Research Article
No access
Published Online: 3 October 2019

The Search for a Signature of Life on Mars: A Biogeomorphological Approach

Publication: Astrobiology
Volume 19, Issue Number 10


Geological evidence shows that life on Earth evolved in line with major concomitant changes in Earth surface processes and landforms. Biogeomorphological characteristics, especially those involving microorganisms, are potentially important facets of biosignatures on Mars and are generating increasing interest in astrobiology. Using Earth as an analog provides reasons to suspect that past or present life on Mars could have resulted in recognizable biogenic landforms. Here, we discuss the potential for, and limitations of, a biogeomorphological approach to identifying the subsets of landforms that are modulated or created through biological processes and thus present signatures of life on Mars. Subsets especially involving microorganisms that are potentially important facets of biosignatures on Mars are proposed: (i) weathering features, biocrusts, patinas, and varnishes; (ii) microbialites and microbially induced sedimentary structures (MISS); (iii) bioaccumulations of skeletal remains; (iv) degassing landforms; (v) cryoconites; (vi) self-organized patterns; (vii) unclassified non-analog landforms. We propose a biogeomorphological frequency histogram approach to identify anomalies/modulations in landform properties. Such detection of anomalies/modulations will help track a biotic origin and lead to the development of an integrative multiproxy and multiscale approach combining morphological, structural, textural, and geochemical expertise. This perspective can help guide the choice of investigation sites for future missions and the types and scales of observations to be made by orbiters and rovers.

Get full access to this article

View all available purchase options and get full access to this article.


