Research Article
No access
Published Online: 2 March 2020

The Limits, Capabilities, and Potential for Life Detection with MinION Sequencing in a Paleochannel Mars Analog

Publication: Astrobiology
Volume 20, Issue Number 3

Abstract

No instrument capable of direct life detection has been included on a mission payload to Mars since NASA's Viking missions in the 1970s. This prevents us from discovering whether life is or ever was present on Mars. DNA is an ideal target biosignature since it is unambiguous, nonspecific, and readily detectable with nanopore sequencing. Here, we present a proof-of-concept utilization of the Oxford Nanopore Technologies (ONT) MinION sequencer for direct life detection and show how it can complement results from established space mission instruments. We used nanopore sequencing data from the MinION to detect and characterize the microbial life in a set of paleochannels near Hanksville, UT, with supporting data from X-ray diffraction, reflectance spectroscopy, Raman spectroscopy, and Life Detector Chip (LDChip) microarray immunoassay analyses. These paleochannels are analogs to martian sinuous ridges. The MinION-generated metagenomes reveal a rich microbial community dominated by bacteria and containing radioresistant, psychrophilic, and halophilic taxa. With spectral data and LDChip immunoassays, these metagenomes were linked to the surrounding Mars analog environment and potential metabolisms (e.g., methane production and perchlorate reduction). This shows a high degree of synergy between these techniques for detecting and characterizing biosignatures. We also resolved a prospective lower limit of ∼0.001 ng of DNA required for successful sequencing. This work represents the first determination of the MinION's DNA detection limits beyond ONT recommendations and the first whole metagenome analysis of a sinuous ridge analog.

Get full access to this article

View all available purchase options and get full access to this article.

