Conn: A Functional Connectivity Toolbox for Correlated and Anticorrelated Brain Networks
Abstract
Resting state functional connectivity reveals intrinsic, spontaneous networks that elucidate the functional architecture of the human brain. However, valid statistical analysis used to identify such networks must address sources of noise in order to avoid possible confounds such as spurious correlations based on non-neuronal sources. We have developed a functional connectivity toolbox Conn (www.nitrc.org/projects/conn) that implements the component-based noise correction method (CompCor) strategy for physiological and other noise source reduction, additional removal of movement, and temporal covariates, temporal filtering and windowing of the residual blood oxygen level-dependent (BOLD) contrast signal, first-level estimation of multiple standard functional connectivity magnetic resonance imaging (fcMRI) measures, and second-level random-effect analysis for resting state as well as task-related data. Compared to methods that rely on global signal regression, the CompCor noise reduction method allows for interpretation of anticorrelations as there is no regression of the global signal. The toolbox implements fcMRI measures, such as estimation of seed-to-voxel and region of interest (ROI)-to-ROI functional correlations, as well as semipartial correlation and bivariate/multivariate regression analysis for multiple ROI sources, graph theoretical analysis, and novel voxel-to-voxel analysis of functional connectivity. We describe the methods implemented in the Conn toolbox for the analysis of fcMRI data, together with examples of use and interscan reliability estimates of all the implemented fcMRI measures. The results indicate that the CompCor method increases the sensitivity and selectivity of fcMRI analysis, and show a high degree of interscan reliability for many fcMRI measures.
Get full access to this article
View all available purchase options and get full access to this article.
References
Achard SBullmore E2007. Efficiency and cost of economical brain functional networksPLoS Comput Biol3e17. Achard S, Bullmore E. 2007. Efficiency and cost of economical brain functional networks. PLoS Comput Biol 3:e17.
Achard SSalvador RWhitcher BSuckling JBullmore E2006. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubsJ Neurosci2663-72. Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E. 2006. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26:63–72.
Aizenstein HJButters MAWu MMazurkewicz LMStenger VAGianaros PJBecker TJReynolds CFCarter CS2009. Altered functioning of the executive control circuit in late-life depression: episodic and persistent phenomenaAm J Geriatr Psychiatry: Off J Am Assoc Geriatr Psychiatry17030-42. Aizenstein HJ, Butters MA, Wu M, Mazurkewicz LM, Stenger VA, Gianaros PJ, Becker TJ, Reynolds CF, Carter CS. 2009. Altered functioning of the executive control circuit in late-life depression: episodic and persistent phenomena. Am J Geriatr Psychiatry: Off J Am Assoc Geriatr Psychiatry 170:30–42.
Behzadi YRestom KLiau JLiu TT2007. A component based noise correction method (CompCor) for BOLD and perfusion based fMRINeuroImage3790-101. Behzadi Y, Restom K, Liau J, Liu TT. 2007. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage 37:90–101.
Beckmann CFDeLuca MDevlin JTSmith SM2005. Investigations into resting-state connectivity using independent component analysisPhilos Trans R Soc Lond B Biol Sci3601001-1013. Beckmann CF, DeLuca M, Devlin JT, Smith SM. 2005. Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360:1001–1013.
Beckmann CFMackay CEFilippini NSmith SM2009. Group comparison of resting-state FMRI data using multi-subject ICA and dual regressionNeuroimage47Suppl. 1S148. Beckmann CF, Mackay CE, Filippini N, Smith SM. 2009. Group comparison of resting-state FMRI data using multi-subject ICA and dual regression. Neuroimage 47:(Suppl. 1), S148.
Birn RMDiamon JBSmith MABandettini PA2006. Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRINeuroImage311536-1548. Birn RM, Diamon JB, Smith MA, Bandettini PA. 2006. Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. NeuroImage, 31:1536–1548.
Biswal BYetkin FZHaughton VMHyde JS1995. Functional connectivity in the motor cortex of resting human brain using echo-planar MRIMagn Reson Med34537-541. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. 1995. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541.
