Research Article
No access
Published Online: 12 September 2018

Geological and Geochemical Constraints on the Origin and Evolution of Life

Publication: Astrobiology
Volume 18, Issue Number 9

Abstract

The traditional tree of life from molecular biology with last universal common ancestor (LUCA) branching into bacteria and archaea (though fuzzy) is likely formally valid enough to be a basis for discussion of geological processes on the early Earth. Biologists infer likely properties of nodal organisms within the tree and, hence, the environment they inhabited. Geologists both vet tenuous trees and putative origin of life scenarios for geological and ecological reasonability and conversely infer geological information from trees. The latter approach is valuable as geologists have only weakly constrained the time when the Earth became habitable and the later time when life actually existed to the long interval between ∼4.5 and ∼3.85 Ga where no intact surface rocks are known. With regard to vetting, origin and early evolution hypotheses from molecular biology have recently centered on serpentinite settings in marine and alternatively land settings that are exposed to ultraviolet sunlight. The existence of these niches on the Hadean Earth is virtually certain. With regard to inferring geological environment from genomics, nodes on the tree of life can arise from true bottlenecks implied by the marine serpentinite origin scenario and by asteroid impact. Innovation of a very useful trait through a threshold allows the successful organism to quickly become very abundant and later root a large clade. The origin of life itself, that is, the initial Darwinian ancestor, the bacterial and archaeal roots as free-living cellular organisms that independently escaped hydrothermal chimneys above marine serpentinite or alternatively from shallow pore-water environments on land, the Selabacteria root with anoxygenic photosynthesis, and the Terrabacteria root colonizing land are attractive examples that predate the geological record. Conversely, geological reasoning presents likely events for appraisal by biologists. Asteroid impacts may have produced bottlenecks by decimating life. Thermophile roots of bacteria and archaea as well as a thermophile LUCA are attractive.

Get full access to this article

View all available purchase options and get full access to this article.