Allwood A.C., Burch I.W., Rouchy J.M., and Coleman M. (2013) Morphological biosignatures in gypsum: diverse formation processes of Messinian (∼6.0 Ma) gypsum stromatolites. Astrobiology 13:870–886.
Andreassen K., Hubbard A., Winsborrow M., Patton H., Vadakkepuliyambatta S., Plaza-Faverola A., Gudlaugsson E., Serov P., Deryabin A., Mattingsdal R., Mienert J., and Bünz S. (2017) Massive blow-out craters formed by hydrate-controlled methane expulsion from the Arctic seafloor. Science 356:948–953.
Baciu C., Caracausi A., Italiano F., and Etiope G. (2007) Mud volcanoes and methane seeps in Romania: main features and gas flux. Ann Geophys 50:501–512.
Baker V.R. (2008) Planetary landscape systems: a limitless frontier. Earth Surf Process Landf 33:1341–1353.
Bertoldi W., Gurnell A.M., and Drake N. (2011) The topographic signature of vegetation development along a braided river: results of a combined analysis of airborne lidar, colour air photographs and ground measurements. Water Resour Res 47.
Bibring J.P., Langevin Y., Gendrin A., Gondet B., Poulet F., Berthe M., Soufflot A., Arvidson R., Mangold N., Mustard J., Drossart P., and the OMEGA Team. (2005) Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science 307:1576–1581.
Bowker M.A., Maestre F.T., Eldridge D., Belnap J., Castillo-Monroy A., and Escolar C. (2014) Biological soil crusts (biocrusts) as a model system in community, landscape and ecosystem ecology. Biodivers Conserv 23:1619–1637.
Boyle J.R. and Voigt G.K. (1973) Biological weathering of silicate minerals. Plant Soil 38:191–201.
Butler D.A. (1995) Zoogeomorphology: Animals as Geomorphic Agents, Cambridge University Press, Cambridge, UK.
Cabrol N.A. (2018) The coevolution of life and environment on Mars: an ecosystem perspective on the robotic exploration of biosignatures. Astrobiology 18:1–27.
Cady S.L. (2001) Paleobiology of the ancient microbes, extreme environments, and the origin of life. Adv Appl Microbiol 50:1–35.
Cady S.L. and Noffke N. (2009) Geobiology: evidence for early life on Earth and the search for life on other planets. GSA Today 19:4–10.
Cady S.L., Farmer J.D., Grotzinger J.P., Schopf J.W., and Steele A. (2004) Morphological biosignatures and the search for life on Mars. Astrobiology 3:351–368.
Carter N.E.A. and Viles H.A. (2005) Bioprotection explored: the story of a little known Earth surface process. Geomorphology 67:273–281.
Clarke G.D.A. and Stoker C.R. (2013) Searching for stromatolites: the 3.4 Ga Strelley Pool Formation (Pilbara region, Western Australia) as a Mars analogue. Icarus 224:413–423.
Coates A.J., Jaumann R., Griffiths A.D., Leff C.E., Schmitz N., Josset J.-L., Paar G., Gunn M., Hauber E., Cousins C.R., Cross R.E., Grindrod P., Bridges J.C., Balme M., Gupta S., Crawford I.A., Irwin P., Stabbins R., Tirsch D., Vago J.L., Theodorou T., Caballo-Perucha M., Osinski G.R., and the PanCam Team. (2017) The PanCam Instrument for the ExoMars Rover. Astrobiology 17:511–541.
Coombes M.A., Viles H.A., Naylor L.A., and La Marca E.C. (2017) Cool barnacles: do common biogenic structures enhance or retard rates of deterioration of intertidal rocks and concrete? Sci Total Environ 580:1034–1045.
Corenblit D. (2018) Species signature in landscapes. Nat Geosci 11:621–622.
Corenblit D., Baas A.C.W., Bornette G., Darrozes J., Delmotte S., Francis R.A., Gurnell A.M., Julien F., Naiman R.J., and Steiger J. (2011) Feedbacks between geomorphology and biota controlling Earth surface processes and landforms: a review of foundation concepts and current understandings. Earth-Science Reviews 106:307–331.
Corenblit D., Baas A., Balke T., Bouma T., Fromard F., Garófano-Gómez V., and Walcker R. (2015) Engineer pioneer plants respond to and affect geomorphic constraints similarly along water-terrestrial interfaces world-wide: biogeomorphic feedbacks along water-terrestrial interfaces. Glob Ecol Biogeogr 24:1363–1376.
Dangerfield J.M., McCarthy T.S., and Ellery W.N. (1998) The mound-building termite Macrotermes michaelseni as an ecosystem engineer. J Trop Ecol 14:507–520.
Davies N.S. and Gibling M.R. (2011) Evolution of fixed-channel alluvial plains in response to Carboniferous vegetation. Nat Geosci 4:629–633.
Davies N.S., Liu A.G., Gibling M.R., and Miller R.F. (2016) Resolving MISS conceptions and misconceptions: a geological approach to sedimentary surface textures generated by microbial and abiotic processes. Earth-Science Reviews 154:210–246.
Davies N.S., Liu A.G., Gibling M.R., and Miller R.F. (2018) Evolution of fixed-channel alluvial plains in response to Carboniferous vegetation. Earth-Science Reviews 176:384–386.