Biswal BB et al.2010. Towards discovery science of human brain functionProc Natl Acad Sci1074734-4739. Biswal BB, et al. 2010. Towards discovery science of human brain function. Proc Natl Acad Sci 107:4734–4739.
Buckner RLAndrews-Hanna JRSchacter DL2008. The brain's default network: anatomy, function, and relevance to diseaseAnn N Y Acad Sci11241-38. Buckner RL, Andrews-Hanna JR, Schacter DL. 2008. The brain's default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38.
Buckner RL et al.2009. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer's diseaseJ Neurosci291860-1873. Buckner RL, et al. 2009. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer's disease. J Neurosci 29:1860–1873.
Bullmore ESporns O2009. Complex brain networks: graph theoretical analysis of structural and functional systemsNat Rev Neurosci10186-198. Bullmore E, Sporns O. 2009. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198.
Calhoun VDAdali TPearlson GDPekar JJ2001. A method for making group inferences from functional MRI data using independent component analysisHum Brain Mapp14140-151. Calhoun VD, Adali T, Pearlson GD, Pekar JJ. 2001. A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp 14:140–151.
Calhoun VDAdali TPekar JJ2004. A method for comparing group fMRI data using independent component analysis: application to visual, motor and visuomotor tasksMagn Reson Imaging221181-1191. Calhoun VD, Adali T, Pekar JJ. 2004. A method for comparing group fMRI data using independent component analysis: application to visual, motor and visuomotor tasks. Magn Reson Imaging 22:1181–1191.
Castellanos FXMargulies DSKelly CUddin LQGhaffari MKirsch AShaw DShehzad ZDi Martino ABiswal BBSonuga-Barke EJRotrosen JAdler LAMilham MP2008. Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorderBiol Psychiatry63332-337. Castellanos FX, Margulies DS, Kelly C, Uddin LQ, Ghaffari M, Kirsch A, Shaw D, Shehzad Z, Di Martino A, Biswal BB, Sonuga-Barke EJ, Rotrosen J, Adler LA, Milham MP. 2008. Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biol Psychiatry 63:332–337.
Chai XJNieto-Castañón AÖngür DWhitfield-Gabrieli S2012. Anticorrelations in resting state networks without global signal regressionNeuroimage591420-1428. Chai XJ, Nieto-Castañón A, Öngür D, Whitfield-Gabrieli S. 2012. Anticorrelations in resting state networks without global signal regression. Neuroimage 59:1420–1428.
Chang CGlover GH2009. Effects of model-based physiological noise correction on default mode network anti-correlations and correlationsNeuroImage471448-1459. Chang C, Glover GH. 2009. Effects of model-based physiological noise correction on default mode network anti-correlations and correlations. NeuroImage 47:1448–1459.
Chen SRoss TJZhan WMyers CSChuang KSHeishman SJStein EAYang Y2008. Group independent component analysis reveals consistent resting-state networks across multiple sessionsBrain Res1239141-151. Chen S, Ross TJ, Zhan W, Myers CS, Chuang KS, Heishman SJ, Stein EA, Yang Y. 2008. Group independent component analysis reveals consistent resting-state networks across multiple sessions. Brain Res 1239:141–151.
Cohen ALFair DADosenbach NUMiezin FMDierker DVan Essen DCSchlaggar BLPetersen SE2008. Defining functional areas in individual human brains using resting functional connectivity MRINeuroImage4145-57. Cohen AL, Fair DA, Dosenbach NU, Miezin FM, Dierker D, Van Essen DC, Schlaggar BL, Petersen SE. 2008. Defining functional areas in individual human brains using resting functional connectivity MRI. NeuroImage 41:45–57.
Damoiseaux JSRombouts SABarkhof FScheltens PStam CJSmith SMBeckmann CF2006. Consistent resting-state networks across healthy subjectsProc Natl Acad Sci U S A10313848-13853. Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF. 2006. Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 103:13848–13853.
Deshpande GLaConte SPeltier SHu X2007. Integrated local correlation: A new measure of local coherence in fMRI dataHum Brain Mapp3013-23. Deshpande G, LaConte S, Peltier S, Hu X. 2007. Integrated local correlation: A new measure of local coherence in fMRI data. Hum Brain Mapp 30:13–23.