References

Abby S.S., Tannier E., Gouy M., and Daubin V. (2012) Lateral gene transfer as support for the tree of life. PNAS 109:4962–4967.
Allen J.F. (2005) A redox switch hypothesis for the origin of two light reactions in photosynthesis. FEBS Lett 579:963–968.
Allen J.F. and Martin W. (2007) Evolutionary biology: out of thin air. Nature 445:610–612.
Amend J.P. and McCollom T.M. (2009) Energetics of biomolecule synthesis on early Earth. In Chemical Evolution II: From the Origins of Life to Modern Society, edited by Zaikowski L., Friedrich J.M., and Seidel S.R., American Chemical Society, Washington, DC, pp 63–94.
Amend J.P., LaRowe D.E., McCollom T.M., and Shock E.L. (2013) The energetics of organic synthesis inside and outside the cell. Phil Trans R Soc B 368:20120255.
Anderson R.F., Fleisher M.Q., and LeHuray A.P. (1989) Concentration, oxidation state, and particulate flux of uranium in the Black Sea. Geochim Cosmochim Acta 53:2215–2224.
Andrews-Hanna J.C., Zuber M.T., and Banerdt W.B. (2008) The Borealis Basin and the origin of the Martian crustal dichotomy. Nature 453:1212–1216.
Arndt N.T. and Nisbet E.G. (2012) Processes on the young Earth and the habitats of early life. Annu Rev Earth Planet Sci 40:521–549.
Bada J.L., Glavin D.P., McDonald G.D., and Becker L. (1998) A search for endogenous amino acids in martian meteorite ALH84001. Science 279:362–365.
Barber J. (2008) Photosynthetic generation of oxygen. Phil Trans R Soc B 363:2665–2674.
Battistuzzi F.U. and Hedges S.B. (2008) A major clade of prokaryotes with ancient adaptations to life on land. Mol Biol Evol 26:335–343.
Battistuzzi F.U. and Hedges S.B. (2009) Eubacteria. In The Timetree of Life, edited by Hedges S.B. and Kumar S., Oxford University Press, New York, pp 106–115.
Battistuzzi F.U., Feijão A., and Hedges S.B. (2004) A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol Biol 4:44.
Belbruno E., Amaya M.-M., Malhotra R., and Savransky D. (2012) Chaotic exchange of solid material between planetary systems: implications for lithopanspermia. Astrobiology 12:754–774.
Bell E.A. and Harrison T.M. (2013) Post-Hadean transitions in Jack Hills zircon provenance: a signal of the Late Heavy Bombardment? Earth Planet Sci Lett 364:1–11.
Bell E.A., Boehnke P., Harrison T.M., and Mao W.L. (2015) Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proc Natl Acad Sci USA 112:14518–14521.
Benner S.A., Kim H.-J., Kim M.-J., and Ricardo A. (2010) Planetary organic chemistry and the origins of biomolecules. Cold Spring Harb Perpect Biol 2:a0033467.
Benner S.A., Kim H.-J., and Carrigan M.A. (2012) Asphalt, water, and the prebiotic synthesis of ribose, ribonucleosides, and RNA. Acc Chem Res 12:2025–2034.
Bern M. and Goldberg D. (2005) Automatic selection of representative proteins for bacterial phylogeny. BMC Evol Biol 5:34.
Blank C.E. (2012) Low rates of lateral gene transfer among metabolic genes define the evolving biogeochemical niches of Archaea through deep time. Archaea 2012:23.
Blank C.E. and Sánchez-Baracaldo P. (2010) Timing of morphological and ecological innovations in the cyanobacteria—a key to understanding the rise in atmospheric oxygen. Geobiology 8:1–23.
Blank J.G., Green S.J., Blake D., Valley J.W., Kita N.T., Treimand A., and Dobson P.F. (2009) An alkaline spring system within the Del Puerto Ophiolite (California, USA): a Mars analog site. Planet Space Sci 57:533–540.
Blankenship R.E. (1992) Origin and early evolution of photosynthesis. Photosynth Res 33:91–111.
Blankenship R.E. and Hartman H. (1998) The origin and evolution of oxygenic photosynthesis. Trends Biochem Sci 23:94–97.
Bottke W.F., Vokrouhlický D, Minto D., Nesvorný D., Morbodelli A., Brasser R., Simonson B., and Levison H.F. (2012) An Archaean heavy bombardment from a destabilized extension of the asteroid belt. Nature 485:78–81.
Boussau B. and Gouy M. (2012) What genomes have to say about the evolution of the Earth. Gondwana Res 21:483–494.
Brabec M.Y., Lyons T.W., and Mandermack K.W. (2012) Oxygen and sulfur isotope fractionation during sulfide oxidation by anoxygenic phototrophic bacteria. Geochim Cosmochim Acta 83:234–251.
Brasser R. and Mojzsis S.J. (2017) A colossal impact enriched Mars' mantle with noble metals. Geophys Res Lett 44:5978–5985.
Brasser R., Mojzsis S.J., Werner S.C., Matsumura S., and Ida S. (2016) Late veneer and late accretion to the terrestrial planets. Earth Planet Sci Lett 455:85–93.
Brasser R., Mojzsis S.J., Matsumura S., and Ida S. (2017) The cool distant formation of Mars. Earth Planet Sci Lett 468:85–93.
Caetano-Anollés M.J. and Seufferheld MJ. (2013) The coevolutionary roots of biochemistry and cellular organization challenge the RNA World paradigm. J Mol Microbiol Biotechnol 23:152–177.
Cai L., Zhou G., Tian R.-M., Tong H., Zhang W., Sun J., Ding W., Wong Y.M., Xie J.Y., Qiu J.-W., Liu S., Huang H., and Qian P.-Y. (2017) Metagenomic analysis reveals a green sulfur bacterium as a potential coral symbiont. Sci Rep 7:9320.
Camacho A., Walter X.A., Picazo A., and Zopfi J. (2017) Photoferrotrophy: remains of an ancient photosynthesis in modern environments. Front Microbiol 8:323.
Cameron V., House C.H., and Brantley S.L. (2012) A first analysis of metallome biosignatures of hyperthermophilic Archaea. Archaea 2012:12.
Canfield D.E. and Raiswell R. (1999) The evolution of the sulfur cycle. Am J Sci 299:697–723.
Cassone G., Šponer J., Saija F., Di Mauro E., Saitta A.M., and Šponer J.E. (2017) Stability of 2′,3′ and 3′,5′ cyclic nucleotides in formamide and in water: a theoretical insight into the factors controlling the accumulation of nucleic acid building blocks in a prebiotic pool. Phys Chem Chem Phys 19:1817.
Castillo-Rogez J.C. and McCord T.B. (2010) Ceres' evolution and present state constrained by shape data. Icarus 205:443–459.
