The Thermal Behavior of Ice-Bearing Ground: The Highest Cold, Dry Desert on Earth as an Analog for Conditions on Mars, at Ojos del Salado, Puna de Atacama-Altiplano Region
Abstract
Hourly ground temperature measurements from the highest shallow ground temperature monitoring system on Earth and sedimentological data were used to construct a thermal model at the Ojos del Salado, in the Dry Andes (5830 m a.s.l.). The results were used to investigate daily temperature fluctuations and the phase changes of water in the regolith, where the permafrost and ground ice are present. Model results reveal that the thermal evolution of the ground and the speed of phase changes are determined by the differing thermal properties of liquid and solid water, and change in their vertical distribution over time. At the start of summer, the increasing ratio of liquid water near the surface insulates deeper layers, and thus, melting is delayed and daily temperature fluctuations are damped in the regolith. The approach of the present study includes testing how simple, relatively low processing power required data analysis might be applied for Mars in the future. Periglacial and aeolian landforms were also surveyed, with a focus on thermo- and cryokarstic features, as previous studies have shown that patterned ground structures are rare in the region due to the highly porous nature of the dry regolith. Besides the wealth of aeolian features, gravel mantled megaripples, solifluction lobes, and thermo- and cryokarstic depressions, were found. In the case of the former, a close association with ephemeral ponds—hosting extremophilic microorganisms—was found, highlighting the fact that meltwater percolates horizontally even in this extremely dry environment. The thermo- and cryokarstic depressions also reveal the role of melting and its intricate connection to sublimation. As these features indicate degrading permafrost, closer investigation may provide useful analogs for earlier and contemporary climatic changes on Mars.
Get full access to this article
View all available purchase options and get full access to this article.
References
Andrés, N., Palacios D., Úbeda J., and Alcalá J. (2011) Ground thermal conditions at Chachani volcano, southern Peru. Geogr Ann Ser A Phys Geogr 93:151–162.
Appéré, T., Schmitt, B., Langevin, Y., Douté, S., Pommerol, A., Forget, F., Spiga, A., Gondet, B., and Bibring, J.-P. (2011) Winter and spring evolution of northern seasonal deposits on Mars from OMEGA on Mars Express. J Geophys Res 116:E05001.
Aszalós, J.M., Krett, G., Anda, D., Márialigeti, K., Nagy, B., and Borsodi, A.K. (2016) Diversity of extremophilic bacteria in the sediment of high-altitude lakes located in the mountain desert of Ojos del Salado volcano, Dry-Andes. Extremophiles 20:603–620.
Aszalós, J.M., Szabó, A., Felföldi, T., Jurecska, L., Nagy, B., and Borsodi, A.K. (2020a) Effects of active volcanism on bacterial communities in the highest-altitude crater lake of Ojos del Salado (Dry Andes, Altiplano-Atacama Region). Astrobiology 20:741–753.
Aszalós, J.M., Szabó, A., Megyes, M., Anda, D., Nagy, B., and Borsodi, A.K. (2020b) Bacterial diversity of a high-altitude permafrost thaw pond located on Ojos del Salado (Dry-Andes, Altiplano-Atacama Region). Astrobiology 20:754–765.
Azócar, G.F. and Brenning, A. (2010) Hydrological and geomorphological significance of rock glaciers in the Dry Andes, Chile (27°-33°S). Permafrost Periglac Processes 21:42–53.
Azócar, G.F., Brenning, A., and Bodin, X. (2017) Permafrost distribution modelling in the semiarid Chilean Andes. Cryosphere 11:877–890.
Balme, M.R., Gallagher, C.J., and Hauber, E. (2013) Morphological evidence for geologically young thaw of ice on Mars: a review of recent studies using high-resolution imaging data. Prog Phys Geogr 37:289–324.
Boston, P.J., Ivanov, M.V., and McKay, C.P. (1992) On the possibility of chemosynthetic ecosystems in subsurface habitats on Mars. Icarus 95:300–308.
Brenning, A. and Azócar, G.F. (2010) Statistical analysis of topographic and climate controls and multispectral signatures of rock glaciers in the Dry Andes, Chile (27°-33°S). Permafrost Periglac Processes 21:54–66.
Carr, M.H. and Head, J.W. (2010) Geologic history of Mars. Earth Planet Sci Lett 294:185–203.