Di Martino AScheres AMargulies DSKelly AMUddin LQShehzad ZBiswal BWalters JRCastellanos FXMilham MP2008. Functional connectivity of human striatum: a resting state FMRI studyCereb Cortex182735-2747. Di Martino A, Scheres A, Margulies DS, Kelly AM, Uddin LQ, Shehzad Z, Biswal B, Walters JR, Castellanos FX, Milham MP. 2008. Functional connectivity of human striatum: a resting state FMRI study. Cereb Cortex 18:2735–2747.
Fair DASchlaggar BLCohen ALMiezin FMDosenbach NUWenger KKFox MDSnyder AZRaichle MEPetersen SE2007. A method for using blocked and event-related fMRI data to study “resting state” functional connectivityNeuroImage35396-405. Fair DA, Schlaggar BL, Cohen AL, Miezin FM, Dosenbach NU, Wenger KK, Fox MD, Snyder AZ, Raichle ME, Petersen SE. 2007. A method for using blocked and event-related fMRI data to study “resting state” functional connectivity. NeuroImage 35:396–405.
Fox MDRaichle ME2007. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imagingNat Rev Neurosci8700-711. Fox MD, Raichle ME. 2007. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711.
Fox MDSnyder AZVincent JLCorbetta MVan Essen DCRaichle ME2005. The human brain is intrinsically organized into dynamic, anticorrelated functional networksProc Natl Acad Sci U S A1029673-9678. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. 2005. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102:9673–9678.
Fox MDSnyder AZZacks JMRaichle ME2006. Coherent spontaneous activity accounts for trial-to-trial variability in human evoked brain responsesNat.Neurosci.9023-25. Fox MD, Snyder AZ, Zacks JM, Raichle ME. 2006. Coherent spontaneous activity accounts for trial-to-trial variability in human evoked brain responses. Nat.Neurosci. 90:23–25.
Fox MDZhang DSnyder AZRaichle ME2009. The global signal and observed anticorrelated resting state brain networksJ Neurophysiol1013270-3283. Fox MD, Zhang D, Snyder AZ, Raichle ME. 2009. The global signal and observed anticorrelated resting state brain networks. J Neurophysiol 101:3270–3283.
Fransson2005. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesisHum Brain Mapp26015-29. Fransson. 2005. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp 260:15–29.
Fransson PSkiold BHorsch SNordell ABlennow MLagercrantz HAden U2007. Resting-state networks in the infant brainProc Natl Acad Sci U S A10415531-15536. Fransson P, Skiold B, Horsch S, Nordell A, Blennow M, Lagercrantz H, Aden U. 2007. Resting-state networks in the infant brain. Proc Natl Acad Sci U S A 104:15531–15536.
Friston KJ1994. Functional and effective connectivity in neuroimaging: a synthesisHum Brain Mapp2056-78. Friston KJ. 1994. Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp 20:56–78.
Friston KJBuechel CFink GRMorris JRolls EDolan RJ1997. Psychophysiological and modulatory interactions in neuroimagingNeuroImage60218-229. Friston KJ, Buechel C, Fink GR, Morris J, Rolls E, Dolan RJ. 1997. Psychophysiological and modulatory interactions in neuroimaging. NeuroImage 60:218–229.
Friston KJWorsley KJFrackowiak RSJMazziotta JCEvans AC1994. Assessing the significance of focal activations using their spatial extentHum Brain Mapp1210-220. Friston KJ, Worsley KJ, Frackowiak RSJ, Mazziotta JC, Evans AC. 1994. Assessing the significance of focal activations using their spatial extent. Hum Brain Mapp 1:210–220.
Fukunaga MHorovitz SGvan Gelderen Pde Zwart JAJansma JMIkonomidou VNChu RDeckers RHLeopold DADuyn JH2006. Large-amplitude, spatially correlated fluctuations in BOLD fMRI signals during extended rest and early sleep stagesMagn Reson Imaging24979-992. Fukunaga M, Horovitz SG, van Gelderen P, de Zwart JA, Jansma JM, Ikonomidou VN, Chu R, Deckers RH, Leopold DA, Duyn JH. 2006. Large-amplitude, spatially correlated fluctuations in BOLD fMRI signals during extended rest and early sleep stages. Magn Reson Imaging 24:979–992.