De Hon R.A. (2006) Transitional dune forms on Mars [abstract 1361]. In 37th Lunar and Planetary Science Conference Abstracts, Lunar and Planetary Institute, Houston.
Dietrich W.E. and Perron J.T. (2006) The search for a topographic signature of life. Nature 439:411–418.
Eichel J., Corenblit D., and Dikau R. (2016) Conditions for feedbacks between geomorphic and vegetation dynamics on lateral moraine slopes: a biogeomorphic feedback window. Earth Surf Process Landf 41:406–419.
Fernández-Remolar D.C. and Knoll A.H. (2008) Fossilization potential of iron-bearing minerals in acidic environments of Río Tinto, Spain: implications for Mars exploration. Icarus 194:72–85.
Formisano V., Atreay S., Encrenaz T., Ignatiev N., and Giuranna M. (2004) Detection of methane in the atmosphere of Mars. Science 306:1758–1761.
Fountain A.G., Tranter M., Nylen T.H., Lewis K.J., and Mueller D.R. (2004) Evolution of cryoconite holes and their contribution to meltwater runoff from glaciers in the McMurdo Dry Valleys, Antarctica. J Glaciol 50:35–45.
Friedmann E.I. (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053.
Gabet E.J., Reichmann O.J., and Seabloom E.W. (2003) The effects of bioturbation on soil processes and sediment transport. Annu Rev Earth Planet Sci 31:249–273.
Gaillot P., Darrozes J., and Bouchez J.-L. (1999) Wavelet transform: a future of rock fabric analysis? J Struct Geol 21:1615–1621.
Gilbert G.K. (1886) The inculcation of scientific method by example. Am J Sci 31:284–299.
Golyandina N. and Osipov E. (2007) The ‘Caterpillar’-SSA method for analysis of time series with missing values. J Stat Plan Inference 137:2642–2653.
Gorbushina A.A., Krumbein W.E., and Volkmann M. (2004) Rock surfaces as life indicators: new ways to demonstrate life and traces of former life. Astrobiology 2:203–213.
Grotzinger J.P. and Knoll A.H. (1999) Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annu Rev Earth Planet Sci 27:313–358.
Grotzinger J.P., Arvidson R.E., Bell J.F., Calvin W., Clark B.C., Fike D.A., Golombek M., Greeley R., Haldemann A., Herkenhoff K.E., Jolliff B.L., Knoll A.H., Malin M., McLennan S.M., Parker T., Soderblom L., Sohl-Dickstein J.N., Squyres S.W., Tosca N.J., and Watters W.A. (2005) Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns Formation, Meridiani Planum, Mars. Earth Planet Sci Lett 240:11–72.
Grotzinger J.P., Sumner D.Y., Kah L.C., Stack K., Gupta S., Edgar L., Rubin D., Lewis K., Schieber J., Mangold N., Milliken R., Conrad P.G., Des Marais D., Farmer J., Siebach K., Calef F., III Hurowitz, J., McLennan S.M., Ming D., Vaniman D., Crisp J., Vasavada A., Edgett K.S., Malin M., Blake D., Gellert R., Mahaffy P., Wiens R.C., Maurice S., Grant J.A., Wilson S., Anderson R.C., Beegle L., Arvidson R., Hallet B., Sletten R.S., Rice M., Bell J., III Griffes, J., Ehlmann B., Anderson R.B., Bristow T.F., Dietrich W.E., Dromart G., Eigenbrode J., Fraeman A., Hardgrove C., Herkenhoff K., Jandura L., Kocurek G., Lee S., Leshin L.A., Leveille R., Limonadi D., Maki J., McCloskey S., Meyer M., Minitti M., Newsom H., Oehler D., Okon A., Palucis M., Parker T., Rowland S., Schmidt M., Squyres S., Steele A., Stolper E., Summons R., Treiman A., Williams R., Yingst A., and MSL Science Team. (2014) A habitatble fluvio-lacustrine environment at Yellowknife Bay, Gale Crater. Science 343.
Guilbert E., Moulin B., and Cortés Murcia A. (2016) A conceptual model for the representation of landforms using ontology design patterns. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. III, Copernicus Publications, Göttingen, Germany, pp 15–22.
Gurnell A. and Petts G. (2006) Trees as riparian engineers: the Tagliamento River, Italy. Earth Surf Process Landf 31:1558–1574.
Hallet B. (1990) Spatial self-organization in geomorphology: from periodic bedforms and patterned ground to scale-invariant topography. Earth-Science Reviews 29:57–75.
Hao J., Michael G.G., Adeli S., and Jaumanna R. (2019) Araneiform terrain formation in Angustus Labyrinthus, Mars. Icarus 317:479–490.
Hargitai H., Cañón E., and Rodrigue C. (2015) Landform classification and characterization. In Encyclopedia of Planetary Landforms, edited by Hargitai E. and Kereszturi Á., Springer, New York, pp 7–36.
Hasiotis S.T., Wellner R.W., Martin A., and Demko T.M. (2004) Vertebrate burrows from Triassic and Jurassic continental deposits of North America and Antarctica: their paleoenvironmental and paleoecological significance. Ichnos 11:103–124.
Hayward R.K., Mullins K.F., Fenton L.K., Hare T.M., Titus T.N., Bourke M.C., Colaprete A., and Christensen P.R. (2007) Mars Global Digital Dune Database and initial science results. J Geophys Res 112.
