Research Article
No access
Published Online: 30 April 2020

Lichen Vitality After a Space Flight on Board the EXPOSE-R2 Facility Outside the International Space Station: Results of the Biology and Mars Experiment

Publication: Astrobiology
Volume 20, Issue Number 5

Abstract

As part of the Biology and Mars Experiment (BIOMEX; ILSRA 2009-0834), samples of the lichen Circinaria gyrosa were placed on the exposure platform EXPOSE-R2, on the International Space Station (ISS) and exposed to space and to a Mars-simulated environment for 18 months (2014–2016) to study: (1) resistance to space and Mars-like conditions and (2) biomarkers for use in future space missions (Exo-Mars). When the experiment returned (June 2016), initial analysis showed rapid recovery of photosystem II activity in the samples exposed exclusively to space vacuum and a Mars-like atmosphere. Significantly reduced recovery levels were observed in Sun-exposed samples, and electron and fluorescence microscopy (transmission electron microscope and field emission scanning electron microscope) data indicated that this was attributable to the combined effects of space radiation and space vacuum, as unirradiated samples exhibited less marked morphological changes compared with Sun-exposed samples. Polymerase chain reaction analyses confirmed that there was DNA damage in lichen exposed to harsh space and Mars-like environmental conditions, with ultraviolet radiation combined with space vacuum causing the most damage. These findings contribute to the characterization of space- and Mars-resistant organisms that are relevant to Mars habitability.

Get full access to this article

View all available purchase options and get full access to this article.