References

Ammor, M.S. (2007) Recent advances in the use of intrinsic fluorescence for bacterial identification and characterization. J Fluoresc 17:455–459.
Anderson, M.J. and Walsh, D.C. (2013) PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecol Monogr 83:557–574.
Balme, M., Grindrod, P., Sefton-Nash, E., Davis, J., Gupta, S., Fawdon, P., Sidiropoulos, P., Yershov, V., and Muller, J.-P. (2015) Aram Dorsum: a Noachian inverted fluvial channel system and candidate Exomars 2018 rover landing site. In Lunar and Planetary Science Conference. Vol. 46, pp 1321.
Beegle, L., Bhartia, R., White, M., DeFlores, L., Abbey, W., Wu, Y.-H., Cameron, B., Moore, J., Fries, M., and Burton, A. (2015) SHERLOC: scanning habitable environments with Raman & luminescence for organics & chemicals. In Aerospace Conference, 2015 IEEE. IEEE. pp 1–11.
Berg, B., Ronholm, J., Applin, D., Mann, P., Izawa, M., Cloutis, E., and Whyte, L. (2014) Spectral features of biogenic calcium carbonates and implications for astrobiology. Int J Astrobiology 13:353–365.
Bishop, J.L., Dobrea, E.Z.N., McKeown, N.K., Parente, M., Ehlmann, B.L., Michalski, J.R., Milliken, R.E., Poulet, F., Swayze, G.A., and Mustard, J.F. (2008) Phyllosilicate diversity and past aqueous activity revealed at Mawrth Vallis, Mars. Science 321:830–833.
Blanco, Y., Prieto-Ballesteros, O., Gómez, M.J., Moreno-Paz, M., García-Villadangos, M., Rodríguez-Manfredi, J.A., Cruz-Gil, P., Sánchez-Román, M., Rivas, L.A., and Parro, V. (2012) Prokaryotic communities and operating metabolisms in the surface and the permafrost of Deception Island (Antarctica). Environ Microbiol 14:2495–2510.
Boquet, E., Boronat, A., and Ramos-Cormenzana, A. (1973) Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature 246:527.
Brown, B.L., Watson, M., Minot, S.S., Rivera, M.C., and Franklin, R.B. (2017) MinION™ nanopore sequencing of environmental metagenomes: a synthetic approach. Gigascience 6:1–10.
Bywaters, K.B., Schmidt, H., Vercoutere, W., Deamer, D., Hawkins, A.R., Quinn, R.C., Burton, A.S., and McKay, C.P. (2017) Development of solid-state nanopore technology for life detection. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20170009815.pdf
Carr, C.E., Mojarro, A., Hachey, J., Saboda, K., Tani, J., Bhattaru, S.A., Smith, A., Pontefract, A., Zuber, M.T., and Doebler, R. (2017) Towards in situ sequencing for life detection. In Aerospace Conference, 2017 IEEE. IEEE. pp 1–18. IEEE.
Castanier, S., Le Métayer-Levrel, G., and Perthuisot, J.-P. (1999) Ca-carbonates precipitation and limestone genesis—the microbiogeologist point of view. Sediment Geol 126:9–23.
Castro-Wallace, S.L., Chiu, C.Y., John, K.K., Stahl, S.E., Rubins, K.H., McIntyre, A.B., Dworkin, J.P., Lupisella, M.L., Smith, D.J., and Botkin, D.J. (2017) Nanopore DNA sequencing and genome assembly on the International Space Station. Sci Rep 7:18022.
Clark, R.N., King, T.V., Klejwa, M., Swayze, G.A., and Vergo, N. (1990) High spectral resolution reflectance spectroscopy of minerals. J Geophys Res Solid Earth 95:12653–12680.
Clarke, J.D. and Stoker, C.R. (2011) Concretions in exhumed and inverted channels near Hanksville Utah: implications for Mars. Int J Astrobiology 10:161–175.
Cloutis, E.A., Hawthorne, F.C., Mertzman, S.A., Krenn, K., Craig, M.A., Marcino, D., Methot, M., Strong, J., Mustard, J.F., and Blaney, D.L. (2006) Detection and discrimination of sulfate minerals using reflectance spectroscopy. Icarus 184:121–157.
Coates, J.D., Michaelidou, U., Bruce, R.A., O'Connor, S.M., Crespi, J.N., and Achenbach, L.A. (1999) Ubiquity and diversity of dissimilatory (per) chlorate-reducing bacteria. Appl Environ Microbiol 65:5234–5241.
Crowley, J., Williams, D., Hammarstrom, J., Piatak, N., Chou, I.-M., and Mars, J. (2003) Spectral reflectance properties (0.4–2.5 μm) of secondary Fe-oxide, Fe-hydroxide, and Fe-sulphate-hydrate minerals associated with sulphide-bearing mine wastes. Geochem Explor Environ Anal 3:219–228.
Davis, J., Balme, M., Grindrod, P., Williams, R., and Gupta, S. (2016) Extensive Noachian fluvial systems in Arabia Terra: implications for early Martian climate. Geology 44:847–850.
Direito, S.O., Ehrenfreund, P., Marees, A., Staats, M., Foing, B., and Röling, W.F. (2011) A wide variety of putative extremophiles and large beta-diversity at the Mars Desert Research Station (Utah). Int J Astrobiology 10:191–207.
Dolezel, J., Bartos, J., Voglmayr, H., and Greilhuber, J. (2003) Nuclear DNA content and genome size of trout and human. Cytometry A 51:127.