Catling D.C., Zahnle K.J., and McKay C.P. (2001) Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science 293:839–843.
Cavalier-Smith T. (2002) The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol 52:297–354.
Cavalier-Smith T. (2006) Origin of mitochondria by intracellular enslavement of a photosynthetic purple bacterium. Proc R Soc London B Biol Sci 273:1943–1952.
Cavosie A.J., Wilde S.A., Liu D., Weiblen P.W., and Valley J.W. (2004) Internal zoning and U-Th-Pb chemistry of Jack Hills detrital zircons: a mineral record of early Archean to Mesoproterozoic (4348-1576 Ma) magmatism. Precambrian Res 135:251–279.
Cockell C.S., Kelly L.C., and Marteinsson V. (2013) Actinobacteria—an ancient phylum active in volcanic rock weathering. Geomicrobiol J 30:706–720.
Colledge S., Conolly J., and Shennan S. (2004) Archaeobotanical evidence for the spread of farming in the Eastern Mediterranean. Curr Anthropol 45:S35–S58.
Colwell F.S. and D'Hondt S. (2013) Nature and extent of the deep biosphere. Rev Mineral Geochem 75:547–574.
Costanzo G., Giorgi A., Scipioni A., Timperio A.M., Mancone C., Tripodi M., Kapralov M., Krasavin E., Kruse H., Šponer J., Šponer J.E., Ranc V., Otyepka M., Pino S., and Di Mauro E. (2017) Nonenzymatic oligomerization of 3’,5’-Cyclic CMP induced by proton and UV irradiation hints at a nonfastidious origin of RNA. Chem Bio Chem 18:1535–1543.
Cramer W.A., Zhang H., Yan J., Kurisu G., Yamashita E., Dashdorj N., Kim H., and Savikhin S. (2007) Structure-function of the cytochrome b6f: a design that has worked for three billion years. In Primary Processes of Photosynthesis: Basic Principles and Apparatus, edited by Renger G., Royal Society Chemistry, Cambridge, pp 417–446.
Creevey C.J., Doerks T., Fitzpatrick D.A., Raes J., and Bork P. (2011) Universally Distributed single-copy genes indicate a constant rate of horizontal transfer. PLoS One 6:e22099.
Ćuk M. (2012) Chronology and sources of lunar impact bombardment. Icarus 218:69–79.
Dai J. (2012) Novel molecular fossils of bacteria: insights into hydrothermal origin of life. J Theor Biol 310:249–256.
Dasgupta R. (2013) Ingassing, storage, and outgassing of terrestrial carbon through geologic time. Rev Mineral Geochem 75:183–229.
Dauphas N., Cates N.L., Mojzsis S.J., and Busigny V. (2007) Identification of chemical sedimentary protoliths using iron isotopes in the >3750 Ma Nuvvuagittuq supracrustal belt, Canada. Earth Planet Sci Lett 254:358–376.
Davidovich C., Belousoff M., Bashan A., and Yonath A. (2009) The evolving ribosome: from non-coded peptide bond formation to sophisticated translation machinery. Res Microbiol 160:487–492.
Di Giulio M. (2011) The last universal common ancestor (LUCA) and the ancestors of archaea and bacteria were progenotes. J Mol Evol 72:119–126.
Dodd M.S., Papineau D., Grenne T., Slack J.F., Rittner M., Pirajno F., O'Neil J., and Little C.T.S. (2017) Evidence for early life in Earth's oldest hydrothermal vent precipitates. Nature 543:60–64.
Doolittle W.F. and Brunet T.D.P. (2016) What is the tree of life? PLoS Genet 12:e100591.
Doolittle W.F., Boucher Y., Nesbo C.L., Douady C.J., Andersson J.O., and Roger A.J. (2003) How big is the iceberg of which organellar genes in nuclear genomes are but the tip? Phil Trans R Soc Lond B 358:39–58.
Egel R. (2012) Primal eukaryogenesis: on the communal nature of precellular states, ancestral to modern life. Life 2:170–212.
Ehlmann B.L., Mustard J.F., and Murchie S.L. (2010) Geologic setting of serpentine deposits on Mars. Geophys Res Lett 37:L06201.
Ehrenreich A. and Widdel F. (1994) Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl Environ Microbiol 60:4517–4526.
Fernandes V.A., Fritz J., Weiss B.P., Garrick-Bethell I., and Shuster D.L. (2013) The bombardment history of the Moon as recorded by 40Ar-39Ar chronology. Meteorit Planet Sci 48:241–269.
Fischer W.W., Hemp J., and Johnson J.E. (2015) Manganese and the evolution of photosynthesis. Orig Life Evol Biosph 45:351–357.
Fischer W.W., Hemp J., and Johnson J.E. (2016) Evolution of oxygenic photosynthesis. Annu Rev Earth Planet 44:647–683.
Flegr J. (2002) Evolutionary Mechanisms and Processes, Encyclopedia of Life Support Systems (EOLSS). Eolss Publishers, Oxford, UK.
Fournier G.P., Huang J., and Gogarten J.P. (2009) Horizontal gene transfer from extinct and extant lineages: biological innovation and the coral of life. Phil Trans R Soc B 364:2229–2239.
Fraústo da Silva J.J.R. and Williams R.J.P. (2001) The Biological Chemistry of the Elements: The Inorganic Chemistry of Life. Oxford University Press, Oxford, pp 436–449.
Friend C.R.L., Bennett V.C., and Nutman A.P. (2002) Abyssal peridotites >3,800 Ma from southern West Greenland: field relationships, petrography, geochronology, whole-rock and mineral chemistry of dunite and harzburgite inclusions in the Itsaq Gneiss Complex. Contrib Mineral Petrol 143:71–92.
Friend C.R.L., Nutman A.P., Bennett V.C., and Norman M.D. (2008) Seawater-like trace element signatures (REE + Y) of Eoarchaean chemical sedimentary rocks from southern West Greenland, and their corruption during high-grade metamorphism. Contrib Mineral Petrol 155:229–246.
Ginder-Vogel M., Stewart B., and Fendoff S. (2009) Kinetic and mechanistic constraints on the oxidation of biogenic uraninite by ferrihydrite. Environ Sci Technol 44:163.
Goldblatt G., Zahnle K.J., Sleep N.H., and Nisbet E.G. (2010) The eons of Chaos and Hades. Solid Earth 1:1–3.
Goldford J.E., Hartman H., Smith T.F., and Sengrè D. (2017) Remnant of an ancient metabolism without phosphate. Cell 168:1126–1134.
Gouy R., Baurain D., and Philippe H. (2015) Rooting the tree of life: the phylogenetic jury is still out. Phil Trans R Soc B 370:20140329.
Guzman M.I. (2011) Abiotic photosynthesis: from prebiotic chemistry to metabolism. In Origins of Life: The Primal Self-Organization, Egel R., Lankenau D. and Mulkidjanian A.Y. Springer-Verlag Berlin Heidelberg, pp 85–105.
