Research Article
No access
Published Online: 21 October 2011

A Sliding Time-Window ICA Reveals Spatial Variability of the Default Mode Network in Time

Publication: Brain Connectivity
Volume 1, Issue Number 4

Abstract

Recent evidence on resting-state networks in functional (connectivity) magnetic resonance imaging (fcMRI) suggests that there may be significant spatial variability of activity foci over time. This study used a sliding time window approach with the spatial domain–independent component analysis (SliTICA) to detect spatial maps of resting-state networks over time. The study hypothesis was that the spatial distribution of a functionally connected network would present marked variability over time. The spatial stability of successive sliding-window maps of the default mode network (DMN) from fcMRI data of 12 participants imaged in the resting state was analyzed. Control measures support previous findings on the stability of independent component analysis in measuring sliding-window sources accurately. The spatial similarity of successive DMN maps varied over time at low frequencies and presented a 1/f power spectral pattern. SliTICA maps show marked temporal variation within the DMN; a single voxel was detected inside a group DMN map in maximally 82% of time windows. Mapping of incidental connectivity reveals centrifugally increasing connectivity to the brain cortex outside the DMN core areas. In conclusion, SliTICA shows marked spatial variance of DMN activity in time, which may offer a more comprehensive measurement of the overall functional activity of a network.

Get full access to this article

View all available purchase options and get full access to this article.