Dorn, R.I. and Oberlander, T.M. (1981) Microbial origin of desert varnish. Science 213:1245–1247.
Downs, R. (2006) The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals [abstract no. O03–13]. In Program and Abstracts of the 19th General Meeting of the International Mineralogical Association in Kobe, Japan.
Edwards, H.G., Villar, S.E.J., Parnell, J., Cockell, C.S., and Lee, P. (2005) Raman spectroscopic analysis of cyanobacterial gypsum halotrophs and relevance for sulfate deposits on Mars. Analyst 130:917–923.
Edwards, H.G., Vandenabeele, P., Jorge-Villar, S.E., Carter, E.A., Perez, F.R., and Hargreaves, M.D. (2007) The Rio Tinto Mars analogue site: an extremophilic Raman spectroscopic study. Spectrochim Acta A Mol Biomol Spectrosc 68:1133–1137.
Edwards, H.G., Hutchinson, I., and Ingley, R. (2012) The ExoMars Raman spectrometer and the identification of biogeological spectroscopic signatures using a flight-like prototype. Anal Bioanal Chem 404:1723–1731.
Edwards, A., Debbonaire, A.R., Sattler, B., Mur, L.A., and Hodson, A.J. (2016) Extreme metagenomics using nanopore DNA sequencing: a field report from Svalbard, 78 N. bioRxiv:073965.
Edwards, A., Soares, A., Rassner, S., Green, P., Felix, J., and Mitchell, A. (2017) Deep Sequencing: intra-terrestrial metagenomics illustrates the potential of off-grid Nanopore DNA sequencing. bioRxiv:133413.
Ehrenfreund, P., Röling, W., Thiel, C., Quinn, R., Sephton, M., Stoker, C., Kotler, J., Direito, S., Martins, Z., and Orzechowska, G. (2011) Astrobiology and habitability studies in preparation for future Mars missions: trends from investigating minerals, organics and biota. Int J Astrobiology 10:239–253.
Eigenbrode, J.L., Summons, R.E., Steele, A., Freissinet, C., Millan, M., Navarro-González, R., Sutter, B., McAdam, A.C., Franz, H.B., and Glavin, D.P. (2018) Organic matter preserved in 3-billion-year-old mudstones at Gale crater, Mars. Science 360:1096–1101.
Ellery, A., Kolb, C., Lammer, H., Parnell, J., Edwards, H., Richter, L., Patel, M., Romstedt, J., Dickensheets, D., and Steele, A. (2002) Astrobiological instrumentation for Mars–the only way is down. Int J Astrobiology 1:365–380.
Emerson, D., Weiss, J.V., and Megonigal, J.P. (1999) Iron-oxidizing bacteria are associated with ferric hydroxide precipitates (Fe-plaque) on the roots of wetland plants. Appl Environ Microbiol 65:2758–2761.
Fairén, A.G., Parro, V., Schulze-Makuch, D., and Whyte, L. (2017) Searching for life on Mars before it is too late. Astrobiology 17:962–970.
Feng, X., Matranga, C., Vidic, R., and Borguet, E. (2004) A vibrational spectroscopic study of the fate of oxygen-containing functional groups and trapped CO2 in single-walled carbon nanotubes during thermal treatment. J Phys Chem B 108:19949–19954.
Frawley, E.R. and Fang, F.C. (2014) The ins and outs of bacterial iron metabolism. Mol Microbiol 93:609–616.
Giovannetti, R. (2012) The use of spectrophotometry UV-Vis for the study of porphyrins. In Macro to Nano Spectroscopy, edited by J. Uddin, InTech, Vol. 1, Croatia, pp 87–108.
Glavin, D.P., Freissinet, C., Miller, K.E., Eigenbrode, J.L., Brunner, A.E., Buch, A., Sutter, B., Archer, P.D., Atreya, S.K., and Brinckerhoff, W.B. (2013) Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater. J Geophys Res Planets 118:1955–1973.
Goordial, J., Davila, A., Lacelle, D., Pollard, W., Marinova, M.M., Greer, C.W., DiRuggiero, J., McKay, C.P., and Whyte, L.G. (2016) Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica. ISME J 10:1613.
Goordial, J., Altshuler, I., Hindson, K., Chan-Yam, K., Marcolefas, E., and Whyte, L. (2017) In situ field sequencing and life detection in remote (79° 26′ N) Canadian High Arctic permafrost ice wedge microbial communities. Front Microbiol 8:2594.
Guinness, E.A., Arvidson, R.E., Clark, I.H., and Shepard, M.K. (1997) Optical scattering properties of terrestrial varnished basalts compared with rocks and soils at the Viking Lander sites. J Geophys Res Planets 102:28687–28703.
Hays, L.E., Graham, H.V., Des Marais, D.J., Hausrath, E.M., Horgan, B., McCollom, T.M., Parenteau, M.N., Potter-McIntyre, S.L., Williams, A.J., and Lynch, K.L. (2017) Biosignature preservation and detection in Mars analog environments. Astrobiology 17:363–400.
He, Z., Gentry, T.J., Schadt, C.W., Wu, L., Liebich, J., Chong, S.C., Huang, Z., Wu, W., Gu, B., and Jardine, P. (2007) GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J 1:67.