Head J.W., Hiesinger H., Ivanov M.A., Kreslavsky M.A., Pratt S., and Thomson B.J. (1999) Possible ancient oceans on Mars: evidence from Mars orbiter laser altimeter data. Science 286:2134–2137.
Hodson A. (2008) Glacial ecosystems. Ecol Monogr 78:41–67.
Homann M., Sansjofre P., Van Zuilen M., Heubeck C., Gong J., Killingsworth B., Foster I.S., Airo A., Van Kranendonk M.J., Ader M., and Lalonde S.V. (2018) Microbial life and biogeochemical cycling on land 3,220 million years ago. Nat Geosci 11:665–671.
Huang J., Salvatore M.R., Edwards C.S., Harris R.L., and Christensen P.R. (2018) A complex fluviolacustrine environment on Early Mars and its astrobiological potentials. Astrobiology 18:1081–1091.
Ibarra Y. and Corsetti F.A. (2016) Lateral comparative investigation of stromatolites: astrobiological implications and assessment of scales of control. Astrobiology 16:271–281.
Jones C.G., Lawton J.H., and Shachak M. (1994) Organisms as ecosystem engineers. Oikos 69:373–386.
Knoll A.H. (2003) The geological consequences of evolution. Geobiology 1:3–14.
Knoll A.H. (2015) Life on a Young Planet: The First Three Billion Years of Evolution on Earth, Princeton University Press, Princeton, NJ.
Knoll A.H. and Nowak M.A. (2017) The timetable of evolution. Sci Adv 3.
Komatsu G., Okubo C.H., Wray J.J., Ojha L., Cardinale M., Murana A., Orosei R., Chan M.A., Ormö J., and Gallagher R. (2016) Small edifice features in Chryse Planitia, Mars: assessment of a mud volcano hypothesis. Icarus 268:56–75.
Krasnopolsky V.A., Maillard J.-P., and Owen T.C. (2004) Detection of methane in the martian atmosphere: evidence for life? Icarus 172:537–547.
Landis G.A. (2001) Martian water: are there extant halobacteria on Mars? Astrobiology 1:161–164.
Lobitz B., Wood B.L., Averner M.M., and McKay C.P. (2001) Use of spacecraft data to derive regions on Mars where liquid water would be stable. Proc Natl Acad Sci USA 98:2132–2137.
Lombardi M., Milano M., and Bartolini A. (2017) Empirical decision model learning. Artif Intell 244:343–367.
Luisi P.L. (2006) The Emergence of Life: From Chemical Origins to Synthetic Biology, Cambridge University Press, Cambridge, UK.
Lundberg J., McFarlane D.A., and Brewer-Carias C. (2010) An extraordinary example of photokarren in a sandstone cave, Cueva Charles Brewer, Chimanta Plateau, Venezuela: biogeomorphology on a small scale. Geomorphology 121:342–357.
Marshall C.P., Marshall A.O., Aitken J.B., Lai B., Vogt S., Breuer P., Steemans P., and Lay P.A. (2017) Imaging of vanadium in microfossils: a new potential biosignature. Astrobiology 17:1069–1076.
Martín-Torres F.J. (2015) Transient liquid water and water activity at Gale Crater on Mars. Nat Geosci 8:357–361.
McEwen A.S., Dundas C.M., Mattson S.S., Toigo A.D., Ojha L., Wray J.J., Chojnacki M., Byrne S., Murchie S.L., and Thomas N. (2014) Recurring slope lineae in equatorial regions of Mars. Nat Geosci 7:53–58.
McLoughlin N., Brasier M.D., Wacey D., Green O.R., and Perry R. (2007) On biogenicity criteria for endolithic microborings on early Earth and beyond. Astrobiology 7:10–26.
McLoughlin N., Wilson L.A., and Brasier M.D. (2008) Growth of synthetic stromatolites and wrinkle structures in the absence of microbes—implications for the early fossil record. Geobiology 6:95–105.
McMahon S., Bosak T., Grotzinger J.P., Milliken R.E., Summons R.E., Daye M., Newman S.A., Fraeman A., Williford K.H., and Briggs D.E.G. (2018) A field guide to finding fossils on Mars. J Geophys Res Planets 123:1012–1040.
McMahon W.J. and Davies N.S. (2018) Evolution of alluvial mudrock forced by early land plants. Science 359:1022–1024.
Meysman F.J.R., Middelburg J.J., and Heip C.H.R. (2006) Bioturbation: a fresh look at Darwin's last idea. Trends Ecol Evol 21:688–695.
Michalski J.R., Dobrea E.Z.N., Niles P.B., and Cuadros J. (2017) Ancient hydrothermal seafloor deposits in Eridania Basin on Mars. Nat Commun 8.
Mukan J., Greening C., Vanwonterghem I., Carere C.R., Bay S.K., Steen J.A., Montgomery K., Lines T., Beardall J., van Dorst J., Snape I., Stott M.B., Hugenholtz P., and Ferrari B.C. (2017) Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature 552:400–403.
Mumma M.J., Villanueva G.L., Novak R.E., Hewagama T., Bonev B.P., Disanti M.A., Mandell A.M., and Smith M.D. (2009) Strong release of methane on Mars in northern summer 2003. Science 323:1041–1045.
Naiman R.J. (1988) Animal influences on ecosystem dynamics: large animals are more than passive components of ecological systems. Bioscience 38:750–752.
Naylor L.A. (2005) The contributions of biogeomorphology to the emerging field of geobiology. Palaeogeogr Palaeoclimatol Palaeoecol 219:35–51.