Centro de Estudios Científicos (CECS). (2008) Balance Glaciológico e Hídrico del Glaciar Nef, Campo de Hielo Norte, y Catastro de Glaciares de Algunas Cuencas de la Zona Central y Sur del País (Glaciological and Water Balance of the Nef Glacier, Northern Ice Field, and Register of Glaciers of Some Basins of the Central Zone and South of the Country). Direccíon General de Aguas (DGA), Santiago, Chile.
Christensen, P.R. (2003) Formation of recent martian gullies through melting of extensive water-rich snow deposits. Nature 422:45–48.
Clapperton, C.M. (1994) The quaternary glaciation of Chile: a review. Rev Chil Hist Nat 67:369–383.
Clifford, S.M., Lasue, J., Le Gall, A.A., and Heggy, E. (2010) The response of martian ground ice to burial by a volatile-poor mantle: potential implications for the volatile evolution of the medusae fossae formation [abstract id. P23A-1614]. In American Geophysical Union, Fall Meeting.
Corte, A.E. (1982) Geocriología Argentina general y aplicada (General and applied Argentine geocriology). Rev Inst Cienc Geol 5:87–120.
Cull, S., Arvidson, R.E., Mellon, M.T., Skemer, P., Shaw, A., and Morris, R.V. (2010) Compositions of subsurface ices at the Mars Phoenix landing site. Geophys Res Lett 37:L24203.
Dartnell, L.R., Desorgher, L., Ward, J.M., and Coates, A.J. (2007) Modelling the surface and subsurface Martian radiation environment: implications for astrobiology. Geophys Res Lett 34:L02207.
Daubechies, I. (1990) The wavelet transform time-frequency localization and signal analysis. IEEE Trans Inf Theory 36:961–1004.
de Silva, S.L., Spagnuolo, M.G., Bridges, N.T., and Zimbelman, J.R. (2013) Gravel-mantled megaripples of the Argentinian Puna: a model for their origin and growth with implications for Mars. Geol Soc Am Bull 125:1912–1929.
Dickinson, W.W. and Rosen, M.R. (2003) Antarctic permafrost: an analogue for water and diagenetic minerals on Mars. Geology 31:199.
Domagal-Goldman, S.D., Wright, K.E., Adamala, K., Arina de la, R.L., Bond, J., Dartnell, L.R., Goldman, A.D., Lynch, K., Naud, M.-E., Paulino, L., Ivan, G., Singer, K., Walter-Antonio, M., Abrevaya, X.C., Anderson, R., Arney, G., Atri, D., Azúa-Bustos, A., Bowman, J.S., Brazelton, W.J., Brennecka, G.A., Carns, R., Chopra, A., Colangelo-Lillis, J., Crockett, C.J., DeMarines, J., Frank, E.A., Frantz, C., de la Fuente, E., Galante, D., Glass, J., Gleeson, D., Glein, C.R., Goldblatt, C., Horak, R., Horodyskyj, L., Kaçar, B., Kereszturi, A., Knowles, E., Mayeur, P., McGlynn, S., Miguel, Y., Montgomery, M., Neish, C., Noack, L., Rugheimer, S., Stüeken, E.E., Tamez-Hidalgo, P., Walker, S.I., and Wong, T. (2016) The Astrobiology Primer v2.0. Astrobiology 16:561–653.
Dundas, C.M. (2017) Effects of varying obliquity on Martian sublimation thermokarst landforms. Icarus 281:115–120.
Dundas, C.M., Byrne, S., and McEwen, A.S. (2015) Modeling the development of martian sublimation thermokarst landforms. Icarus 262:154–169.
Eppelbaum, L. Kutasov, I., and Pilchin, A. (2014) Applied Geothermics, Lecture Notes in Earth System Sciences, Springer-Verlag Berlin Heidelberg.
Espinoza, J.C., Chavez, S., Ronchail, J., Junquas, C., Takahashi, K., and Lavado, W. (2015) Rainfall hotspots over the southern tropical Andes: spatial distribution, rainfall intensity, and relations with large-scale atmospheric circulation. Water Resour Res 51:3459–3475.
Fastook, J.L., Head, J.W., and Marchant, D.R. (2014) Formation of lobate debris aprons on Mars: assessment of regional ice sheet collapse and debris-cover armoring. Icarus 228:54–63.