Guzman M.I. and Martin S.T. (2009) Prebiotic metabolism: production by mineral photoelectrochemistry of alpha-ketocarboxylic acids in the reductive tricarboxylic acid cycle. Astrobiology 9:833–842.
Guzman M.I. and Martin S.T. (2010) Photo-production of lactate from glyoxylate: how minerals can facilitate energy storage in a prebiotic world. Chem Commun 46:2265–2267.
Hansma H.G. (2010) Possible origin of life between mica sheets. J Theor Biol 266:175–188.
Hazen R.M. (2013) Paleomineralogy of the Hadean eon: a preliminary species list. Am J Sci 313:807–843.
Hazen R.M., Papineau D., Bleeker W., Downs R.T., Ferry JM., McCoy T., Sverjensky D., and Yang H. (2008) Mineral evolution. Am Mineral 93:1693–1720.
Hessler A.M., Lowe D.R., Jones R.L., and Bird D.K. (2004) A lower limit for atmospheric carbon dioxide levels 3.2 billion years ago. Nature 428:736–738.
Hoehler T.M. (2005) Biochemistry of dihydrogen (H2). In Metal Ions in Biological Systems, Biogeocehmical Cycles of Elements, Vol. 43, edited by Sigel A., Sigel H., and Sigel R.K.O., Taylor and Francis, Boca Raton, FL, pp 9–48.
Hoehler T.M., Alperin M.J., Albert D.B., and Martens C.S. (1998) Thermodynamic control on H2 concentrations in an anoxic marine sediment. Geochim Cosmochim Acta 62:1745–1756.
Holser W.T., Schidlowski M., Mackenzie F.T., and Maynard J.B. (1988) Geochemical cycles of carbon and sulfur. In Chemical Cycles in the Evolution of the Earth, edited by Gregor C.B., Garrels R.M., Mackenzie F.T., and Maynard J.B., Wiley, New York, pp 105–173.
Hopkins M.D., Harrison T.M., and Manning C.E. (2010) Constraints on Hadean geodynamics from mineral inclusions in >4 Ga zircons. Earth Planet Sci Lett 298:367–376.
Jackson J.B. (2016) Natural pH gradients in hydrothermal alkali vents were unlikely to have played a role in the origin of life. J Mol Evol 83:1.
Jarvis E.D., Mirarab S., Aberer A.J., Li B., Houde P., Li C., Ho S.Y., Faircloth B.C., Nabholz B., Howard J.T., Suh A., Weber C.C., da Fonseca R.R., Li J., Zhang F., Li H., Zhou L., Narula N., Liu L., Ganapathy G., Boussau B., Bayzid M.S., Zavidovych V., Subramanian S., Gabaldón T., Capella-Gutiérrez S., Huerta-Cepas J., Rekepalli B., Munch K., Schierup M., Lindow B., Warren W.C., Ray D., Green R.E., Bruford M.W., Zhan X., Dixon A., Li S., Li N., Huang Y., Derryberry E.P., Bertelsen M.F., Sheldon F.H., Brumfield R.T., Mello C.V., Lovell P.V., Wirthlin M., Schneider M.P., Prosdocimi F., Samaniego J.A., Vargas Velazquez A.M., Alfaro-Núñez A., Campos P.F., Petersen B., Sicheritz-Ponten T., Pas A., Bailey T., Scofield P., Bunce M., Lambert D.M., Zhou Q., Perelman P., Driskell A.C., Shapiro B., Xiong Z., Zeng Y., Liu S., Li Z., Liu B., Wu K., Xiao J., Yinqi X., Zheng Q., Zhang Y., Yang H., Wang J., Smeds L., Rheindt F.E., Braun M., Fjeldsa J., Orlando L., Barker F.K., Jønsson K.A., Johnson W., Koepfli K.P., O'Brien S., Haussler D., Ryder O.A., Rahbek C., Willerslev E., Graves G.R., Glenn T.C., McCormack J., Burt D., Ellegren H., Alström P., Edwards S.V., Stamatakis A., Mindell D.P., Cracraft J., Braun E.L., Warnow T., Jun W., Gilbert M.T., and Zhang G. (2014) Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346:1320–1331.
Johnson B.C. and Melosh H.J. (2012) Impact spherules as a record of an ancient heavy bombardment of Earth. Nature 485:75–77.
Joussein E., Petit S., Churchman J., Theng B., Righi D., and Delvaux B. (2005) Halloysite clay minerals—a review. Clay Minerals 40:383–426.
Kamata S., Sugita S., Abe Y., Ishihara Y., Harada Y., Morota T., Namiki N., Iwata T., Hanada H., Araki H., Matsumoto K., Tajika E., Kuramoto K., and Nimmo F. (2015) The relative timing of Lunar Magma Ocean solidification and the Late Heavy Bombardment inferred from highly degraded impact basin structures. Icarus 250:492–503.
Kamber B.S. (2010) Archean mafic-ultramafic volcanic landmasses and their effect on ocean-atmosphere chemistry. Chem Geol 274:19–28.
Kanellopoulos C., Mitropoulos P., Valsami-Jones E., and Voudouri P. (2017) A new terrestrial active mineralizing hydrothermal system associated with ore-bearing travertines in Greece (northern Euboea Island and Sperchios area). J Geochem Explor 179:9–24.
Kappler A. and Newman D.K. (2004) Formation of Fe(III) minerals by Fe(II)-oxidizing photoautotrophic bacteria. Geochim Cosmochim Acta 68:1217–1226.
Kasting J.F. (1990) Bolide impacts and the oxidation-state of carbon in the Earth's early atmosphere. Orig Life Evol Biosph 20:199–231.
Kasting J.F. and Ackerman T.P. (1986) Climatic consequences of very high carbon dioxide levels in the Earth's early atmosphere. Science 234:1383–1385.
Klinger C.M., Spang A., Dacks J.B., and Ettema T.J.G. (2016) Tracing the Archaeal origins of Eukaryotic membrane-trafficking system building blocks. Mol Biol Evol 33:1528–1541.
Koonin E.V. (2015a) Origin of eukaryotes from within archaea, archaeal eukaryome and bursts of gene gain: eukaryogenesis just made easier? Phil Trans R Soc B 370:20140333.
Koonin E.V. (2015b) Archaeal ancestors of eukaryotes: not so elusive any more. BMC Biol 13:84.
Ksepka D.T., Stidham T.A., and Williamson T.E. (2017) Early Paleocene landbird supports rapid phylogenetic and morphological diversification of crown birds after the K–Pg mass extinction. Proc Natl Acad Sci USA 114:8047–8052.
Kurland C.G. (2010) The RNA dreamtime. Bioessays 32:866–871.
Lane N. (2017) Protein gradients and the origin of life. Bioessays 39:1600217.
Lane N. and Martin W. (2012) The origin of membrane bioenergetics. Cell 151:1406–1416.
Lane N., Allen J.F., and Martin W. (2010) How did LUCA make a living? Chemiosmosis in the origin of life. BioEssays 32:271–280.
Larkum A.W.D. (2007) The evolution of photosynthesis. In Primary Processes of Photosynthesis: Basic Principles and Apparatus, edited by Renger G., Royal Society Chemistry, Cambridge, pp 491–521.
