astobiología, University of Valladolid, Valladolid, Spain.
Antonio Sansano
Unidad Asociada UVa-CSIC al Centro de Astobiología, University of Valladolid, Valladolid, Spain.
Olivier Forni
IRAP, University Paul Sabatier—CNRS—Obs. Midi-Pyrénées, Toulouse, France.
Yann Parot
IRAP, University Paul Sabatier—CNRS—Obs. Midi-Pyrénées, Toulouse, France.
Nicolas Striebig
IRAP, University Paul Sabatier—CNRS—Obs. Midi-Pyrénées, Toulouse, France.
Simon Woodward
Rutherford Appleton Laboratory Space, Didcot, United Kingdom.
Chris Howe
Rutherford Appleton Laboratory Space, Didcot, United Kingdom.
Nicolau Tarcea
Institute of Physical Chemistry, Friedrich-Schiller University, Jena, Germany.
Pablo Rodriguez
Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain.
Laura Seoane
Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain.
Amaia Santiago
Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain.
Jose A. Rodriguez-Prieto
Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain.
Jesús Medina
Unidad Asociada UVa-CSIC al Centro de Astobiología, University of Valladolid, Valladolid, Spain.
Paloma Gallego
Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain.
Rosario Canchal
Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain.
Pilar Santamaría
Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain.
Gonzalo Ramos
Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain.
Jorge L. Vago
ESA-ESTEC, Noordwijk, the Netherlands.

Notes

Address correspondence to:Fernando RullUnidad Asociada UVa-CSIC al Centro de AstobiologíaUniversity of ValladolidFacultad de CienciasCampus Miguel Delibes 8Valladolid 47002Spain
E-mail: [email protected]

Author Disclosure Statement

No competing financial interests exist.

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top