Favier, V., Falvey, M., Rabatel, A., Praderio, E., and López, D. (2009) Interpreting discrepancies between discharge and precipitation in high-altitude area of Chile's Norte Chico region (26–32°S). Water Resour Res 45:W02424.
Forget, F., Haberle, R.M., Montmessin, F., Levrard, B., and Head, J.W. (2006) Formation of glaciers on Mars by atmospheric precipitation at high obliquity. Science 311:368–371.
Gallagher, C., Balme, M.R., Conway, S.J., and Grindrod, P.M. (2011) Sorted clastic stripes, lobes and associated gullies in high-latitude craters on Mars: landforms indicative of very recent, polycyclic ground-ice thaw and liquid flows. Icarus 211:458–471.
Gastineau, R., Conway, S., Johnsson, A., Mangold, N., and Grindrod, P. (2018) Lobate features on Mars: a morphological and comparative study with dry and wet terrestrial analogues [abstract id. EPSC2018-339]. In European Planetary Science Congress.
Geoestudios. (2011) Catastro, Exploracíon y Estudio de Glaciares en Chile Central (Cadastre, Exploration and Study of Glaciers in Central Chile). Direccíon General de Aguas (DGA), Santiago, Chile.
Gilichinsky, D. (2011) Terrestrial permafrost models of martian habitats and inhabitants [abstract id. C54A-05]. In American Geophysical Union, Fall Meeting.
Gilichinsky, D., Rivkina, E., Shcherbakova, V., Laurinavichuis, K., and Tiedje, J. (2003) Supercooled water brines within permafrost-an unknown ecological niche for microorganisms: a model for astrobiology. Astrobiology 3:331–341.
Gilichinsky, D.A., Wilson, G.S., Friedmann, E.I., McKay, C.P., Sletten, R.S., Rivkina, E.M., Vishnivetskaya, T.A., Erokhina, L.G., Ivanushkina, N.E., Kochkina, G.A., Shcherbakova, V.A., Soina, V.S., Spirina, E.V., Vorobyova, E.A., Fyodorov-Davydov, D.G., Hallet, B., Ozerskaya, S.M., Sorokovikov, V.A., Laurinavichyus, K.S., Shatilovich, A.V., Chanton, J.P., Ostroumov, V.E., and Tiedje, J.M. (2007) Microbial populations in antarctic permafrost: biodiversity, state, age, and implication for astrobiology. Astrobiology 7:275–311.
Ginot, P., Kull, C., Schotterer, U., Schwikowski, M., and Gäggeler, W.H. (2006) Glacier massbalance reconstruction by sublimation induced enrichment of chemical species on CerroTapado (Chilean Andes). Clim Past 2:21–30.
Grab, S.W., Gatebe, C.K., and Kinyua, A.M. (2004) Ground thermal profiles from Mount Kenya, East Africa. Geogr Ann Ser A Phys Geogr 86:131–141.
Grosjean, M. and Veit, H. (2005) Water resources in the Arid Mountains of the Atacama Desert (Northern Chile): past climate changes and modern conflicts. In Global Change and Mountain Regions: An Overview of Current Knowledge, edited by U.M. Huber, H.K.M. Bugmann, and M.A. Reasoner, Springer Netherlands, The Netherlands, pp 93–104.
Gruber, S. (2012) Derivation and analysis of a high-resolution estimate of global permafrostzonation. Cryosphere 6:221–233.
Haloy, S. (1991) Islands of life at 6000 m altitude: the environment of the highest autotrophic communities on earth (Socoma Volcano, Andes). Arst Alp Res 23:247–262.
Hargitai, H. and Kereszturi, A. (2015) Encyclopedia of Planetary Landforms, Springer-Verlag, Berlin (ISBN 978-1-4614-3133-6).
Harris, S.A. and Brown, R.J.E. (1978) Plateau mountain: a case study of alpine permafrost in the Canadian Rocky Mountains. In Proceedings 3rd International Conference on Permafrost, Edmonton, Alberta, Vol. 1, pp 385–391.
Hartmann, W.K., Thorsteinsson, T., and Sigurdsson, F. (2003) Martian hillside gullies and icelandic analogs. Icarus 162:259–277.
Hauber, E., Reiss, D., Ulrich, M., Preusker, F., and Trauthan, F. (2011a) Landscape evolution in Martian mid-latitude regions: insights from analogous periglacial landforms in Svalbard. Geol Soc London Spec Publ 356:111–131.