Naylor L.A., Viles H.A., and Carter N.E.A. (2002) Biogeomorphology revisited: looking towards the future. Geomorphology 47:3–14.
Noffke N. (2000) Extensive microbial mats and their influences on the erosional and depositional dynamics of a siliciclastic cold water environment (Lower Arenigian, Montagne Noire, France). Sediment Geol 136:207–215.
Noffke N. (2009) The criteria for the biogeneicity of microbially induced sedimentary structures (MISS) in Archean and younger, sandy deposits. Earth-Science Reviews 96:173–180.
Noffke N. (2010) Microbial Mats in Sandy Deposits from the Archean Era to Today, Springer Verlag, Heidelberg, Germany.
Noffke N. (2014) Ancient sedimentary structures in the <3.7 Ga Gillespie Lake Member, Mars, that resemble macroscopic morphology, spatial associations, and temporal succession in terrestrial microbialites. Astrobiology 15:169–192.
Noffke N. (2016) Comment on the paper by Davies et al. “Resolving MISS conceptions and misconceptions: a geological approach to sedimentary surface textures generated by microbial and abiotic processes” (Earth-Science Reviews, 154 (2016), 210–246). Earth-Science Reviews 176:373–383.
Noffke N., Christian D., Wacey D., and Hazen R.M. (2013) Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old Dresser Formation, Pilbara, Western Australia. Astrobiology 13:1103–1124.
Oehler D.Z. and Allen C.C. (2010) Evidence for pervasive mud volcanism in Acidalia Planitia. Icarus 208:636–657.
Oehler D.Z. and Allen C.C. (2012) Focusing the search for biosignatures on Mars: facies prediction with an example from Acidalia Planitia. SEPM Special Publications 102:183–194.
Oehler D.Z. and Etiope G. (2017) Methane seepage on Mars: where to look and why. Astrobiology 17:1233–1264.
Orosei R., Lauro S.E., Pettinelli E., Cicchetti A., Coradini M., Cosciotti B., Di Paolo F., Flamini E., Mattei E., Pajola M., Soldovieri F., Cartacci M., Cassenti F., Frigeri A., Giuppi S., Martufi R., Masdea A., Mitri G., Nenna C., Noschese R., Restano M., and Seu R. (2018) Radar evidence of subglacial liquid water on Mars. Science 361:490–493.
Pellerin A., Lacelle D., Fortin D., Clark I.D., and Lauriol B. (2009) Microbial diversity in endostromatolites (cf. fissure calcretes) and in the surrounding permafrost landscape, Haughton impact structure region, Devon Island, Canada. Astrobiology 9:807–822.
Perron T.J. and Fagherazzi S. (2012) The legacy of initial conditions in landscape evolution. Earth Surf Process Landf 37:52–63.
Phillips J.D. (2006) Deterministic chaos and historical geomorphology: a review and look forward. Geomorphology 76:109–121.
Pikuta E.V., Hoover R.B., and Tang J. (2007) Microbial extremophiles at the limits of life. Crit Rev Microbiol 33:183–209.
Pondrelli M., Rossi A.P., Ori G.G., van Gasselt S., Praeg D., and Ceramicola S. (2011) Mud volcanoes in the geologic record of Mars: the case of Firsoff Crater. Earth Planet Sci Lett 304:511–519.
Qu Y., Engdahl A., Zhu S., Vajda V., and McLoughlin N. (2015) Ultrastructural heterogeneity of Carbonaceous material in ancient cherts: Investigating biosignature origin and preservation. Astrobiology 15:825–842.
Riding R. and Tomas S. (2006) Stromatolite reef crusts, Early Cretaceous, Spain: bacterial origin of in situ-precipitated peloid microspar? Sedimentology 53:23–34.
Rietkerk M. and Van de Koppel J. (2008) Regular pattern formation in real ecosystems. Trends Ecol Evol 23:169–175.
Röling W.F.M., Aerts J.W., Patty C.H.L., ten Kate I.L., Ehrenfreund P., and Direito S.O.L. (2016) The significance of microbe-mineral-biomarker interactions in the detection of life on Mars and beyond. Astrobiology 15:492–507.
Ruff S.W. and Farmer J.D. (2016) Silica deposits on Mars with features resembling hot spring biosignatures at El Tatio in Chile. Nat Commun 7.
Runyon K.D., Bridges N.T., Ayoub F., Newman C.E., and Quade J.J. (2017) An integrated model for dune morphology and sand fluxes on Mars. Earth Planet Sci Lett 457:204–212.
Säwström C., Mumford P., Marshall W., Hodson A., and Laybourn-Parry J. (2002) The microbial communities and primary productivity of cryoconite holes in an Arctic glacier (Svalbard 79 N). Polar Biol 25:591–596.
Schumm S. (1991) To Intrepret the Earth: Ten Ways to be Wrong, Cambridge University Press, Cambridge, UK.
Schwieterman E.W., Kiang N.Y., Parenteau M.N., Harman C.E., DasSarma S., Fisher T.M., Arney G.N., Hartnett H.E., Reinhard C.T., Olson S.L., Meadows V.S., Cockell C.S., Walker S.I., Grenfell J.L., Hegde S., Rugheimer S., Hu R., and Lyons T.W. (2018) Exoplanet biosignatures: a review of remotely detectable signs of life. Astrobiology 18:663–708.