Hecht, M., Kounaves, S., Quinn, R., West, S., Young, S., Ming, D., Catling, D., Clark, B., Boynton, W., and Hoffman, J. (2009) Detection of perchlorate and the soluble chemistry of martian soil at the Phoenix lander site. Science 325:64–67.
Jain, M., Tyson, J.R., Loose, M., Ip, C.L., Eccles, D.A., O'Grady, J., Malla, S., Leggett, R.M., Wallerman, O., and Jansen, H.J. (2017) MinION Analysis and Reference Consortium: phase 2 data release and analysis of R9.0 chemistry. F1000Research 6:760.
Jehlička, J. and Oren, A. (2013) Raman spectroscopy in halophile research. Front Microbiol 4:380.
Jehlička, J., Edwards, H., and Oren, A. (2013) Bacterioruberin and salinixanthin carotenoids of extremely halophilic Archaea and Bacteria: a Raman spectroscopic study. Spectrochim Acta A Mol Biomol Spectrosc 106:99–103.
John, K., Botkin, D., Burton, A., Castro-Wallace, S., Chaput, J., Dworkin, J., Lehman, N., Lupisella, M., Mason, C., and Smith, D. (2016) The Biomolecule Sequencer Project: nanopore sequencing as a dual-use tool for crew health and astrobiology investigations.
Johnson, S.S., Zaikova, E., Goerlitz, D.S., Bai, Y., and Tighe, S.W. (2017) Real-time DNA sequencing in the Antarctic Dry Valleys using the Oxford Nanopore Sequencer. J Biomol Tech 28:2.
Jones, M.M., Jones, E.A., Harmon, D.F., and Semmes, R.T. (1961) A search for perchlorate complexes. Raman spectra of perchlorate solutions. J Am Chem Soc 83:2038–2042.
Kaczor, A. and Baranska, M. (2011) Structural changes of carotenoid astaxanthin in a single algal cell monitored in situ by Raman spectroscopy. Anal Chem 83:7763–7770.
Kim, S.K., Kim, M.S., and Suh, S.W. (1987) Surface-enhanced Raman scattering (SERS) of aromatic amino acids and their glycyl dipeptides in silver sol. J Raman Spectrosc 18:171–175.
Koren, S., Walenz, B.P., Berlin, K., Miller, J.R., Bergman, N.H., and Phillippy, A.M. (2017) Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27:722–736.
Kozich, J.J., Westcott, S.L., Baxter, N.T., Highlander, S.K., and Schloss, P.D. (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120.
Lacap, D.C., Warren-Rhodes, K.A., McKay, C.P., and Pointing, S.B. (2011) Cyanobacteria and chloroflexi-dominated hypolithic colonization of quartz at the hyper-arid core of the Atacama Desert, Chile. Extremophiles 15:31–38.
Lee, K.C.-Y., Herbold, C., Dunfield, P.F., Morgan, X.C., McDonald, I.R., and Stott, M.B. (2013) Phylogenetic delineation of the novel phylum Armatimonadetes (former candidate division OP10) and definition of two novel candidate divisions. Appl Environ Microbiol 79:2484–2487.
Leggett, R.M. and Clark, M.D. (2017) A world of opportunities with nanopore sequencing. J Exp Bot 68:5419–5429.
Loman, N.J. and Watson, M. (2015) Successful test launch for nanopore sequencing. Nat Methods 12:303–304.
Luef, B., Fakra, S.C., Csencsits, R., Wrighton, K.C., Williams, K.H., Wilkins, M.J., Downing, K.H., Long, P.E., Comolli, L.R., and Banfield, J.F. (2013) Iron-reducing bacteria accumulate ferric oxyhydroxide nanoparticle aggregates that may support planktonic growth. ISME J 7:338.
Maiti, N.C., Apetri, M.M., Zagorski, M.G., Carey, P.R., and Anderson, V.E. (2004) Raman spectroscopic characterization of secondary structure in natively unfolded proteins: α-synuclein. J Am Chem Soc 126:2399–2408.
Manley, L.J., Ma, D., and Levine, S.S. (2016) Monitoring error rates in Illumina sequencing. J Biomol Tech 27:125.
Markowitz, V.M., Chen, I.-M.A., Palaniappan, K., Chu, K., Szeto, E., Grechkin, Y., Ratner, A., Jacob, B., Huang, J., and Williams, P. (2011) IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res 40:D115–D122.
Marshall, C.P., Carter, E.A., Leuko, S., and Javaux, E.J. (2006) Vibrational spectroscopy of extant and fossil microbes: relevance for the astrobiological exploration of Mars. Vib Spectrosc 41:182–189.
Martins, Z., Sephton, M., Foing, B., and Ehrenfreund, P. (2011) Extraction of amino acids from soils close to the Mars Desert Research Station (MDRS), Utah. Int J Astrobiology 10:231–238.
McCauley, J., Breed, C., El-Baz, F., Whitney, M., Grolier, M., and Ward, A. (1979) Pitted and fluted rocks in the Western Desert of Egypt: viking comparisons. J Geophys Res Solid Earth 84:8222–8232.
McLennan, S., Sephton, M., Beaty, D., Hecht, M., Pepin, B., Leya, I., Jones, J., Weiss, B., Race, M., and Rummel, J. (2012) Planning for Mars returned sample science: final report of the MSR End-to-End International Science Analysis Group (E2E-iSAG). Astrobiology 12:175–230.