Hauber, E., Reiss, D., Ulrich, M., Preusker, F., Trauthan, F., Zanetti, M., Hiesinger, H., Jaumann, R., Johansson, L., Johnsson, A., Olvmo, M., Carlsson, E., Johansson, H.A.B., and McDaniel, S. (2011b) Periglacial landscapes on Svalbard: terrestrial analogs for cold-climate landforms on Mars. In Analogs for Planetary Exploration. Geological Society of America Special Paper, edited by W.B. Garry and J.E. Bleacher, Vol. 483, pp 177–201.
Hauber, E., Orgel, C., van Gasselt, S., Reiss, D., Johnsson, A., Ramsdale, J., Balme, M.R., Conway, S.J., Costard, F., Gallagher, C., Kereszturi, A., Platz, T., Séjourné, A., Skinner, J.A., Swirad, Z., and Losiak, A. (2015) Mapping Mars' northern plains: origins, evolution and response to climate change—a new overview of recent ice-related landforms in Acidalia Planitia [abstract 1359]. In 46th Lunar and Planetary Science Conference.
Head, J.W., Mustard, J.F., Kreslavsky, M.A., Milliken, R.E., and Marchant, D.R. (2003) Recent ice ages on Mars. Nature 426:797–802.
Head, J.W., Neukum, G., Jaumann, R., Hiesinger, H., Hauber, E., Carr, M., Masson, P., Foing, B., Hoffmann, H., Kreslavsky, M., Werner, S., Milkovich, S., van Gasselt, S., and HRSC Co-Investigator Team (2005) Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars. Nature 434:346–351.
Head, J.W., Marchant, D.R., Agnew, M.C., Fassett, C.I., and Kreslavsky, M.A. (2006) Extensive valley glacier deposits in the northern mid-latitudes of Mars: evidence for Late Amazonian obliquity-driven climate change. Earth Planet Sci Lett 241:663–671.
Houston, J. (2006) Evaporation in the Atacama Desert: an empirical study of spatio-temporalvariations and their causes. J Hydrol 330:402–412.
Houston, J. and Hartley, A.J. (2003) The central Andean west-slope rainshadow and its potential contribution to the origin of hyper-aridity in the Atacama Desert. Int J Climatol 23:1453–1464.
Ishikawa, M. (2003) Thermal regimes at the snow-ground interface and their implications for permafrost investigation. Geomorphology 52:105–120.
Janke, J.R., Bellisario, A.C., and Ferrando, F.A. (2015) Classification of debris-covered glaciers and rock glaciers in the Andes of central Chile. Geomorphology 241:98–121.
Johnsson, A., Reiss, D., Hauber, E., Zanetti, M., Hiesinger, H., Johansson, L., and Olvmo, M. (2012) Periglacial mass-wasting landforms on Mars suggestive of transient liquid water in the recent past: insights from solifluction lobes on Svalbard. Icarus 218:489–505.
Johnsson, A., Reiss, D., Conway, S.J., Hauber, E., and Hiesinger, H. (2015) Small-scale lobes in the southern hemisphere on Mars: implications for transient liquid water in the recent past [abstract EPSC2015-882]. In European Planetary Science Congress.
Johnsson, A., Conway, S., Reiss, D., Hauber, E., and Hiesinger, H. (2018a) Possible slow “wet” mass wasting on Mars [abstract id. EPSC2018-1005]. In European Planetary Science Congress.
Johnsson, A., Conway, S.J., Reiss, D., Hauber, E., and Hiesinger, H. (2018b) Slow periglacial mass wasting (solifluction) on Mars. In Dynamic Mars, edited by R.J. Soare, S.J. Conway, and S.M. Clifford, Elsevier, Amsterdam, Netherlands, pp 239–269.
Jouglet, D., Poulet, F., Milliken, R.E., Mustard, J.F., Bibring, J.-P., Langevin, Y., Gondet, B., and Gomez, C. (2007) Hydration state of the Martian surface as seen by Mars Express OMEGA: 1. Analysis of the 3 μm hydration feature. J Geophys Res 112:E08S06.
Karátson, D., Telbisz, T., and Wörner, G. (2012) Erosion rates and erosion patterns of Neogene to Quaternary stratovolcanoes in the Western Cordillera of the Central Andes: an SRTM DEM based analysis. Geomorphology 139:122–135.
Kereszturi, A. and Noack, L. (2016) Review on the role of planetary factors on habitability. Orig Life Evol Biosph 46:473–486.