Song W., Ogawa N., Takashima-Oguchi C., Hatta T., and Matsukura Y. (2010) Laboratory experiments on bacterial weathering of granite and its constituent minerals. Geomorphologie 16:327–336.
Stallins J.A. (2005) Stability domains in barrier island dune systems. Ecological Complexity 2:410–430.
Strohmenger C.J. and Jameson J. (2017) Gypsum stromatolites from Sawda Nathil: relicts from a southern coastline of Qatar. Carbonate Evaporite 33:169–186.
Strohmenger C.J., Al-Mansoori A., Al-Jeelani O., Al-Shamry A., Al-Hosani I., Al-Mehsin K., and Shebl H. (2010) The sabkha sequence at Mussafah Channel (Abu Dhabi, United Arab Emirates): facies stacking patterns, microbial-mediated dolomite and evaporite overprint. GeoArabia 15:49–90.
Sun H.J. (2013) Endolithic microbial life in extreme cold climate: snow is required, but perhaps less is more. Biology 2:693–701.
Thomas K., Herminghaus S., Porada H., and Goehring L. (2013) Formation of Kinneyia via shear-induced instabilities in microbial mats. Philos Trans A Math Phys Eng Sci 371.
Thomas M., Clarke J.D.A., and Pain C.F. (2005) Weathering, erosion and landscape processes on Mars identified from recent rover imagery, and possible Earth analogues. Australian Journal of Earth Sciences 52:365–378.
Thomas P.C., Malin M.C., Edgett K.S., Carr M.H., Hartmann W.K., Ingersoll A.P., James P.B., Soderblom L.A., Veverka J., and Sullivan R. (2000) North-south geological differences between the residual polar caps on Mars. Nature 404:161–164.
Ulrich M., Wagner D., Hauber E., de Vera J.-P., and Schirrmeister L. (2012) Habitable periglacial landscapes in martian mid-latitudes. Icarus 219:345–357.
Vago J.L., Westall F., Pasteur Instrument Teams, Landing Site Selection Working Group, and Other Contributors. (2017) Project Habitability on Early Mars and the Search for Biosignatures with the ExoMars Rover. Astrobiology 17:473–510.
Valentine D.L. (2002) Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review. Antonie Van Leeuwenhoek 81:271–282.
Viles H.A., editor. (1988) Biogeomorphology, Blackwell, Oxford, UK.
Viles H.A. (2008) Understanding dryland landscape dynamics: do biological crusts hold the key? Geography Compass 2:899–919.
Viles H.A. (2012) Microbial geomorphology: a neglected link between life and landscape. Geomorphology 157–158:6–16.
Vogel M.B., Des Marais D.J., Turk K.A., Parenteau M.N., Jahnke L.L., and Kubo M.D.Y. (2009) The role of biofilms in actively forming gypsum deposits at Guerrero Negro, Mexico. Astrobiology 9:875–893.
Watts A.C., Watts D.L., Cohen M.J., Heffernan J.B., McLaughlin D.L., Martin J.B., Kaplan D.A., Osborne T.Z., and Kobziar L.N. (2014) Evidence of biogeomorphic patterns in a low-relief karst landscape. Earth Surf Process Landf 39:2027–2037.
Weber B., Büdel B., and Belnap J. (2016) Biological Soil Crusts: An Organizing Principle in Drylands, Springer, New York.
Webster C.R., Mahaffy P.R., Atreya S.K., Moores J.E., Flesch G.J., Malespin C., McKay C.P., Martinez G., Smith C.L., Martin-Torres J., Gomez-Elvira J., Zorzano M.-P., Wong M.H., Trainer M.G., Steele A., Archer D. Jr., Sutter B., Coll P.J., Freissinet C., Meslin P.-Y., Gough R.V., House C.H., Pavlov A., Eigenbrode J.L., Glavin D.P., Pearson J.C., Keymeulen D., Christensen L.E., Schwenzer S.P., Navarro-Gonzalez R., Pla-García J., Rafkin S.C.R., Vicente-Retortillo, Á., Kahanpää H., Viudez-Moreiras D., Smith M.D., Harri A.-M., Genzer M., Hassler D.M., Lemmon M., Crisp J., Sander S.P., Zurek R.W., and Vasavada A.R. (2018) Background levels of methane in Mars' atmosphere show strong seasonal variations. Science 360:1093–1096.
Wentworth S.J., Gibson E.K., Velbel M.A., and McKay D.S. (2005) Antarctic Dry Valleys and indigenous weathering in Mars meteorites: implications for water and life on Mars. Icarus 174:383–395.
Westall F., Loizeau D., Foucher F., Bost N., Betrand M., Vago J., and Kminek G. (2013) Habitability on Mars from a microbial point of view. Astrobiology 13:887–897.
Westall F., Foucher F., Bost N., Bertrand M., Loizeau D., Vago J.L., Kminek G., Gaboyer F., Campbell K.A., Bréhéret J.-G., Gautret P., and Cockell C.S. (2015) Biosignatures on Mars: what, where, and how? Implications for the search for martian life. Astrobiology 15:998–1029.
Wierzchos J. and Ascaso C. (2002) Microbial fossil record of rock from the Ross Desert, Antarctica: implications in the search for past life on Mars. Int J Astrobiol 1:51–59.
Zawierucha K., Ostrowska M., and Kolicka M. (2017) Applicability of cryoconite consortia of microorganisms and glacier-dwelling animals in astrobiological studies. Contemporary Trends in Geoscience 6:1–10
Associate Editor: Norman Sleep