Meinert, C., Myrgorodska, I., De Marcellus, P., Buhse, T., Nahon, L., Hoffmann, S.V., d'Hendecourt, L.L.S., and Meierhenrich, U.J. (2016) Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs. Science 352:208–212.
Menegon, M., Cantaloni, C., Rodriguez-Prieto, A., Centomo, C., Abdelfattah, A., Rossato, M., Bernardi, M., Xumerle, L., Loader, S., and Delledonne, M. (2017) On site DNA barcoding by nanopore sequencing. PLoS One 12:e0184741.
Mileikowsky, C., Cucinotta, F.A., Wilson, J.W., Gladman, B., Horneck, G., Lindegren, L., Melosh, J., Rickman, H., Valtonen, M., and Zheng, J. (2000) Natural transfer of viable microbes in space: 1. From Mars to Earth and Earth to Mars. Icarus 145:391–427.
Musk, E. (2017) Making humans a multi-planetary species. New Space 5:46–61.
Mustard, J., Adler, M., Allwood, A., Bass, D., Beaty, D., and Bell, J. (2013a) Appendices to the report of the Mars 2020 Science Definition Team. Mars Explor Progr Anal Gr 154.
Mustard, J., Adler, M., Allwood, A., Bass, D., Beaty, D., Bell, J., Brinckerhoff, W., Carr, M., Des Marais, D., and Brake, B. (2013b) Report of the Mars 2020 Science Definition Team. Mars Explor Progr Anal Gr 155–205.
National Research Council (2012) Vision and Voyages for Planetary Science in the Decade 2013–2022. National Academies Press, USA.
Neveu, M., Hays, L.E., Voytek, M.A., New, M.H., and Schulte, M.D. (2018) The ladder of life detection. Astrobiology 18:1375–1402.
Niederberger, T.D., Perreault, N.N., Tille, S., Lollar, B.S., Lacrampe-Couloume, G., Andersen, D., Greer, C.W., Pollard, W., and Whyte, L.G. (2010) Microbial characterization of a subzero, hypersaline methane seep in the Canadian High Arctic. ISME J 4:1326.
Oren, A., Sørensen, K.B., Canfield, D.E., Teske, A.P., Ionescu, D., Lipski, A., and Altendorf, K. (2009) Microbial communities and processes within a hypersaline gypsum crust in a saltern evaporation pond (Eilat, Israel). Hydrobiologia 626:15–26.
Osinski, G.R., Battler, M., Caudill, C.M., Francis, R., Haltigin, T., Hipkin, V.J., Kerrigan, M., Pilles, E., Pontefract, A., and Tornabene, L.L. (2019) The CanMars Mars Sample Return analogue mission. Planet Space Sci 166:110–130.
Pace, N.R. (2001) The universal nature of biochemistry. Proc Natl Acad Sci U S A 98:805–808.
Parro, V., Rodríguez-Manfredi, J., Briones, C., Compostizo, C., Herrero, P., Vez, E., Sebastián E., Moreno-Paz, M., García-Villadangos, M., and Fernández-Calvo, P. (2005) Instrument development to search for biomarkers on Mars: terrestrial acidophile, iron-powered chemolithoautotrophic communities as model systems. Planet Space Sci 53:729–737.
Parro, V., de Diego-Castilla, G., Rodríguez-Manfredi, J.A., Rivas, L.A., Blanco-López, Y., Sebastián E., Romeral, J., Compostizo, C., Herrero, P.L., and García-Marín A. (2011) SOLID3: a multiplex antibody microarray-based optical sensor instrument for in situ life detection in planetary exploration. Astrobiology 11:15–28.
Pontefract, A., Hachey, J., Zuber, M.T., Ruvkun, G., and Carr, C.E. (2018) Sequencing nothing: exploring failure modes of nanopore sensing and implications for life detection. Life Sci Space Res (Amst) 18:80–86.
Poretsky, R., Rodriguez-R, L.M., Luo, C., Tsementzi, D., and Konstantinidis, K.T. (2014) Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PLoS One 9:e93827.
Raes, J., Korbel, J.O., Lercher, M.J., Von Mering, C., and Bork, P. (2007) Prediction of effective genome size in metagenomic samples. Genome Biol 8:R10.
Ranjan, R., Rani, A., Metwally, A., McGee, H.S., and Perkins, D.L. (2016) Analysis of the microbiome: advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem Biophys Res Commun 469:967–977.
Rhind, T., Ronholm, J., Berg, B., Mann, P., Applin, D., Stromberg, J., Sharma, R., Whyte, L., and Cloutis, E. (2014) Gypsum-hosted endolithic communities of the Lake St. Martin impact structure, Manitoba, Canada: spectroscopic detectability and implications for Mars. Int J Astrobiology 13:366–377.
Rivas, L.A., Aguirre, J., Blanco, Y., González-Toril, E., and Parro, V. (2011) Graph-based deconvolution analysis of multiplex sandwich microarray immunoassays: applications for environmental monitoring. Environ Microbiol 13:1421–1432.
Rivas, L.A., García-Villadangos, M., Moreno-Paz, M., Cruz-Gil, P., Gómez-Elvira, J., and Parro, V. (2008) A 200-antibody microarray biochip for environmental monitoring: searching for universal microbial biomarkers through immunoprofiling. Anal Chem 80:7970–7979.
Ruan, C., Wang, W., and Gu, B. (2006) Surface-enhanced Raman scattering for perchlorate detection using cystamine-modified gold nanoparticles. Anal Chim Acta 567:114–120.