Lawrence J.G. and Roth J.R. (1996) Selfish operons: horizontal transfer may drive the evolution of gene clusters. Genetics 143:1843–1860.
Lécuyer C. and Ricard Y. (1999) Long-term fluxes and budget of ferric iron: implication for the redox states of the Earth's mantle and atmosphere. Earth Planet Sci Lett 165:197–211.
Li D.-B., Cheng Y.-Y., Li L.-L., Li W.-W., Huang Y.-X., Pei D.-N., Tong Z.-H., Mu Y., and Yu H.-Q. (2014) Light-driven microbial dissimilatory electron transfer to hematite. Phys Chem Chem Phys 16:23003.
Lin L.-H., Hall J., Lippmann-Pipke J., Ward J.A., DeFlaun M., Rothmel R., Moser D.P., Gihring T.M., Sherwood Lollar B., and Onstott T.C. (2005) Radiolytic H2 in continental crust: nuclear power for deep subsurface microbial communities. Geochem Geophys Geosyst 6:Q07003.
Liu Y.-I., Zhang B., Li C.-I., Hu F., and Vlede B. (2008) Long-term fertilization influences on clay mineral composition and ammonium adsorption in a rice paddy soil. Soil Sci Soc Am J 72:1580–1590.
Lu A., Li Y., Wang X., Ding H., Zeng C., Yang X., Hao R., Wang C., and Santosh M. (2013) Photoelectrons from minerals and microbial world: a perspective on life evolution in the early Earth. Precambrian Res 231:401–408.
Luu Y.-S. and Ramsey J.A. (2003) Review: microbial mechanisms of accessing insoluble Fe(III) as an energy source. World J Microbiol Biotech 19:215–225.
Maher K., Bargar J.R., and Brown G.E. Jr. (2013) Environmental speciation of actinides. Inorg Chem 52:3510–3532.
Marchi S., Bottke W.B., Kring D.A., and Morbidelli A. (2012) The onset of the lunar cataclysm as recorded in its ancient crater populations. Earth Planet Sci Lett 325–326:27–38.
Marchi S., Bottke W.F., Cohen B.A., Wünnemann K., Kring D.A., McSween H.Y., De Sanctis M.C., O'Brien D.P., Schenk P., Raymond C.A., and Russell C.T. (2013) High-velocity collisions from the lunar cataclysm recorded in asteroidal meteorites. Nat Geosci 6:303–307.
Marchi S., Bottke W.F., Elkins-Tanton L.T., Bierhaus M., Wuennemann K., Morbidelli A., and Kring D.A. (2014) Widespread mixing and burial of Earth's Hadean crust by asteroid impacts. Nature 511:578–582.
Marinova M.M., Aharonson O., and Asphaug E. (2008) Meta-impact formation of the Mars hemispheric dichotomy. Nature 453:1216–1219.
Martin W. and Müller M. (1998) The hydrogen hypothesis for the first eukaryote. Nature 392:37–41.
Martin W. and Russell M.J. (2007) On the origin of biochemistry at an alkaline hydrothermal vent. Phil Trans R Soc B 362:1887–1926.
Martin W., Hoffmeister M., Rotte C., and Henze K. (2001) An overview of endosymbiotic models for the origins of Eukaryotes, their ATP-producing organelles (mitochondria and hydrogenosomes), and their heterotrophic lifestyle. Biol Chem 382:1521–1539.
Martin W., Baross J., Kelley D., and Russell M.J. (2008) Hydrothermal vents and the origin of life. Nat Rev Microbiol 6:805–814.
Martin W.F. and Sousa F.L. (2016) Early microbial evolution: the age of anaerobes. Cold Spring Harb Perspect Biol 8:a018127.
Martin W.F., Weiss M.C., Neukirchen S., Nelson-Sathi S., and Sousa F.L. (2016) Physiology, phylogeny, and LUCA. Microb Cell 3:582–587.
Mat W.-K., Xue H., and Wong J.T.-F. (2008) The genomics of LUCA. Front Biosci 13:5605–5613.
McCollom T.M. and Amend J.P. (2005) A thermodynamic assessment of energy requirements for biomass synthesis by chemolithoautotrophic micro-organisms in oxic and anoxic environments. Geobiology 3:135–144.
McCollom T.M. and Seewald J.S. (2001) A reassessment of the potential for reduction of dissolved CO2 to hydrocarbons during serpentinization of olivine. Geochim Cosmochim Acta 65:3769–3778.
McCollom T.M. and Shock E.L. (1997) Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. Geochim Cosmochim Acta 61:4375–4391.
McCollom T.M., Ritter G., and Simoneit B.R.T. (1999) Lipid synthesis under hydrothermal conditions by Fischer-Tropsch-type reactions. Orig Life Evol Biosph 29:153–166.
McDonough W.F. andSun S.-s. (1995) The composition of the Earth. Chem Geol 120:233–253.
Melosh H.J. (2003) Exchange of meteorites (and life?) between solar systems. Astrobiology 3:207–215.
Miller S.L. and Lazcano A. (1995) The origin of life—did it occur at high temperatures? J Mol Evol 41:689–692.
Miller S.L. and Urey H.C. (1959) Organic compound synthesis on the primitive Earth. Science 130:245–251.
Milliken R.E. and Rivkin A.S. (2009) Brucite and carbonate assemblages from altered olivine-rich amterials on Ceres. Nat Geosci 2:258–261.
Mloszewska A.M., Mojzsis S.J., Pecoit E., Papineau D., Dauphas N., and Konhauser K.O. (2013) Chemical sedimentary protoliths in the >3.75 Ga Nuvvuagittuq Supracrustal Belt (Québec, Canada). Gondwana Res 23:574–594.
Morbidelli A., Marchi S., Bottke W.F., and Kring D.A. (2012) A sawtooth-like timeline for the first billion years of lunar bombardment. Earth Planet Sci Lett 355–356:144–151.
Morse J.W. and Mackenzie F.T. (1998) Hadean ocean carbonate geochemistry. Aquat Geochem 4:301–319.
Moser D.P., Gihring T.J., Brockman F.J., Fredrickson J.K., Balkwill D.L., Dollhopf M.E., Sherwood Lollar B., Pratt L.M., Boice E., Southam G., Wanger G., Baker B.J., Pfiffner S.M., Lin L.-H., and Onstott T.C. (2005) Desulfotomaculum and Methanobacterium spp. dominate a 4- to 5-kilometer deep fault. Appl Environ Microbiol 71:8773–8783.
Mulkidjanian A.Y. (2009) Origin of life in the Zinc World: 1. Photosynthetic, porous edifices built of hydrothermally precipitated zinc sulfide (ZnS) as cradles of life on Earth. Biol Direct 4:26.
Mulkidjanian A.Y. and Galperin M.Y. (2009) On the origin of life in the Zinc World. 2. Validation of the hypothesis on the photosynthesizing zinc sulfide edifices as cradles of life on Earth. Biol Direct 4:27.
Mulkidjanian A.Y. and Galperin M.Y. (2013) A time to scatter genes and a time to gather them: evolution of photosynthesis genes in bacteria. In Genome Evolution of Photosynthetic Bacteria, edited by Beatty T.J., Academic Press, San Diego, CA, pp 1–36.