Gitelman DRPenny WDAshburner JFriston KJ2003. Modeling regional and psychophysiologic interactions in fMRI: the importance of hemodynamic deconvolutionNeuroImage19200-207. Gitelman DR, Penny WD, Ashburner J, Friston KJ. 2003. Modeling regional and psychophysiologic interactions in fMRI: the importance of hemodynamic deconvolution. NeuroImage 19:200–207.
Goelman G2004. Radial correlation contrast—a functional connectivity MRI contrast to map changes in local neuronal communicationNeuroimage231432-1439. Goelman G. 2004. Radial correlation contrast—a functional connectivity MRI contrast to map changes in local neuronal communication. Neuroimage 23:1432–1439.
Greicius MDFlores BHMenon VGlover GHSolvason HBKenna HReiss ALSchatzberg AF2007. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamusBiol Psychiatry62429-437. Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB, Kenna H, Reiss AL, Schatzberg AF. 2007. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiatry 62:429–437.
Greicius MDKiviniemi VTervonen OVainionpaa VAlahuhta SReiss ALMenon V2008. Persistent default-mode network connectivity during light sedationHum Brain Mapp29839-847. Greicius MD, Kiviniemi V, Tervonen O, Vainionpaa V, Alahuhta S, Reiss AL, Menon V. 2008. Persistent default-mode network connectivity during light sedation. Hum Brain Mapp 29:839–847.
Greicius MDKrasnow BReiss ALMenon V2003. Functional connectivity in the resting brain: a network analysis of the default mode hypothesisProc Natl Acad Sci U S A100253-258. Greicius MD, Krasnow B, Reiss AL, Menon V. 2003. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 100:253–258.
Greicius MDSrivastava GReiss ALMenon V2004. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRIProc Natl Acad Sci U S A1014637-4642. Greicius MD, Srivastava G, Reiss AL, Menon V. 2004. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A 101:4637–4642.
Hamilton JPFurman DJChang CThomason MEDennis EGotlib IH2011. Default-mode and task positive network activity in major depressive disorder: implications for adaptive and maladaptive ruminationBiol Pschiatry70327-333. Hamilton JP, Furman DJ, Chang C, Thomason ME, Dennis E, Gotlib IH. 2011. Default-mode and task positive network activity in major depressive disorder: implications for adaptive and maladaptive rumination. Biol Pschiatry 70:327–333.
Hampson MPeterson BSSkudlarski PGatenby JCGore JC2002. Detection of functional connectivity using temporal correlations in MR imagesHum. Brain Mapp150247-262. Hampson M, Peterson BS, Skudlarski P, Gatenby JC, Gore JC. 2002. Detection of functional connectivity using temporal correlations in MR images. Hum. Brain Mapp 150:247–262.
Horwitz B2003. The elusive concept of brain connectivityNeuroImage190466-470. Horwitz B. 2003. The elusive concept of brain connectivity. NeuroImage 190:466–470.
Horovitz SGFukunaga Mde Zwart JAvan Gelderen PFulton SCBalkin TJDuyn JH2008. Low frequency BOLD fluctuations during resting wakefulness and light sleep: a simultaneous EEG-fMRI studyHum Brain Mapp29671-682. Horovitz SG, Fukunaga M, de Zwart JA, van Gelderen P, Fulton SC, Balkin TJ, Duyn JH. 2008. Low frequency BOLD fluctuations during resting wakefulness and light sleep: a simultaneous EEG-fMRI study. Hum Brain Mapp 29:671–682.
Kelly AMUddin LQBiswal BBCastellanos FXMilham MP2008. Competition between functional brain networks mediates behavioral variabilityNeuroimage39527-537. Kelly AM, Uddin LQ, Biswal BB, Castellanos FX, Milham MP. 2008. Competition between functional brain networks mediates behavioral variability. Neuroimage 39:527–537.