References

Berger, T., Hajek, M., Bilski, P., Körner, C., Vanhavere, P., and Reitz, G. (2012) Cosmic radiation exposure of biological test systems during the EXPOSE-E mission. Astrobiology 12:387–392.
Berger, T., Hajek, M., Bilski, P., and Reitz, G. (2015) Cosmic radiation exposure of biological test systems during the EXPOSE-R mission. Astrobiology 14:27–32.
Billi, D., Viaggiu, E., Cockell, C.S., Rabbow, E., Horneck, G., and Onofri, S. (2011) Damage escape and repair in dried Chroococcidiopsis spp. from hot and cold deserts exposed to simulated space and Martian conditions. Astrobiology 11:65–73.
Böttger, U., de Vera, J.P., Fritz, J., Weber, I., Hübers, H.W., and Schulze-Makuch, D. (2012) Optimizing the detection of carotene in cyanobacteria in a martian regolith analogue with a Raman spectrometer for the ExoMars mission. Planet Space Sci 60:356–362.
Böttger, U., Meeßen, J., Martinez-Frias, J., Hübers, H.W., Rull, F., Sánchez, F.J., de la Torre, R., and de Vera, J.P. (2013) Raman spectroscopic analysis of the calcium oxalate producing extremotolerant lichen Circinaria gyrosa. Int J Astrobiol 13:19–27.
Brandt, A., de Vera, J.P., Onofri, S., and Ott, S. (2015) Viability of the lichen Xanthoria elegans and its symbionts after 18 months of space exposure and simulated Mars conditions on the ISS. Int J Astrobiol 14:411–425.
Büdel, B. and Scheidegger, C. (2008) Thallus morphology and anatomy. In Lichen Biology, edited by T.H. Nash, III, Cambridge University Press, London, pp 40–68.
Büdel, B., Darienko, T., Deutschwitz, K., Dojani, S., Friedl, T., Mohr, K.L., Salisch, M., Reisser, W., and Weber, B. (2009) Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microb Ecol 57:229–247.
Cockell, C.S., Rettberg, P., Rabbow, E., and Olsson-Francis, K. (2011) Exposure of phototrophs to 548 days in low Earth orbit: microbial selection pressures in outer space and on early earth. ISME J 5:1671–1682.
Cottin, H., Coll, P., Coscia, D., Fray, N., Guan, Y.Y., Macari, F., Raulin, F., Rivron, C., Stalpor, F., Szopa, C., Chaput, D., Viso, M., Bertrand, M., Chabin, A., Thirkell, L., Westall, F., and Brack, A. (2008) Heterogeneous solid/gas organic compounds related to comets, meteorites, Titan and Mars: laboratory and in lower Earth orbit experiments. Adv Space Res 42:2019–2035.
Crespo, A. and Barreno, E. (1978) About the earthling communities of vagant lichens (Sphaerothalia, Xanthoparmelion vagantis al. Nova). Acta Bot Malacit 4:55–62.
Crowe, J.H., Hoekstra, F.A., and Crowe, L.M. (1992) Anhydrobiosis. Annu Rev Physiol 54:579–599.
de la Torre, R., Garcia-Sancho, L., and Horneck, G. (2007) Adaptation of the lichen Rhizocarpon geographicum to harsh high-altitude conditions: relevance to a habitable Mars. In ROME: Response of Organisms to the Martian Environment, edited by C.S. Cockell, ESA Communications, Noordwijk, The Netherlands, pp 145–150.
de la Torre, R., Sancho, L.G., Horneck, G., de los Ríos, A., Wierzchos, J., Olsson-Francis, K., and Ott, S. (2010) Survival of lichens and bacteria exposed to outer space conditions—results of the Lithopanspermia experiments. Icarus 208:735–748.
de la Torre, R., Miller, A.Z., Cubero, B., Martín-Cerezo, M.L., Raguse, M., and Meeßen, J. (2017) The effect of high-dose ionizing radiation on the astrobiological model lichen Circinaria gyrosa. Astrobiology 7:145–153.
de la Torre Noetzel, R., Sancho, L.G., Pintado, A., Rettberg, P., Rabbow, E., Panitz, C., Deutschmann, U., Reina, M., and Horneck, G. (2007) BIOPAN experiment LICHENS on the Foton M2 mission: pre-flight verification tests of the Rhizocarpon geographicum granite ecosystem. Adv Space Res 40:1665–1671.
de la Torre Noetzel, R., Miller, A.Z., de la Rosa, J.M., Pacelli, C., Onofri, S., García Sancho, L., Cubero, B., Lorek, A., Wolter, D., and de Vera, J.P. (2018) Cellular responses of the lichen Circinaria gyrosa in Mars-like conditions. Front Microbiol 9:308.
de los Ríos, A., Ascaso, C., Wierzchos, J., Sancho, L.G. and Green, T.G.A. (2010) Space flight effects on lichen ultrastructure and physiology. In Symbiosis and Stress: Joint Ventures in Biology, Cellular Origin, Life in Extreme Habitats and Astrobiology, Vol. 17, Part 5, edited by J. Seckbach and M. Grub, Springer, Heidelberg, pp 577–593.