References

Abou-Elseoud AStarck TRemes JNikkinen JTervonen OKiviniemi V2010. The effect of model order selection in group PICAHum Brain Mapp.311207-1216. Abou-Elseoud A, Starck T, Remes J, Nikkinen J, Tervonen O, Kiviniemi V. 2010. The effect of model order selection in group PICA. Hum Brain Mapp. 31:1207–1216.
Achard SSalvador RWhitcher BSuckling JBullmore E2006. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubsJ Neurosci.2663-72. Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E. 2006. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci. 26:63–72.
Beckmann CFDeLuca MDevlin JTSmith SM2005. Investigations into resting-state connectivity using independent component analysisPhilos Trans R Soc Lond B Biol Sci3601001-1013. Beckmann CF, DeLuca M, Devlin JT, Smith SM. 2005. Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360:1001–1013.
Beckmann CFSmith SM2004. Probabilistic independent component analysis for functional magnetic resonanceIEEE Trans Med Imaging23137-152. Beckmann CF, Smith SM. 2004. Probabilistic independent component analysis for functional magnetic resonance. IEEE Trans Med Imaging 23:137–152.
Bellec PRosa-Neto PLyttelton OCBenali HEvans AC2010. Multi-level bootstrap analysis of stable clusters in resting-state fMRINeuroimage511126-1139. Bellec P, Rosa-Neto P, Lyttelton OC, Benali H, Evans AC. 2010. Multi-level bootstrap analysis of stable clusters in resting-state fMRI. Neuroimage 51:1126–1139.
Birn RMSaad ZSBandettini PA2001. Spatial heterogeneity of the nonlinear dynamics in the FMRI BOLD responseNeuroimage14817-826. Birn RM, Saad ZS, Bandettini PA. 2001. Spatial heterogeneity of the nonlinear dynamics in the FMRI BOLD response. Neuroimage 14:817–826.
Biswal BYetkin FZHaughton VMHyde JS1995. Functional connectivity in the motor cortex of resting human brain using echo-planar MRIMagn Reson Med34537-541. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. 1995. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541.
Biswal BBMennes MZuo XNGohel SKelly CSmith SM et al.2010. Toward discovery science of human brain functionProc Natl Acad Sci U S A1074734-4739. Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, et al. 2010. Toward discovery science of human brain function. Proc Natl Acad Sci U S A 107:4734–4739.
Buckner RLAndrews-Hanna JRSchacter DL2008. The brain's default network: anatomy, function, and relevance to diseaseAnn N Y Acad Sci11241-38. Buckner RL, Andrews-Hanna JR, Schacter DL. 2008. The brain's default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38.
Calhoun VDAdali TPearlson GPekar J2001. A method for making group inferences from fMRI data using independent component analysisHum Brain Mapp14140-151. Calhoun VD, Adali T, Pearlson G, Pekar J. 2001. A method for making group inferences from fMRI data using independent component analysis. Hum Brain Mapp 14:140–151.
Chang CGlover GH2010. Time-frequency dynamics of resting-state brain connectivity measured with fMRINeuroimage.5081-98. Chang C, Glover GH. 2010. Time-frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage. 50:81–98.
Cohen ALFair DADosenbach NUMiezin FMDierker DVan Essen DC et al.2008. Defining functional areas in individual human brains using resting functional connectivity MRINeuroimage4145-57. Cohen AL, Fair DA, Dosenbach NU, Miezin FM, Dierker D, Van Essen DC, et al. 2008. Defining functional areas in individual human brains using resting functional connectivity MRI. Neuroimage 41:45–57.
Damoiseaux JSRombouts SABarkhof FScheltens PStam CJSmith SMBeckmann CF2006. Consistent resting-state networks across healthy subjectsProc Natl Acad Sci U S A10313848-13853. Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF. 2006. Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 103:13848–13853.
Daubechies IRoussos ETakerkart SBenharrosh MGolden CD'Ardenne K et al.2009. Independent component analysis for brain fMRI does not select for independenceProc Natl Acad Sci U S A10610415-10422. Daubechies I, Roussos E, Takerkart S, Benharrosh M, Golden C, D'Ardenne K, et al. 2009. Independent component analysis for brain fMRI does not select for independence. Proc Natl Acad Sci U S A 106:10415–10422.
Esposito FSeifritz EFormisano EMorrone RScarabino TTedeschi G et al.2003. Real-time independent component analysis of fMRI time-seriesNeuroimage.202209-2224. Esposito F, Seifritz E, Formisano E, Morrone R, Scarabino T, Tedeschi G, et al. 2003. Real-time independent component analysis of fMRI time-series. Neuroimage. 20:2209–2224.
Fernandez GSpecht KWeis STendolkar IReuber MFell J et al.2003. Intrasubject reproducibility of presurgical language lateralization and mapping using fMRINeurology60969-975. Fernandez G, Specht K, Weis S, Tendolkar I, Reuber M, Fell J, et al. 2003. Intrasubject reproducibility of presurgical language lateralization and mapping using fMRI. Neurology 60:969–975.
Fox MDGreicius M. Clinical applications of resting state functional connectivity2010Front Syst Neurosci.419. Fox MD, Greicius M. Clinical applications of resting state functional connectivity. 2010. Front Syst Neurosci. 4:19.