Rull, F., Maurice, S., Hutchinson, I., Moral, A., Perez, C., Diaz, C., Colombo, M., Belenguer, T., Lopez-Reyes, G., and Sansano, A. (2017) The Raman Laser Spectrometer for the ExoMars rover mission to Mars. Astrobiology 17:627–654.
Sánchez-García, L., Fernández, M., García-Villadangos, M., Blanco, Y., Cady, S., Hinman, N., Bowden, M., Pointing, S., Lee, K., Warren-Rhodes, K., Lacap-Bugler, D., Cabrol, N.A., Parro, V., and Carrizo, D. (2019) Microbial biomarker transition in high altitude sinter mounds from El Tatio (Chile) through different stages of hydrothermal activity. Front Microbiol 9:3350.
Sandford, S. and Allamandola, L. (1990) The physical and infrared spectral properties of CO2 in astrophysical ice analogs. Astrophys J 355:357–372.
Schlesinger, W.H., Pippen, J.S., Wallenstein, M.D., Hofmockel, K.S., Klepeis, D.M., and Mahall, B.E. (2003) Community composition and photosynthesis by photoautotrophs under quartz pebbles, southern Mojave Desert. Ecology 84:3222–3231.
Sephton, M.A. (2018) Selecting Mars samples to return to Earth. Astron Geophys 59:1.36–1.38.
Spry, J.A., Race, M., Kminek, G., Siegel, B., and Conley, C. (2018) Planetary protection knowledge gaps for future mars human missions: stepwise progress in identifying and integrating science and technology needs. In 48th International Conference on Environmental Systems.
Stoker, C.R., Clarke, J., Direito, S.O., Blake, D., Martin, K.R., Zavaleta, J., and Foing, B. (2011) Mineralogical, chemical, organic and microbial properties of subsurface soil cores from Mars Desert Research Station (Utah, USA): phyllosilicate and sulfate analogues to Mars mission landing sites. Int J Astrobiology 10:269–289.
Stromberg, J., Applin, D., Cloutis, E., Rice, M., Berard, G., and Mann, P. (2014) The persistence of a chlorophyll spectral biosignature from Martian evaporite and spring analogues under Mars-like conditions. Int J Astrobiology 13:203–223.
Summons, R., Sessions, A., Allwood, A., Barton, H., Beaty, D., Blakkolb, B., Canham, J., Clark, B., Dworkin, J., and Lin, Y. (2014) Planning considerations related to the organic contamination of Martian samples and implications for the Mars 2020 rover. Astrobiology 14:969–1027.
Tahon, G., Tytgat, B., Lebbe, L., Carlier, A., and Willems, A. (2018) Abditibacterium utsteinense sp. nov., the first cultivated member of candidate phylum FBP, isolated from ice-free Antarctic soil samples. Syst Appl Microbiol 41:279–290.
Tessler, M., Neumann, J.S., Afshinnekoo, E., Pineda, M., Hersch, R., Velho, L.F.M., Segovia, B.T., Lansac-Toha, F.A., Lemke, M., and DeSalle, R. (2017) Large-scale differences in microbial biodiversity discovery between 16S amplicon and shotgun sequencing. Sci Rep 7:6589.
Thiel, C.S., Ehrenfreund, P., Foing, B., Pletser, V., and Ullrich, O. (2011) PCR-based analysis of microbial communities during the EuroGeoMars campaign at Mars Desert Research Station, Utah. Int J Astrobiology 10:177–190.
Thomas, G.J., Prescott, B., and Urry, D.W. (1987) Raman amide bands of type-II β-turns in cyclo-(VPGVG) 3 and poly-(VPGVG), and implications for protein secondary-structure analysis. Biopolymers 26:921–934.
Van Lith, Y., Warthmann, R., Vasconcelos, C., and Mckenzie, J.A. (2003) Sulphate-reducing bacteria induce low-temperature Ca-dolomite and high Mg-calcite formation. Geobiology 1:71–79.
Warren-Rhodes, K.A., Rhodes, K.L., Pointing, S.B., Ewing, S.A., Lacap, D.C., Gomez-Silva, B., Amundson, R., Friedmann, E.I., and McKay, C.P. (2006) Hypolithic cyanobacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert. Microb Ecol 52:389–398.
Williams, R.M., Chidsey, T.C. Jr., and Eby, D.E. (2007) Exhumed paleochannels in central Utah—analogs for raised curvilinear features on Mars.
Williams, R.M., Irwin, R.P., and Zimbelman, J.R. (2009) Evaluation of paleohydrologic models for terrestrial inverted channels: implications for application to martian sinuous ridges. Geomorphology 107:300–315.
Williams, R.M., Irwin, R.P., III, Burr, D.M., Harrison, T., and McClelland, P. (2013) Variability in Martian sinuous ridge form: case study of Aeolis Serpens in the Aeolis Dorsa, Mars, and insight from the Mirackina paleoriver, South Australia. Icarus 225:308–324.
Ziolkowski, L., Mykytczuk, N., Omelon, C., Johnson, H., Whyte, L., and Slater, G. (2013) Arctic gypsum endoliths: a biogeochemical characterization of a viable and active microbial community. Biogeosciences 10:7661–7675.