de Vera, J.P. (2012) Lichens as survivors in space and on Mars. Fungal Ecol 5:472–479.
de Vera, J.P., Horneck, G., Rettberg, P., and Ott, S. (2003) The potential of the lichen symbiosis to cope with the extreme conditions of outer space. I: influence of UV radiation and space vacuum on the vitality of lichen symbiosis and germination capacity. Int J Astrobiol 1:285–293.
de Vera, J.P., Horneck, G., Rettberg, P., and Ott, S. (2004) The potential of the lichen symbiosis to cope with the extreme conditions of outer space. II: germination capacity of lichen ascospores in response to simulated space conditions. Adv Space Res 33:1236–1243.
de Vera, J.P. and Ott, S. (2010) Resistance of symbiotic eukarotes. Survival to simulated space conditions and asteroid impact cataclysms. In Symbiosis and Stress, Springer, Dordrecht, pp 595–611.
de Vera, J.P., Schulze-Makuch, D., Khan, A., Lorek, A., Koncz, A., Möhlmann, D., and Spohn, T. (2014) Adaptation of an Antarctic lichen to Martian niche conditions can occur within 34 days. Planet Space Sci 98:182–190.
de Vera, J.-P., Alawi, M., Backhaus, T., Baqué, M., Billi, D., Böttger, U., Berger, T., Bohmeier, M., Cockell, C., Demets, R., de la Torre Noetzel, R., Edwards, H., Elsaesser, A., Fagliarone, C., Fiedler, A., Foing, B., Foucher, F., Fritz, J., Hanke, F., Herzog, T., Horneck, G., Hübers, H.-W., Huwe, B., Joshi, J., Kozyrovska, N., Kruchten, M., Lasch, P., Lee, N., Leuko, S., Leya, T., Lorek, A., Martínez-Frías, J., Meessen, J., Moritz, S., Moeller, R., Olsson-Francis, K., Onofri, S., Ott, S., Pacelli, C., Podolich, O., Rabbow, E., Reitz, G., Rettberg, P., Reva, O., Rothschild, L., Garcia Sancho, L., Schulze-Makuch, D., Selbmann, L., Serrano, P., Szewzyk, U., Verseux, C., Wadsworth, J., Wagner, D., Westall, F., Wolter, D., and Zucconi, L. (2019) Limits of life and the habitability of Mars: the ESA space experiment BIOMEX on the ISS. Astrobiology 19:145–157.
Ertl, L. (1951) About the Light Relations on Leaf lichen. Planta 39:245–270.
Gauslaa, Y. and Solhaug, K.A. (2004) Photoinhibition in lichens depends on cortical characteristics and hydration. Lichenologist 36:133–143.
Gauslaa, Y. and Ustvedt, E.M. (2003) Is parietin a UV-B or a blue-light screening pigment in the lichen Xanthoria parietina? Photochem Photobiol Sci 2:424–432.
Gómez, F., Mateo-Martí, E., Prieto-Ballesteros, O., Martín-Gago, J., and Amils, R. (2010) Protection of chemolithoautotrophic bacteria exposed to simulated Mars environmental conditions. Icarus 209:482–487.
Gómez-Gómez, J.M., Estébanez, B., Sanz-Arranz, A., Mateo-Martí, E., and Medina, J. (2016) Survival of moss reproductive structures under simulated Martian environmental conditions and extreme thermal stress: vibrational spectroscopy study and astrobiological implications. Astrobiol Outreach 4:2332–2519.
Green, T.G.A., Sancho, L.G., and Pintado, A. (2011) Ecophysiology of dessication/rehydration cycles in mosses and lichens. In Plant Dessication Tolerance, Ecological Studies, edited by U. Lüttge, E. Beck, and D. Bartels, Springer, Berlin, pp 89–120.
Hamby, R.K., Sim, L.E., and Zimmer, E.A. (1988) Direct RNA sequencing: optimisation of extraction and sequencing techniques for work with higher plants. Plant Mol Biol Rep 6:179–197.
Ho, C.L., Phang, S.M., and Pang T. (1995) Molecular characterisation of Sargassum polycystum and S. siliquosum (Phaeophyta) by polymerase chain reaction (PCR) using random amplified polymorphic DNA (RAPD) primers. J Appl Phycol 7:33–41.
Horneck, G. (1993) Responses of Bacillus subtilis spores to space environment: results from experiments in space. Orig Life Evol Biosp 23:37–52.
Horneck, G., Eschweiler, U., Reitz, G., Wehner, J., Willimek, R., and Strauch, K. (1995) Biological responses to space: results of the experiment “Exobiological Unit” of ERA on EUREKA I. Adv Space Res 16:105–118.
Horneck G., Walter, N., Westall, F., Grenfell, L., Martin, W, Gomez, F., Leuko, S., Lee, N., Onofri, S., Tsiganis, K., Saladino, R., Pilat-Lohinger, E., Palumba, E., Harrison, J., Rull, F., Muller, C., Strazzulla, G., Brucato, J.R., Rettberg, P., and Capria M.T. (2016) European landscape in astrobiology, results of the astromap consultation. Astrobiology 16:201–243.