Fox MDRaichle ME2007. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imagingNat Rev Neurosci8700-711. Fox MD, Raichle ME. 2007. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711.
Fox MDSnyder AZVincent JLCorbetta MVan Essen DCRaichle ME2005. The human brain is intrinsically organized into dynamic, anticorrelated functional networksProc Natl Acad Sci U S A1029673-9678. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. 2005. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102:9673–9678.
Friston KJ2011. Functional and effective connectivity: a reviewBrain Connectivity.113-36. Friston KJ. 2011. Functional and effective connectivity: a review. Brain Connectivity. 1:13–36.
Greicius MDSrivastava GReiss ALMenon V2004. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRIProc Natl Acad Sci U S A1014637-4642. Greicius MD, Srivastava G, Reiss AL, Menon V. 2004. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A 101:4637–4642.
Greicius M. Resting-state functional connectivity in neuropsychiatric disorders2008Curr Opin Neurol21424-340. Greicius M. Resting-state functional connectivity in neuropsychiatric disorders. 2008. Curr Opin Neurol 21:424–340.
Hyvärinen A1999. Fast and robust fixed-point algorithms for independent component analysisIEEE Trans Neural Networks10626-634. Hyvärinen A. 1999. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Networks 10:626–634.
Jenkinson MBannister PBrady MSmith S2002. Improved optimization for the robust and accurate linear registration and motion correction of brain imagesNeuroimage17825-841. Jenkinson M, Bannister P, Brady M, Smith S. 2002. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17:825–841.
Kannurpatti SSBiswal BB2008. Detection and scaling of task-induced fMRI-BOLD response using resting state fluctuationsNeuroimage401567-1574. Kannurpatti SS, Biswal BB. 2008. Detection and scaling of task-induced fMRI-BOLD response using resting state fluctuations. Neuroimage 40:1567–1574.
Kannurpatti SSMotes MARypma BBiswal BB2011. Increasing measurement accuracy of age-related BOLD signal change: minimizing vascular contributions by resting-state-fluctuation-of-amplitude scalingHum Brain Mapp321125-1140. Kannurpatti SS, Motes MA, Rypma B, Biswal BB. 2011. Increasing measurement accuracy of age-related BOLD signal change: minimizing vascular contributions by resting-state-fluctuation-of-amplitude scaling. Hum Brain Mapp 32:1125–1140.
Karvanen JTheis F. Spatial ICA of fMRI Data in Time WindowsAIP Conference ProceedingsGarching, Germany2004312-319. Karvanen J, Theis F. Spatial ICA of fMRI Data in Time Windows. In: AIP Conference Proceedings, Garching, Germany, 2004, pp. 312–319.
Kiviniemi VKantola JHJauhiainen JHyvarinen ATervonen O2003. Independent component analysis of nondeterministic fMRI signal sourcesNeuroimage19253-260. Kiviniemi V, Kantola JH, Jauhiainen J, Hyvarinen A, Tervonen O. 2003. Independent component analysis of nondeterministic fMRI signal sources. Neuroimage 19:253–260.
Kiviniemi VStarck TRemes JLong XNikkinen JHaapea M et al.2009. Functional segmentation of the brain cortex using high model order group PICAHum Brain Mapp303865-3886. Kiviniemi V, Starck T, Remes J, Long X, Nikkinen J, Haapea M, et al. 2009. Functional segmentation of the brain cortex using high model order group PICA. Hum Brain Mapp 30:3865–3886.
Long XYZuo XNKiviniemi VYang YZou QHZhu CZ et al.2008. Default mode network as revealed with multiple methods for resting-state functional MRI analysisJ Neurosci Methods.171349-355. Long XY, Zuo XN, Kiviniemi V, Yang Y, Zou QH, Zhu CZ, et al. 2008. Default mode network as revealed with multiple methods for resting-state functional MRI analysis. J Neurosci Methods. 171:349–355.
Marellec GFransson P2011. Assessing the influence of different ROI selection strategies on functional connectivity analyses of fMRI data acquired during steady-state conditionsPLoS ONE6e14788. Marellec G, Fransson P. 2011. Assessing the influence of different ROI selection strategies on functional connectivity analyses of fMRI data acquired during steady-state conditions. PLoS ONE 6:e14788.
McKeown MJMakeig SBrown GGJung TPKindermann SSBell AJSejnowski TJ1998. Analysis of fMRI data by blind separation into independent spatial componentsHum Brain Mapp6160-188. McKeown MJ, Makeig S, Brown GG, Jung TP, Kindermann SS, Bell AJ, Sejnowski TJ. 1998. Analysis of fMRI data by blind separation into independent spatial components. Hum Brain Mapp 6:160–188.
Mennes MKelly CZuo XNDi Martino ABiswal BBCastellanos FXMilham MP2010. Inter-individual differences in resting-state functional connectivity predict task-induced BOLD activityNeuroimage501690-1701. Mennes M, Kelly C, Zuo XN, Di Martino A, Biswal BB, Castellanos FX, Milham MP. 2010. Inter-individual differences in resting-state functional connectivity predict task-induced BOLD activity. Neuroimage 50:1690–1701.
Mennes MZuo XNKelly CDi Martino AZang YFBiswal B et al.2011. Linking inter-individual differences in neural activation and behavior to intrinsic brain dynamicsNeuroimage542950-2959. Mennes M, Zuo XN, Kelly C, Di Martino A, Zang YF, Biswal B, et al. 2011. Linking inter-individual differences in neural activation and behavior to intrinsic brain dynamics. Neuroimage 54:2950–2959.