Information & Authors

Information

Published In

cover image Astrobiology
Astrobiology
Volume 20Issue Number 3March 2020
Pages: 375 - 393
PubMed: 31976742

History

Published online: 2 March 2020
Published in print: March 2020
Published ahead of print: 23 January 2020
Accepted: 24 November 2019
Received: 1 October 2018

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Catherine Maggiori
Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Quebec, Canada.
Jessica Stromberg
CSIRO Mineral Resources Flagship, Kensington, Australia.
Yolanda Blanco
Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain.
Jacqueline Goordial
Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Quebec, Canada.
Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine.
Edward Cloutis
Department of Geography, Faculty of Science, University of Winnipeg, Winnipeg, Canada.
Miriam García-Villadangos
Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain.
Victor Parro
Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain.
Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Quebec, Canada.

Notes

Address correspondence to: Lyle Whyte, Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Road, Macdonald Stewart Building, Room MS3-053, Ste. Anne-de-Bellevue, Quebec H9X 3V9, Canada [email protected]

Author Disclosure Statement

No competing financial interests exist.

Funding Information

This work was funded by the Canadian Space Agency Flights and Fieldwork for the Advancement of Science and Technology (FAST) and Mars Sample Return (MSR) grants, the McGill Space Institute graduate student fellowship and postdoctoral fellowship, and the Spanish Ministry of Science project no. ESP2015-69540-R (MINECO/FEDER).

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top