Hughes, K.A. and Lawley, B. (2003) A novel Antarctic microbial endolithic community within gypsum crusts. Environ Microbiol 5:555–565.
Jahns, H.M. (2008) The establishment, individuality and growth of lichen thalli. Bot J Linn Soc 96:21–29.
Jönsson, I.K., Rabbow, E., O.Schill, R., Harms-Ringdahl, M., and Rettberg, P. (2008) Tardigrades survive exposure to space in low Earth orbit. Curr Biol 18:R729–R731.
Kappen, L. (2000) Some aspects of the great success of lichens in Antarctica. Antarct Sci 12:314–324.
Kappen, L. and Valladares, F. (2007) Opportunistic growth and desiccation tolerance, the ecological success of the poikilohydrous strategy. In Functional Plant Ecology, edited by F. Pugnaire and F. Valladares, Taylor & Francis, New York, pp 8–65.
Keresztes, E. and Kovács Á., (2002) Effect of gamma and UV-B/C radiation on plants cells. Micron 33:199–210.
Kong, L., Dong, J., and Hart, G.E. (2000) Characteristics, linkage-map positions, and allelic differentiation of Sorghum bicolor (L.) Moench DNA simple-sequence repeats (SSRs). Theor Appl Genet 101:438–448.
Kranner, I., Cram, W.J., Zorn, M., Wornik, S., Yoshimura, I., Stabentheiner, E., and Pfeifhofer, H.W. (2005) Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proc Natl Acad Sci U S A 102:3141–3146.
Kranner, I., Beckett, R., Hochman, A., and Nash, T.H. (2008) Desiccation-tolerance in lichens: a review. Bryologist 111:576–593.
Lange, O.L., Schulze, E.D., and Koch, W. (1970) Experimental-ecological investigations on lichen of the Negev-Desert. III: CO2-gasinterchange and waterbalance of the crustlichen on the nature area during the summer dry period. Flora 159:525–533.
Maxwell, K. and Johnson, G.N. (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668.
Meeßen, J., Sánchez, F.J., Brandt, A., Balzer, E.M., de la Torre, R., Sancho, L.G., de Vera, J.P., and Ott, S. (2013) Extremotolerance and resistance of lichens: comparative studies on five species used in Astrobiological Research I. Morphological and anatomical characteristics. Orig Life Evol Biosp 43:283–303.
Meeßen, J., Sánchez, F.J., Sadowsky, A., de la Torre, R., Ott, S., and de Vera, J.P. (2014) Extremotolerance and Resistance of Lichens: comparative studies of fives species use in Astrobiological Research II. Secondary lichen compounds. Orig Life Evol Biosp 43:501–526.
Meeßen, J., Wuthenow, P., Schille, P., Rabbow, E., de Vera, J.P., and Ott, S. (2015) Resistance of the lichen Buellia frigida to simulated space conditions during the preflight tests for BIOMEX—viability assay and morphological stability. Astrobiology 15:601–615.
Meeßen, J., Backhaus, T., Brandt, A., Raguse, M., Böttger, U., de Vera, J.P., and de la Torre, R. (2017) The effect of high-dose ionizing radiation on the isolated photobiont of the astrobiological model lichen Circinaria gyrosa. Astrobiology 17:154–162.
Millard, P.J., Roth, B.L., Thi, H.P.T., Yue, S.T., and Haugland, R.P. (1997) Development of the FUN-1 family of fluorescent probes for vacuole labeling and viability testing of yeasts. Appl Environ Microbiol 63:2897–2905.
Nybakken, L., Solhaug K.A., Bilger, W., and Gauslaa Y. (2004) The lichens Xanthoria elegans and Cetraria islandia maintain a high protection against UV-B radiation in Arctic habitats. Oecologia 140:211–216.
Onofri, S., de la Torre, R., de Vera, J.P., Ott, S., Zucconi, L., Selbmann, L., Scalzi, G., Venkateswaran, K.J., Rabbow, E., Sánchez Iñigo, F.J., and Horneck, G. (2012) Survival of rock-colonizing organisms after 1.5 years in outer space. Astrobiology 12:508–516.
Osticioli, I., Mascalchi, M., Pinna, D., and Siano, S. (2013) Potential of chlorophyll fluorescence imaging for assessing bio-viability changes of biodeteriogen growths on stone monuments. Optics for Arts, Architecture, and Archaeology IV. Proc SPIE 8790:879003.
Pacelli, C., Selbmann, L., Zucconi, L., Raguse, M., Moeller, R., Shuryak, I., and Onofri, S. (2017) Survival, DNA integrity, and ultraestructural damage in antarctic cryptoendolithic eukaryotic microorganisms exposed to ionizing radiation. Astrobiology 17:126–135.
Rabbow, E., Rettberg, P., Barczyk, S., Bohmeier, M., Parpart, A., Panitz, C., Horneck, G., von Heise-Rotenburg, R., Hoppenbrouwers, T., Willnecker, R., Baglioni, P., Demets, R., Dettmann, J., and Reitz, R. (2012) EXPOSE-E: an ESA astrobiology mission 1.5 years in space. Astrobiology 12:374–386.