Information & Authors


Published In

cover image Astrobiology
Volume 19Issue Number 10October 2019
Pages: 1279 - 1291
PubMed: 31584307


Published online: 3 October 2019
Published in print: October 2019
Accepted: 7 May 2019
Received: 8 October 2018


Request permissions for this article.




Dov Corenblit [email protected]
Université Clermont Auvergne, CNRS, GEOLAB – F-63000 Clermont-Ferrand, France.
José Darrozes
Université Paul Sabatier, CNRS/IRD, GET – F-31062 Toulouse, France.
Frédéric Julien
CNRS, ECOLAB, Université Paul Sabatier, CNRS, INPT, UPS, F-31062 Toulouse, France.
Thierry Otto
CNRS, ECOLAB, Université Paul Sabatier, CNRS, INPT, UPS, F-31062 Toulouse, France.
Erwan Roussel
Université Clermont Auvergne, CNRS, GEOLAB – F-63000 Clermont-Ferrand, France.
Johannes Steiger
Université Clermont Auvergne, CNRS, GEOLAB – F-63000 Clermont-Ferrand, France.
Heather Viles
School of Geography and the Environment, University of Oxford, Oxford, United Kingdom.


Address correspondence to: Dov Corenblit, Université Clermont Auvergne, CNRS, GEOLAB, 4 rue Ledru, 63000 Clermont-Ferrand, France [email protected]

Metrics & Citations



Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options


View PDF/ePub

Full Text

View Full Text







Copy the content Link

Share on social media

Back to Top