Kereszturi, Á. and Rivera-Valentin, E. (2016) Possible water lubricated grain movement in the circumpolar region of Mars. Planet Space Sci 125:130–146.
Kieffer, H.H., Titus, T.N., Mullins, K.F., and Christensen, P.R. (2000) Mars south polar spring and summer behavior observed by TES: seasonal cap evolution controlled by frost grain size. J Geophys Res 105:9653–9700.
Kreslavsky, M.A. and Head, J.W. (2002) Mars: nature and evolution of young latitude-dependent water-ice-rich mantle. Geophys Res Lett 29:1719.
Kreslavsky, M.A., Head, J.W., and Marchant, D.R. (2008) Periods of active permafrost layer formation during the geological history of Mars: implications for circum-polar and mid-latitude surface processes. Planet Space Sci 56:289–302.
Kull, C. and Grosjean, M. (2000) Late Pleistocene climate conditions in the north Chilean Andes drawn from a climate-glacier model. J Glaciol 46:622–632.
Kull, C., Grosjean, M., and Veit, H. (2002) Modelling modern and Late Pleistocene glacio-climatological conditions in the North Chilean Andes (29–30° S). Clim Change 52:359–381.
Kull, C., Hänni, F., Grosjean, M., and Veit, H. (2003) Evidence of an LGM cooling in NW-Argentina (22°S) derived from a glacier climate model. Quat Int 108:3–11.
Levy, J., Head, J., and Marchant, D. (2009) Thermal contraction crack polygons on Mars: classification, distribution, and climate implications from HiRISE observations. J Geophys Res Planets 114:JE003273.
Li, R., Zhao, L., Wu, T., Ding, Y., Xiao, Y., Hu, G., Zou, D., Li, W., Yu, W., Jiao, Y., and Qin, Y. (2014) The impact of surface energy exchange on the thawing process of active layer over the northern Qinghai-Xizang Plateau, China. Environ Earth Sci 72:2091–2099.
Lucchitta, B.K. (1981) Mars and earth—comparison of cold-climate features. Icarus 45:264–303.
Madeleine, J.-B., Forget, F., Head, J.W., Levrard, B., Montmessin, F., and Millour, E. (2009) Amazonian northern mid-latitude glaciation on Mars: a proposed climate scenario. Icarus 203:390–405.
Mangold, N. (2011) Water ice sublimation related landformson Mars. In Martian geomorphology, Geologicalsociety special publication 356, edited by M.R. Balme, A.S. Bargery, C.J. Gallagher, and S. Gupta, Geological Society, London, p 140.
Mangold, N. (2005) High latitude patterned grounds on Mars: classification, distribution and climatic control. Icarus 174:336–359.
Marchant, D.R. and Head, J.W. (2007) Antarctic dry valleys: microclimate zonation, variable geomorphic processes, and implications for assessing climate change on Mars. Icarus 192:187–222.
Mari, L, Nagy, B., Heiling, Z.S., and Nemerkényi, Z.S. (2014) Pseudokarst in the Arid-Andes?—landforms of melting origin in the Ojos del Salado area (in Hungarian). In Karsztfejlődés XIX. Conference Proceedings, edited by M. Veres and Z. Zentai, University of West-Hungary Faculty of Sciences, Szombathely, pp 231–241.
Marschall, M., Dulai, S., and Kereszturi, A. (2012) Migrating and UV screening subsurface zone on Mars as target for the analysis of photosynthetic life and astrobiology. Planet Space Sci 72:146–153.
Martin-Torres, F.J., Zorzano, M.-P., Valentin-Serrano, P., Harri, A.-M., Genzer, M., Kemppinen, O., Rivera-Valentin, E.G., Jun, I., Wray, J., Bo Madsen, M., Goetz, W., McEwen, A.S., Hardgrove, C., Renno, N., Chevrier, V.F., Mischna, M., Navarro-Gonzalez, R., Martinez-Frias, J., Conrad, P., McConnochie, T., Cockell, C., Berger, G., R. Vasavada, A., Sumner, D., and Vaniman, D. (2015) Transient liquid water and water activity at Gale crater on Mars. Nat Geosci 8:357–361.
Mellon, M.T. (2013) Modeling regolith temperatures and volatile ice processes [abstract id.P52A-03]. In American Geophysical Union, Fall Meeting.