Rabbow, E., Rettberg, P., Parpart, A., Panitz, C., Schulte, W., Molter, F., Jaramillo, E., Demets, R., Weiss P., and Willnecker, R. (2017) EXPOSE-R2: the astrobiological ESA mission on board of the International Space Station. Front Microbiol 8:1533.
Raggio, J., Pintado, A., Ascaso, C., de la Torre, R., de los Rios, A., Wierzchos, J., and Sancho, L.G. (2011) Whole lichen thalli survive exposure to space conditions: results of Lithopanspermia experiment with Aspicilia fruticulosa. Astrobiology 11:281–292.
Sánchez, F.J., Mateo-Martí, E., Raggio, J., Meeßen, J., Martínez-Frías, J., Sancho, L.G., and de la Torre, R. (2012) The resistance of the lichen Circinaria gyrosa (nom. provis.) towards simulated Mars conditions—a model test for the survival capacity of a eukaryotic extremophile. Planet Space Sci 72:102–110.
Sánchez, F.J., Meeßen, J., Ruiz, M.C., Leopoldo, G., Ott, S., Vílchez, C., Horneck, G., Sadowsky, A., and de la Torre, R. (2014) UV-C tolerance of symbiotic Trebouxia sp. in the space-tested lichen species Rhizocarpon geographicum and Circinaria gyrosa: role of the hydration state and cortex/screening substances. Int J Astrobiol 13:1–18.
Sánchez-Iñigo, F.J. (2013) Study of the resistance mechanisms of lichens to extreme environments for space research and planetary bodies. PhD Thesis, University Complutense Madrid.
Sancho, L.G., Schroeter, B., and del Prado, R. (2000) Ecophysiology and morphology of the globular erratic lichen Aspicilia fruticulosa (Eversm.) FLAGEY from Central Spain. New aspects in cryptogamic research. Bibl Lichenol 75:137–147.
Sancho, L.G., de la Torre, R., Horneck, G., Ascaso, C., de los Rios, A., Pintado, A., and Schuster, M. (2007) Lichens survive in space: results from the 2005 LICHENS experiment. Astrobiology 7:443–454.
Sancho L.G., de la Torre, R., and Pintado, A. (2008) Lichens, new and promising material from experiments in astrobiology. Fungal Biol Rev 22:103–109.
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., and Tinevez, J.Y. (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682.
Schreiber, U., Bilger, W., and Neubauer, C. (1995) Chlorophyll fluorescence as a non-intrusive indicator for rapid assessment of in vivo photosynthesis. In Ecophysiology of Photosynthesis. Edited by E.-D. Schulze et al. (eds.), Ecophysiology of Photosynthesis © Springer-Verlag Berlin Heidelberg, pp 49–70.
Schulze, K., López, D., Tillich, U.M., and Frohme, M. (2011) A simple viability analysis for unicellular cyanobacteria using a new autofluorescence assay, automated microscopy, and ImageJ. BMC Biotechnol 11:118.
Selbmann, L., Isola, D., Zucconi, L., and Onofri, S. (2011) Resistance to UV-B induced DNA damage in extreme-tolerant cryptoendolithic antarctic fungi: detection by PCR assays. Fungal Biol 115:937–944.
Sohrabi, M. (2012) Taxonomy and phylogeny of the manna lichens and allied species (Megasporaceae). PhD thesis, Faculty of Biological and Environmental Sciences Publications in Botany from the University of Helsinki.
Solhaug, K.A., Gauslaa, Y., Nybakken, L., and Bilger, W. (2003) UV-induction of sun-screening pigments in lichens. New Phytol 158:91–100.
Stivaletta, N. and Barbieri, R. (2009) Endoliths in terrestrial arid environments: implications for astrobiology. In From Fossils to Astrobiology, edited by J. Seckbach and M. Walsh (eds.), © Springer Science + Business Media B.V., pp 319–333.
van Kooten, O. and Snel, J.F.H. (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25:147–150.
Vilgalys, R. and Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246.
Wassmann, M., Moeller, R., Rabbow, E., Panitz, C., Horneck, G., Reitz, G., Douki, T., Cadet, J., Stan-Lotter, H., Cockell, C.S., and Rettberg, P. (2012) Survival of spores of the UV-resistant Bacillus subtilis strain MW01 after exposure to low-Earth orbit and simulated martian conditions: data from the space experiment ADAPT on EXPOSE-E. Astrobiology 12:498–507.
White, T.J., Bruns, T., Lee, S., and Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for philogenetics. In PCR Protocols: A Guide to Methods and Applications, edited by Gelfand, D.H., Sninsky, J.J., Innis, N. and White, T. (eds.), Academic Press, Inc., pp 315–322.