Mulkidjanian A.V., Bychkov AY, Dibrova D.V., Galperin M.Y., and Koonin E.V. (2012) Origin of first cells at terrestrial, anoxic geothermal fields. Proc Natl Acad Sci 109:E821–E830.
Navarro-González R., McKay C.P., and Nna Mvonda D. (2001) A possible nitrogen crisis for Archaean life due to reduced nitrogen fixation by lightning. Nature 412:61–64.
Nemchin A.A., Whitehouse M.J., Menneken M., Geisler T., Pidgeon R., and Wilde S.A. (2008) A light carbon reservoir recorded in zircon-hosted diamond from the Jack Hills. Nature 454:92–95.
Niether D. and Wiegand S. (2017) Heuristic approach to understanding the accumulation process in hydrothermal pores. Entropy 19:33.
Niether D., Afanasenkau D., Dhont J.K.G., and Wiegand S. (2016) Accumulation of formamide in hydrothermal pores to form prebiotic nucleobases. Proc Natl Acad Sci USA 113:4272–4277.
Nimmo F., Hart S.D., Korycansky D.G., and Agnor C.B. (2008) Implications of an impact origin for the Martian hemispheric dichotomy. Nature 453:1220–1224.
Nisbet E.G. and Fowler C.M.R. (1999) Archaean metabolic evolution of microbial mats. Proc R Soc Lond B 266:2375–2382.
Nisbet E.G., Cann J.R., and van Dover C.L. (1995) Origins of photosynthesis. Nature 373:479–480.
Nisbet E.G. and Fowler C.M.R. (2014) The early history of life. In Treatise on Geochemistry, 2nd ed., Vol. 10, edited by Holland H.D. and Turekian K.K., Elsevier, Oxford, pp 1–42.
Nisbet E.G., Mattey D.P., and Lowry D. (1994) Can diamonds be dead bacteria? Nature 367:694.
Nisbet E., Zahnle K., Gerasimov M.V., Helbert J., Jaumann R., Hofmann B.A., Benzerara K., and Westall F. (2007) Creating habitable zones, at all scales, from planets to mud micro-habitats, on Earth and on Mars. Space Sci Rev 129:79–121.
Nitschke W. and Russell M.J. (2009) Hydrothermal focusing of chemical and chemiosmotic energy, supported by delivery of catalytic Fe, Ni, Mo/W, Co, S and Se, forced life to emerge. J Mol Evol 69:481–496.
Nitschke W. and Russell M.J. (2013) Beating the acetyl coenzyme A-pathway to the origin of life. Phil Trans R Soc B 368:20120258.
Nowak M.A. and Ohtsuki H. (2008) Prevolutionary dynamics and the origin of evolution. PNAS 105:14924–14927.
Nutman A.P., Friend C.R.L., and Paxton S. (2009) Detrital zircon sedimentary provenance ages for the Eoarchaean Isua supracrustal belt southern West Greenland: juxtaposition of an imbricated ca. 3700Ma juvenile arc against an older complex with 3920–3760 Ma components. Precambrian Res 172:212–233.
Nutman A.P., Bennett V.C., Friend C.R.L., Van Kranendonk M.J., and Chivas A.R. (2016) Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 537:535–538.
Papineau D. (2010) Mineral environments on the earliest Earth. Elements 6:25–30.
Papineau D., Mojzsis S.J., and Schmitt A.K. (2007) Multiple sulfur isotopes from Paleoproterozoic Huronian interglacial sediments and the rise of atmospheric oxygen. Earth Planet Sci Lett 255:188–212.
Papineau D., De Gregorio B.T., Cody G.D., Fries M.D., Mojzsis S.J., Steele A., Stroud R.M., and Fogel M.L. (2010) Ancient graphite in the Eoarchean quartz–pyroxene rocks from Akilia in southern West Greenland I: petrographic and spectroscopic characterization. Geochim Cosmochim Acta 74:5862–5883.
Partin C.A., Bekker A., Planavsky N.J., Scott C.T., Gill B.C., Li C., Podkovyrov V., Maslov A., Konhauser K.O., Lalonde S.V., Love G.D., Pouton S.W., and Lyons T.W. (2013) Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales. Earth Planet Sci Lett 369–370:284–293.
Patel B.H., Pecivvalle C., Ritson D.J., Duffy C.D., and Sutherland J.D. (2015) Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat Chem 7:301–306.
Pavlov A. and Kasting J.F. (2002) Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2:27–41.
Plümper O., King H.E., Geisler T., Liu Y., Pabst S., Savov I.P., Rostf D., and Zack T. (2017) Subduction zone forearc serpentinites as incubators for deep microbial life. Proc Natl Acad Sci USA 114:4324–4329.
Ponce-Toledo R.I., Deschamps P., López-Garcia P., Zivanonic Y., Benzerara K., and Moreira D. (2017) An early-branching freshwater Cyanobacterium at the origin of plastids. Curr Biol 27:386–391.
Pons M.-L., Quitté G., Fujii T., Rosing M.T., Reynard B., Moynier F., Douchet C., and Albarède F. (2011) Early Archean serpentine mud volcanoes at Isua, Greenland, as a niche for early life. Proc Natl Acad Sci USA 108:17639–17643.
Pope E.C., Bird D.K., and Rosing M.T. (2012) Isotope composition and volume of Earth's early oceans. Proc Natl Acad Sci USA 109:4371–4376.
Potter R.W.K., Collins G.S., Kiefer W.S., McGovern P.J., and Kring D.A. (2012) Constraining the size of the South Pole-Aitken basin Impact. Icarus 220:730–743.
Puigbò P., Wolf Y.I., and Koonin E.V. (2013) Seeing the tree of life through the phylogenetic forest. BMC Biol 11:46.
Raymann K., Brochier-Armanet C., and Gribaldo S. (2015) The two-domain tree of life is linked to a new root for the Archaea. Proc Natl Acad Sci USA 112:6670–6675.
Raymond S.N., Schlichting H.E., Hersant F., and Selsis F. (2013) Dynamical and collisional constraints on a stochastic late veneer on the terrestrial planets. Icarus 226:671–681.
Retallack G.J., Krinsley D.H., Fischer R., Razink J.J., and Langworthy K.A. (2016) Archean coastal-plain paleosols and life on land. Gondwana Res 40:1–20.
Ricardo A., Carrigan M.A., Olcott A.N., and Benner S.A. (2004) Borate minerals stabilize ribose. Science 303:196.
Rosing M.T. (1999) C-13-depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks. Science 283:674–676.
Rosing M.T. and Frei R. (2004) U-rich Archaean sea-floor sediments from Greenland—indications of >3700 Ma oxygenic photosynthesis. Earth Planet Sci Lett 217:237–244.