Mellon, M.T. and Phillips, R.J. (2001) Recent gullies on Mars and the source of liquid water. J Geophys Res 106:23165–23180.
Mellon, M.T., Feldman, W.C., and Prettyman, T.H. (2004) The presence and stability of ground ice in the southern hemisphere of Mars. Icarus 169:324–340.
Mellon, M.T., Arvidson, R.E., Marlow, J.J., Phillips, R.J., and Asphaug, E. (2008a) Periglacial landforms at the Phoenix landing site and the northern plains of Mars. J Geophys Res 113:E00A23.
Mellon, M.T., Boynton, W.V., Feldman, W.C., Arvidson, R.E., Titus, T.N., Bandfield, J.L., Putzig, N.E., and Sizemore, H.G. (2008b) A prelanding assessment of the ice table depth and ground ice characteristics in Martian permafrost at the Phoenix landing site. J Geophys Res 113:E00A25.
Mellon, M.T., Arvidson, R.E., Malin, M.C., Heet, T.L., Sizemore, H.G., Searls, M.L., Lemmon, M.T., and Kelle, H.U. (2009a) Permafrost and polygons at the Phoenix landing site [abstract 1904]. In 40th Lunar and Planetary Science Conference.
Mellon, M.T., Arvidson, R.E., Sizemore, H.G., Searls, M.L., Blaney, D.L., Cull, S., Hecht, M.H., Heet, T.L., Keller, H.U., Lemmon, M.T., Markiewicz, W.J., Ming, D.W., Morris, R.V., Pike, W.T., and Zent, A.P. (2009b) Ground ice at the Phoenix Landing Site: stability state and origin. J Geophys Res 114:E00E07.
Messerli, B., Grosjean, M., and Vuille, M. (1997) Water availability, protected areas, and natural resources in the Andean desert Altiplano. Mt Res Dev 17:229–238.
Meyers, S.D., Kelly, B.G., and O'Brien, J.J. (1993) An introduction to wavelet analysis in oceanography and meteorology: with application to the dispersion of Yanai waves. Mon Wea Rev 121:2858–2866.
Milana, J.P. (2009) Largest wind ripples on Earth? Geology 37:343–346.
Milliken, R.E., Mustard, J.F., and Goldsby, D.L. (2003) Viscous flow features on the surface of Mars: observations from high-resolution Mars Orbiter Camera (MOC) images. J Geophys Res 108:E002005.
Moreno, T. and Gibbons, W. eds. (2007) The Geology of Chile, The Geological Society, London.
Morozova, D., Möhlmann, D., and Wagner, D. (2007) Survival of methanogenic archaea from siberian permafrost under simulated martian thermal conditions. Orig Life Evol Biosph 37:189–200.
Mustard, J.F., Cooper, C.D., and Rifkin, M.K. (2001) Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice. Nature 412:411–414.
Nagy, B., Mari, L., Kovács, J., Nemerkényi, Zs., and Heiling, Zs. (2014a) Environment changes in the Dry Andes—monitoring research on the Ojos del Salado (In Hungarian). In HUNGEO 2014 Magyar Földtudományi szakemberek XII. találkozója (XXII Meeting of Earth Scientists), edited by T. Cserny, P. Kovács-Pálffy, and Á. Krivánné Horváth; Magyarhoni Földtani Társulat, Budapest, pp 53–62 (ISBN:978-963-8221-53-7).
Nagy, B., Mari, L., Kovács, J., Nemerkényi, Zs., and Heiling, Zs. (2014b) Data from the subsurface of a high-mountain desert: water and ice on the Ojos del Salado (in Hungarian). In Egyetemi Meteorológiai Füzetek—Meteorological Notes of Universities, Vol. 25, pp 123–128 (ISBN 9789632845388).
Nagy, B., Ignéczi, A., Kovács, J., Szalai, Z., and Mari, L. (2019) Shallow ground temperature measurements on the highest volcano of the Earth, the Mt. Ojos del Salado, Arid Andes, Chile. Permafrost Periglac Processes 30:3–18.
Nicholson, L., Marín, J., Lopez, D., Rabatel, A., Bown, F., and Rivera, A. (2009) Glacier inventory of the upper Huasco valley, Norte Chico, Chile: glacier characteristics, glacier change and comparison with central Chile. Ann Glaciol 50:111–118.