Information & Authors

Information

Published In

cover image Astrobiology
Astrobiology
Volume 20Issue Number 5May 2020
Pages: 583 - 600
PubMed: 32364796

History

Published in print: May 2020
Published online: 30 April 2020
Accepted: 13 November 2019
Received: 21 September 2018

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Rosa de la Torre Noetzel [email protected]
Departamentos de Observación de la Tierra, Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain.
Maria Victoria Ortega García
Departamentos de Sistemas de Defensa NBQ y Materiales Energéticos, Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain.
Ana Zélia Miller
Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Sevilla, Spain.
HERCULES Laboratory, University of Évora, Évora, Portugal.
Olga Bassy
ISDEFE (ISDEFE as External Consultant for INTA), Madrid, Spain.
Carmen Granja
Departamentos de Sistemas de Defensa NBQ y Materiales Energéticos, Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain.
Beatriz Cubero
Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Sevilla, Spain.
Luisa Jordão
INSA—Instituto Nacional Saúde Doutor Ricardo Jorge, Lisboa, Portugal.
Jesús Martínez Frías
Instituto de Geociencias, CSIC-Universidad Complutense de Madrid, Madrid, Spain.
Elke Rabbow
DLR—German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany.
Theresa Backhaus
Institute of Botany, Heinrich-Heine-University Duesseldorf (HHU), Duesseldorf, Germany.
Sieglinde Ott
Institute of Botany, Heinrich-Heine-University Duesseldorf (HHU), Duesseldorf, Germany.
Leopoldo García Sancho
Departamento de Biología Vegetal II, UCM—Universidad Complutense Madrid, Madrid, Spain.
Jean-Pierre Paul de Vera
DLR—German Aerospace Center, Management and Infrastructure, Astrobiology Laboratories, Berlin, Germany.

Notes

Address correspondence to: Rosa de la Torre Noetzel, INTA, Instituto Nacional de Técnica Aeroespacial, Departamento de Observación de la Tierra y Atmósfera, Área de Investigación e Instrumentación Atmosférica, Crta. Ajalvir, km. 4, 28850 Torrejón de Ardoz (Madrid), Spain [email protected]

Author Disclosure Statement

No competing financial interest exists.

Funding Information

This work was supported by grants of the Spanish Ministry of Economy, Industry and Competitiveness (MINisterio de ECOnomía y Empresa, project SUBLIMAS “SUrvival of Bacteria and LIchens on Mars Analogs and Space,” ESP2015-69810-R, 2015, to Rosa de la Torre Noetzel, and Leopoldo García Sancho (PI of the Project CTM2015-64728-C2-1-R) and project Biocomplexity and Functioning of the Cryptogamic Cover in Arid and Polar Regions. a micro- and mesoscale approach . The authors also thank the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt) as well as the European Space Agency (ESA) for supporting the space experiment BIOlogy and Mars Experiment (ESA-International Life Sciences Research Announcement 2009-0834, PI: J.-P.P.V.).

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top