Rotelli L., Trigo-Rodríguez J.M., Moyano-Cambero C.E., Carota E., Botta L., Di Mauro E., and Saladino R. (2016) The key role of meteorites in the formation of relevant prebiotic molecules in a formamide/water environment. Sci Rep 6:38888.
Roth A.S.G., Scherer E.E., Maden C., Maden C., and Bourdon B. (2014) Revisiting the 142Nd deficits in the 1.48 Ga Khariar alkaline rocks, India. Chem Geol 386:238–248.
Russell M.J. and Arndt N.T. (2005) Geodynamic and metabolic cycles in the Hadean. Biogeosciences 2:97–111.
Russell M.J. and Hall A.J. (2006) The onset and early evolution of life. In Evolution of Early Earth's Atmosphere, Hydrosphere, and Biosphere—Constraints from Ore Deposits, Volume 198, Kesler S.E. and Ohmoto H., Geological Society of America, Boulder, CO, pp 1–32.
Russell M.J. and Hall A.J. (2009) The hydrothermal source of energy and materials at the origin of life. In Chemical Evolution II: From the Origins of Life to Modern Society, edited by Zaikowski L., Friedrich J.M., and Seidel S.R., American Chemical Society, Washington, DC, pp 45–62.
Russell M.J., Hall A.J., and Martin W. (2010) Serpentinization as a source of energy at the origin of life. Geobiology 8:355–371.
Russell M.J., Nitschke W., and Branscomb E. (2013) The inevitable journey to being. Phil Trans R Soc B 368:20120254.
Ryder G. (2002) Mass flux in the ancient earth-Moon system and benign implications for the origin of life on the Earth. J Geophys Res 107:5022.
Sadekar S., Raymond J., and Blankenship R.E. (2006) Conservation of distantly related membrane proteins: photosynthetic reaction centers share a common structural core. Mol Biol Evol 23:2001–2007.
Saladino R., Bizzari B.M., Boota L., Šponer J., Šponer J.E., Georgelin T., Jaber M., Rigaud B., Kapralov M., Timoshenko G.N., Rozanov A., Krasavin E., Timperio A.M., and Mauro E.D. (2017) Proton irradiation: a key to the challenge of N-glycosidic bond formation in a prebiotic context. Sci Rep 7:14709.
Sánchez-Baracaldo P., Raven J.A., Pisani D., and Knoll A.M. (2017) Early photosynthetic eukaryotes inhabited low-salinity habitats. Proc Natl Acad Sci USA 114:E7737–E7745.
Sano Y. and Williams S.N. (1996) Fluxes of mantle and subducted carbon along convergent plate boundaries. Geophys Res Lett 23:2749–2752.
Schönheit P., Buckel W., and Martin W.F. (2016) On the origin of heterotrophy. Trends Microbiol 24:12–25.
Schrenk M.O., Brazelton W.J., and Lang S.Q. (2013) Serpentinization, carbon, and deep life. Rev Mineral Geochem 75:575–606.
Schröder I., Johnson E., and de Vries S. (2003) Microbial ferric iron reductases. FEMS Microbiol Rev 27:427–447.
Serrano-Andrés L. and Merchán M. (2009) Are the five natural DNA/RNA base monomers a good choice from natural selection? A photochemical perspective. J Photochem Photobiol C Photochem Rev 10:21–32.
Sleep N.H. (2016) Asteroid bombardment and the core of Theia as possible sources for the Earth's late veneer component. Geochem Geophys Geosyst 17:2623–2642.
Sleep N.H. and Bird D.K. (2007) Niches of the pre-photosynthetic biosphere and geologic preservation of Earth's earliest ecology. Geobiology 5:101–117.
Sleep N.H. and Bird D.K. (2008) Evolutionary ecology during the rise of dioxygen in the Earth's atmosphere. Philos Trans R Soc B 363:2651–2664.
Sleep N.H. and Zahnle K. (2001) Carbon dioxide cycling and implications for climate on ancient Earth. J Geophys Res 106:1373–1399.
Sleep N.H., Zahnle K., and Neuhoff P.S. (2001) Initiation of clement surface conditions on the early Earth. Proc Natl Acad Sci USA 98:3666–3672.
Sleep N.H., Bird D.K., and Pope E. (2011) Serpentine and the dawn of life. Phil Trans R Soc B 366:2857–2869.
Sleep N.H., Bird D.K., and Pope E. (2012) Paleontology of Earth's mantle. Annu Rev Earth Planet Sci 40:277–300.
Sleep N.H., Bird D.K., and Rosing M.T. (2013) Biological effects on the source of geoneutrinos. Int J Modern Phys A 28:1330047.
Sleep N.H., Zahnle K.J., and Lupu R.E. (2014) Terrestrial aftermath of the Moon-forming impact. Philos Trans R Soc A 372:20130172.
Sojo V., Pomiankowski A., and Lane N. (2014) A bioenergetics basis for membrane divergence in archaea and bacteria. PLoS Biol 12:e1001926.
Sojo V., Herschy B., Whicher A., Camprubi A., and Lane N. (2016) The origin of life in alkaline hydrothermal vents. Astrobiology 16:181–197.
Sousa F.L., Shavit-Greivink L., Allen J.F., and Martin W.F. (2012) Chlorophyll biosynthesis gene evolution indicates photosystem gene duplication, not photosystem merger, at the origin of oxygenic photosynthesis. Genome Biol Evol 5:200–216.
Sousa F.L., Thiergart T., Landan G., Nelson-Sathi S., Ines A.C.P., Allen J.F., Lane N., and Martin W. (2013) Early bioenergetic evolution. Philos Trans R Soc Lond B 368:20130088.
Spang A., Saw J.H., Jørgensen S.L., Zaremba-Niedzwiedzka K., Martijn J., Lind A.E., van Eijk R., Schleper C., Guy L., and Ettema T.J.G. (2015) Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521:173–179.
Šponer J.E., Šponer J., Nováková O., Brabec V., Šedo O., Zdráhal Z., Costanzo G., Pino S., Saladino R., and Di Mauro E. (2016) Emergence of the first catalytic oligonucleotides in a formamide-based origin scenario. Chem Eur J 22:3572–3586.
Stetter K.O. (2006) Hyperthermophiles in the history of life. Phil Trans R Soc B 361:1837–1843.
Stone D. (2010) Precambrian Geology of the Central Wabigoon Subprovince Area, Northwestern Ontario, Ontario Geological Survey, Volume 5422 of Open File Report, Ministry of Northern Development and Mines, Sudbury, Canada.
Sumner D.Y. and Grotzinger J.P. (1996) Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration? Geology 24:119–122.
Suzuki S., Kuenen J.G., Schipper K., van der Velde S., Ishii S., Wu A., Sorokin D.Y., Tenney A., Meng X.Y., Morrill P.L., Kamagata Y., Muyzer G., and Nealson K.H. (2014) Physiological and genomic features of highly alkaliphilic hydrogen-utilizing Betaproteobacteria from a continental serpentinizing site. Nat Commun 5:3900.