Orgel, C.S., Hauber, E., van Gasselt, S., Reiss, D., Johnsson, A., Ramsdale, J.D., Smith, I., Swirad, Z.M., Séjourné, A., Wilson, J.T., Balme, M.R., Conway, S.J., Costard, F, Eke, V.E., Gallagher, C., Kereszturi, A., Losiak, A., Massey, R.J., Platz, T., Skinner, J.A., and Teodoro, L.F.A. (2018) Grid mapping the northern plains of Mars: a new overview of recent water- and ice-related landforms in Acidalia Planitia. J Geophys Res 124:454–482.
Otto, J.C., Keuschnig, M., Götz, J., Marbach, M., and Schrott, L. (2012) Detection of mountain permafrost by combining high resolution surface and subsurface information—an example from the Glatzbach catchment, Austrian Alps. Geogr Ann Ser A Phys Geogr 94:43–57.
Owen, J.J., Dietrich, W.E., Nishiizumi, K., Chong, G., and Amundson, R. (2013) Zebra stripes in the Atacama Desert: fossil evidence of overland flow. Geomorphology 182:157–172.
Pal, B. (2019) Global distribution of near-surface relative humidity levels on Mars [abstract 1831]. In 50th Lunar and Planetary Science Conference.
Perucca, L. and Angillieri, M.Y.E. (2011) Glaciers and rock glaciers' distribution at 28° SL, Dry Andes of Argentina, and some considerations about their hydrological significance. Environ Earth Sci 64:2079–2089.
Reiss, D., Jaumann, R., Kereszturi, A., Sik, A., and Neukum, G. (2007) Gullies and avalanche scars on martian dark dunes [abstract 1993]. In 38th Lunar and Planetary Science Conference.
Reiss, D., Hauber, E., Hiesinger, H., Jaumann, R., Trauthan, T., Preusker, F., Zanetti, M., Ulrich, M., Johnsson, A., Johansson, L., Olvmo, M., Carlsson, E., Johansson, H.A.B., and McDaniel, S. (2012) Terrestrial gullies and debris-flow tracks on Svalbard as planetary analogs for Mars. Geol Soc Am Spec Pap 483:165–175.
Rubincam, D.P. (1990) Mars—change in axial tilt due to climate? Science 248:720–721.
Schorghofer, N. (2007) Dynamics of ice ages on Mars. Nature 449:192–194.
Schorghofer, N. and Aharonson, O. (2005) Stability and exchange of subsurface ice on Mars. J Geophys Res 110:E05003.
Schotterer, U., Grosjean, M., Stichler, W., Ginot, P., Kull, C., Bonnaveira, H., Francou, B., Gäggeler, W.H., Gallaire, R., Hoffman, G., Pouyaud, B., Ramirez, E., Schwikowski, M., and Taupin, D.J. (2003) Glaciers and climate in the Andes between the Equator and 30°S: what is recordedunder extreme environmental conditions? Clim Change 59:157–175.
Schrott, L. (1991) Global solar radiation, soil temperature and permafrost in the Central Andes, Argentina: a progress report. Permafrost Periglac Processes 2:59–66.
Séjourné, A., Costard, F., Losiak, A., Swirad, Z.M., Balme, M.R., Conway, S.J., Gallagher, C., Hauber, E., Johnsson, A.E., Kereszturi, A., Orgel, C., Platz, T., Ramsdale, J.D., Reiss, D., Skinner, J.A. Jr., and Van Gasselt, S. (2015) Mapping the northern plains of Mars: origins, evolution and response to climate change—a new overview of recent ice-related landforms in Utopia Planitia [abstract EPSC2015-737]. In European Planetary Science Congress.
Séjourné, A., Costard, F., Swirad, Z.M., Łosiak, A., Bouley, S., Smith, I., Balme, M.R., Orgel, C., Ramsdale, J.D., Hauber, E., Conway, S.J., van Gasselt, S., Reiss, D., Johnsson, A., Gallagher, C., Skinner, J.A., Kereszturi, A., and Platz, T. (2018) Grid mapping the northern plains of Mars: using morphotype and distribution of ice-related landforms to understand multiple ice-rich deposits in Utopia Planitia. J Geophys Res 124:483–503.
Sizemore, H.G., Zent, A.P., and Rempel, A.W. (2015) Initiation and growth of Martian ice lenses. Icarus 251:191–210.