Neumann JLohmann GZysset Svon Cramon DY2003. Within-subject variability of BOLD response dynamicsNeuroimage19784-796. Neumann J, Lohmann G, Zysset S, von Cramon DY. 2003. Within-subject variability of BOLD response dynamics. Neuroimage 19:784–796.
Raichle MEMacLeod AMSnyder AZPowers WJGusnard DAShulman GL2001. A default mode of brain functionProc Natl Acad Sci U S A98676-682. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. 2001. A default mode of brain function. Proc Natl Acad Sci U S A 98:676–682.
Rombouts SABarkhof FHoogenraad FGSprenger MScheltens P. Within-subject reproducibility of visual activation patterns with functional magnetic resonance imaging using multislice echo planar imaging1998Magn Reson Imaging16105-113 Rombouts SA, Barkhof F, Hoogenraad FG, Sprenger M, Scheltens P. Within-subject reproducibility of visual activation patterns with functional magnetic resonance imaging using multislice echo planar imaging. 1998. Magn Reson Imaging 16:105–113
Saad ZSRopella KMDeYoe EABandettini PA2003. The spatial extent of the BOLD responseNeuroimage19132-144. Saad ZS, Ropella KM, DeYoe EA, Bandettini PA. 2003. The spatial extent of the BOLD response. Neuroimage 19:132–144.
Salli EKorvenoja AVisa AKatila TAronen HJ2001. Reproducibility of fMRI: effect of the use of contextual informationNeuroimage13459-471. Salli E, Korvenoja A, Visa A, Katila T, Aronen HJ. 2001. Reproducibility of fMRI: effect of the use of contextual information. Neuroimage 13:459–471.
Smith SM2002. Fast robust automated brain extractionHum Brain Mapp17143-155. Smith SM. 2002. Fast robust automated brain extraction. Hum Brain Mapp 17:143–155.
Smith SMFox PTMiller KLGlahn DCFox PMMackay CE et al.2009. Correspondence of the brain's functional architecture during activation and restProc Natl Acad Sci U S A10613040-13045. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, et al. 2009. Correspondence of the brain's functional architecture during activation and rest. Proc Natl Acad Sci U S A 106:13040–13045.
Smith SMMiller KLSalimi-Khorshidi GWebster MBeckmann CFNichols TE et al.2011. Network modelling methods for FMRINeuroimage54875-891. Smith SM, Miller KL, Salimi-Khorshidi G, Webster M, Beckmann CF, Nichols TE, et al. 2011. Network modelling methods for FMRI. Neuroimage 54:875–891.
Tjandra TBrooks JCFigueiredo PWise RMatthews PMTracey I2005. Quantitative assessment of the reproducibility of functional activation measured with BOLD and MR perfusion imaging: implications for clinical trial designNeuroimage27393-401. Tjandra T, Brooks JC, Figueiredo P, Wise R, Matthews PM, Tracey I. 2005. Quantitative assessment of the reproducibility of functional activation measured with BOLD and MR perfusion imaging: implications for clinical trial design. Neuroimage 27:393–401.
van Gelderen PC WHWde Zwart JACohen LHallett MDuyn JH2005. Resolution and reproducibility of BOLD and perfusion functional MRI at 3.0 TeslaMagn Reson Med54569-576. van Gelderen P, C WHW, de Zwart JA, Cohen L, Hallett M, Duyn JH. 2005. Resolution and reproducibility of BOLD and perfusion functional MRI at 3.0 Tesla. Magn Reson Med 54:569–576.
Yan XKelley SGoldberg MBiswal BB2011. Detecting overlapped functional clusters in resting state fMRI with Connected Iterative Scan: a graph theory based clustering algorithmJ Neurosci Methods199108-118. Yan X, Kelley S, Goldberg M, Biswal BB. 2011. Detecting overlapped functional clusters in resting state fMRI with Connected Iterative Scan: a graph theory based clustering algorithm. J Neurosci Methods 199:108–118.
Yoo SSWei XDickey CCGuttmann CRPanych LP2005. Long-term reproducibility analysis of fMRI using hand motor taskInt J Neurosci11555-77. Yoo SS, Wei X, Dickey CC, Guttmann CR, Panych LP. 2005.Long-term reproducibility analysis of fMRI using hand motor task. Int J Neurosci 115:55–77.

Information & Authors

Information

Published In

cover image Brain Connectivity
Brain Connectivity
Volume 1Issue Number 42011
Pages: 339 - 347
PubMed: 22432423

History

Published online: 21 October 2011
Published in print: 2011
Published ahead of production: 27 September 2011

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Vesa Kiviniemi
Department of Diagnostic Radiology, Oulu University Hospital, Finland.
Tapani Vire
Department of Diagnostic Radiology, Oulu University Hospital, Finland.
Jukka Remes
Department of Diagnostic Radiology, Oulu University Hospital, Finland.
Ahmed Abou Elseoud
Department of Diagnostic Radiology, Oulu University Hospital, Finland.
Tuomo Starck
Department of Diagnostic Radiology, Oulu University Hospital, Finland.
Osmo Tervonen
Department of Diagnostic Radiology, Oulu University Hospital, Finland.
Juha Nikkinen
Department of Diagnostic Radiology, Oulu University Hospital, Finland.

Notes

Address correspondence to:Vesa KiviniemiDiagnostic RadiologyP. O. Box 50 90029 OYSFinland
E-mail: [email protected]

Author Disclosure Statement

None of the authors have competing financial interests.

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top