Szöllősi G.J., Boussau B., Tannier E., and Daubin V. (2012) Phylogenetic modeling of lateral gene transfer reconstructs the pattern and relative timing of speciations. PNAS 109:17513–17518.
Takai K., Nakamura K., Toki T., Tsunogai U., Miyazaki M., Miyazaki J., Hirayama H., Nakagawa S., Nunoura T., and Horikoshi K. (2008) Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci USA 105:10949–10954.
Thomazo C., Pinti D.L., Busigny V., Ader M., Hashizume K., and Philippot P. (2009) Biological activity and the Earth's surface evolution: insights from carbon, sulfur, nitrogen and iron stable isotopes in the rock record. C R Palevol 8:665–678.
Upadhyay D., Scherer E.E., and Mezger K. (2009) 142Nd evidence for an enriched Hadean reservoir in cratonic roots. Nature 459:1118–1121.
Valtonen M., Nurmi P., Zheng J.-Q., Cucinotta F.A., Wilson J.W., Horneck G., Lindegren L., Melosh J., Rickman H., and Mileikowsky C. (2008) Natural transfer of viable microbes in space from planets in extra-solar systems to a planet in our solar system and vice versa. Astrophys J 690:210–215.
Vetsigian K., Woese C.R., and Goldenfeld N. (2006) Collective evolution and the genetic code. Proc Natl Acad Sci U.S.A 103:10696–10701.
Villanueva L., Schouten S., and Sinninghe Damsté J.S. (2017) Phylogenomic analysis of lipid biosynthetic genes of Archaea shed light on the “lipid divide.” Environ Microbiol 19:54–69.
Wächtershäuser G. (2006) From volcanic origins of chemoautotrophic life to Bacteria, Archaea and Eukarya. Phil Trans R Soc B 361:1787–1808.
Walker R.J., Bermingham K., Liu J., Puchtel I.S., Touboul M., and Worsham E.A. (2015) In search of late-stage planetary building blocks. Chem Geol 411:125–142.
Way M.J., Del Genio A.D., Kiang N.Y., Sohl L.E., Grinspoon D.H., Aleinov I., Kelley M., and Clune T. (2016) Was Venus the first habitable world of our solar system? Geophys Res Lett 43:8376–8383.
Weiss B.P., Baudenbacher F.J., Vali H., Peters N.T., Macdonald F.A., and Wikswo J.P. (2000) A low temperature transfer of ALH84001 from Mars to Earth. Science 290:791–795.
Weiss M.C., Sousa F.L., Mrnjavac N., Neukirchen S., Roettger M, Neson-Sathi S., and Martin W.F. (2016) The physiology and habitat of the last universal common ancestor. Nat Microbiol 1:16116.
Werner S.C. (2008) The early Martian evolution—constraints from basin formation ages. Icarus 195:45–60.
Weronika E. and Łukasz K. (2017) Tardigrades in space research—past and future. Orig Life Evol Biosph 47:545–553.
Williams T.A., Foster P.G., Nye TMW, Cox C.J., and Embley M. (2012) A congruent phylogenomic signal places eukaryotes within the Archaea. Proc R Soc B 279:4870–4879.
Woese C. (1998) The universal ancestor. Proc Natl Acad Sci USA 95:6854–6859.
Woese C.R. (1977) Endosymbionts and mitochondrial origins. J Mol Evol 10:93–96.
Woese C.R. (1987) Bacterial evolution. Microbiol Rev 5:221–227.
Woese C.R. (2002) On the evolution of cells. Proc Natl Acad Sci USA 99:8742–8747.
Xiong J., Fischer W.M., Inoue K., Nakahara M., and Bauer C.E. (2000) Molecular evidence for the early evolution of photosynthesis. Science 289:1724–1730.
Yarus M. (2010) Getting past the RNA world: the initial Darwinian Ancestor. In RNA Worlds: From Life's Origins to Diversity in Gene Regulation, edited by Atkins J.F., Gesteland R.F., and Cech T.R., Cold Spring Harbor Laboratory Press, New York, pp 43–50.
Yonath A.E. (2009) Ribosome: an ancient cellular nano-machine for genetic code translation. In Biophysics and the Challenges of Emerging Threats, edited by Puglisi J.D., Springer, Netherlands, pp 121–155.
Yoshiya K., Sawaki Y., Hirata T., Maruyama S., and Komiya T. (2015) In-situ iron isotope analysis of pyrites in ∼3.7 Ga sedimentary protoliths from the Isua supracrustal belt, southern West Greenland. Chem Geol 401:126–139.
Zachar I., Szilágyi A., Számadó S., and Szathmáry E. (2018) Farming the mitochondrial ancestor as a model of endosymbiotic establishment by natural selection. Proc Natl Acad Sci USA 115:E1504–E1510.
Zahnle K.J. and Sleep N.H. (2006) Impacts and the early evolution of life. In Comets and the Origin and Evolution of Life, 2nd ed., edited by Thomas P.J., Hicks R.D., Chyba C.F., and McKay C.P., Springer, New York, pp 207–251.
Zahnle K., Arndt N., Cockell C., Halliday A., Nisbet E., Selsis F., and Sleep N.H. (2007) Emergence of a habitable planet. Space Sci Rev 129:35–78.
Zahnle K.J., Lupu R., Dobrovolskis A., and Sleep N.H. (2015) The tethered Moon. Earth Planet Sci Lett 427:74–82.
Zaremba-Niedzwiedzka K., Caceres E.F., Saw J.H., Bäckström D., Juzokaite L., Vancaester E., Seitz K.W., Anantharaman K., Starnawski P., Kjeldsen K.U., Stott M.B., Nunoura T., Banfield J.F., Schramm A., Baker B.J., Spang A., Ettema T.J.G. (2017) Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541:353–358.
Zerkle A.L., Farquhar J., Johnston D.T., Cox R.P., and Canfield D.E. (2009) Fractionation of multiple sulfur isotopes during phototrophic oxidation of sulfide and elemental sulfur by a green sulfur bacterium. Geochim Cosmochim Acta 73:291–306.
Associate Editor: Charles Cockell

Information & Authors

Information

Published In

cover image Astrobiology
Astrobiology
Volume 18Issue Number 9September 2018
Pages: 1199 - 1219
PubMed: 30124324

History

Published online: 12 September 2018
Published in print: September 2018
Published ahead of print: 20 August 2018
Accepted: 28 January 2018
Received: 28 December 2017

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Norman H. Sleep [email protected]
Department of Geophysics, Stanford University, Stanford, California.

Notes

Address correspondence to:Norman H. SleepDepartment of Geophysics373A Mitchell BuildingStanford, CA 94305-2215 [email protected]

Author Disclosure Statement

No competing financial interests exist.

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top