Smith, P.H., Tamppari, L.K., Arvidson, R.E., Bass, D., Blaney, D., Boynton, W.V., Carswell, A., Catling, D.C., Clark, B.C., Duck, T., DeJong, E., Fisher, D., Goetz, W., Gunnlaugsson, H.P., Hecht, M.H., Hipkin, V., Hoffman, J., Hviid, S.F., Keller, H.U., Kounaves, S.P., Lange, C.F., Lemmon, M.T., Madsen, M.B., Markiewicz, W.J., Marshall, J., McKay, C.P., Mellon, M.T., Ming, D.W., Morris, R.V., Pike, W.T., Renno, N., Staufer, U., Stoker, C., Taylor, P., Whiteway, J.A., and Zent, A.P. (2009) H2O at the phoenix landing site. Science 325:58.
Soare, R., Conway, S., Gallagher, C., and Dohm, J. (2016) Sorted (clastic) polygons in the Argyre region, Mars, and possible evidence of pre- and post-glacial periglaciation in the Late Amazonian Epoch. Icarus 264:184–197.
Stoker, C., McKay, C., Davila, A., Glass, B., and Parro, V. (2017) Periodic habitability in northern plains ground ice: the icebreaker life mission plan [abstract 3478]. In Astrobiology Science Conference.
Torrence, C. and Compo, G.P. (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78.
Trombotto, D. (2000) Survey of cryogenic processes, periglacial forms and permafrost conditions in South America. Rev Inst Geol São Paolo 21:33–55.
Ulrich, M., Morgenstern, A., Günther, F., Reiss, D., Bauch, K.E., Hauber, E., Rössler, S., and Schirrmeister, L. (2010). Thermokarst in Siberian ice-rich permafrost: comparison to asymmetric scalloped depressions on Mars. J Geophys Res 115:E10009.
van Everdingen, R. ed. (2005) Multi-Language Glossary of Permafrost and Related Ground-Ice Terms. National Snow and Ice Data Center/World Data Center for Glaciology, Boulder, CO.
van Gasselt, S., Hauber, E., and Neukum, G. (2007) Cold-climate modification of Martian landscapes: a case study of a spatulate debris landform in the Hellas Montes Region, Mars. J Geophys Res 112:E09006.
Vasavada, A.R., Piqueux, S., Lewis, K.W., Lemmon, M.T., and Smith, M.D. (2017) Thermophysical properties along Curiosity's traverse in Gale crater, Mars, derived from the REMS ground temperature sensor. Icarus 284:372–386.
Vincendon, M., Mustard, J., Forget, F., Kreslavsky, M., Spiga, A., Murchie, S., Bibring, J.-P. (2010) Near-tropical subsurface ice on Mars. Geophys Res Lett 37:L01202.
Viola, D. and McEwen, A.S. (2018) Geomorphological evidence for shallow ice in the southern hemisphere of Mars. J Geophys Res 123:262–277.
Zanetti, M., Hiesinger, H., Reiss, D., Hauber, E., and Neukum, G. (2010) Distribution and evolution of scalloped terrain in the southern hemisphere, Mars. Icarus 206:691–706.
Zimbelman, J.R., Scheidt, S.P., de Silva, S.L., Bridges, N.T., Spagnuolo, M.G., and Neely, E.M. (2016) Aerodynamic roughness height for gravel-mantled megaripples, with implications for wind profiles near TARs on Mars. Icarus 266:306–314.
Associate Editor: Christopher McKay
Information & Authors
Information
Published In
Astrobiology
Volume 20 • Issue Number 6 • June 2020
Pages: 701 - 722
Copyright
Copyright 2020, Mary Ann Liebert, Inc., publishers.
History
Published online: 10 June 2020
Published in print: June 2020
Accepted: 11 September 2019
Received: 31 December 2018
Topics
Authors
Author Disclosure Statement
No competing financial interests exist.
Funding Information
This work was supported by the EXODRILTECH project of ESA and the Excellence of Strategic R&D centres (GINOP-2.3.2-15-2016-00003) project of NKFIH and the related H2020 fund, as well as the COOP-NN-116927 project.
Metrics & Citations
Metrics
Citations
Export Citation
Export citation
Select the format you want to export the citations of this publication.
View Options
Get Access
Access content
To read the fulltext, please use one of the options below to sign in or purchase access.⚠ Society Access
If you are a member of a society that has access to this content please log in via your society website and then return to this publication.