Kim JHLee JMJo HJKim SHLee JHKim STSeo SWCox RWNa DLKim SISaad ZS2010. Defining functional SMA and pre-SMA subregions in human MFC using resting state fMRI: functional connectivity-based parcellation methodNeuroimage492375-2386. Kim JH, Lee JM, Jo HJ, Kim SH, Lee JH, Kim ST, Seo SW, Cox RW, Na DL, Kim SI, Saad ZS. 2010. Defining functional SMA and pre-SMA subregions in human MFC using resting state fMRI: functional connectivity-based parcellation method. Neuroimage 49:2375–2386.
Koshino HCarpenter PAMinshew NJCherkassky VLKeller TAJust MA2005. Functional connectivity in an fMRI working memory task in high-functioning autismNeuroImage240810-821. Koshino H, Carpenter PA, Minshew NJ, Cherkassky VL, Keller TA, Just MA. 2005. Functional connectivity in an fMRI working memory task in high-functioning autism. NeuroImage 240:810–821.
Lancaster JL et al.2000. Automated Talairach atlas labels for functional brain mappingHum Brain Mapp10120-131. Lancaster JL, et al. 2000. Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp 10:120–131.
Latora VMarchiori M2001. Efficient behavior of small-world networksPhys Rev Lett87198701-198704. Latora V, Marchiori M. 2001. Efficient behavior of small-world networks. Phys Rev Lett 87:198701–198704.
Maldjian JALaurienti PJKraft RABurdette JH2003. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data setsNeuroImage191233-1239. Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH. 2003. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage 19:1233–1239.
Margulies DSKelly AMUddin LQBiswal BBCastellanos FXMilham MP2007. Mapping the functional connectivity of anterior cingulate cortexNeuroImage37579-588. Margulies DS, Kelly AM, Uddin LQ, Biswal BB, Castellanos FX, Milham MP. 2007. Mapping the functional connectivity of anterior cingulate cortex. NeuroImage 37:579–588.
Mennes MKelly CZuo XNDi Martino ABiswal BBCastellanos FXMilham MP2010. Inter-individual differences in resting-state functional connectivity predict task-induced BOLD activityNeuroimage501690-1701. Mennes M, Kelly C, Zuo XN, Di Martino A, Biswal BB, Castellanos FX, Milham MP. 2010. Inter-individual differences in resting-state functional connectivity predict task-induced BOLD activity. Neuroimage 50:1690–1701.
Murphy KBirn RMHandwerker DAJones TBBandettini PA2009. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?Neuroimage44893-905. Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA. 2009. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage 44:893–905.
Power JDBarnes KASnyder AZSchlaggar BLPetersen SE2012. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motionNeuroimage592142-2154. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. 2012. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59:2142–2154.
Raichle MEMacLeod AMSnyder AZPowers WJGusnard DAShulman GL2001. A default mode of brain functionProc Natl Acad Sci U S A98676-682. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. 2001. A default mode of brain function. Proc Natl Acad Sci U S A 98:676–682.
Rissman JGazzaley AD'Esposito M2004. Measuring functional connectivity during distinct stages of a cognitive taskNeuroImage230752-763. Rissman J, Gazzaley A, D'Esposito M. 2004. Measuring functional connectivity during distinct stages of a cognitive task. NeuroImage 230:752–763.
Roy AKShehzad ZMargulies DSKelly AMUddin LQGotimer KBiswal BBCastellanos FXMilham MP2009. Functional connectivity of the human amygdala using resting state fMRINeuroimage45614-626. Roy AK, Shehzad Z, Margulies DS, Kelly AM, Uddin LQ, Gotimer K, Biswal BB, Castellanos FX, Milham MP. 2009. Functional connectivity of the human amygdala using resting state fMRI. Neuroimage 45:614–626.
Salvador RSuckling JSchwarzbauer CBullmore E2005. Undirected graphs of frequency-dependent functional connectivity in whole brain networksPhilos Trans R Soc Lond B Biol Sci360937-946. Salvador R, Suckling J, Schwarzbauer C, Bullmore E. 2005. Undirected graphs of frequency-dependent functional connectivity in whole brain networks. Philos Trans R Soc Lond B Biol Sci 360:937–946.
Satterthwaite TDWolf DHLoughead JRuparel KElliott MAHakonarson HGur RCGur RE2012. Impact of in-scanner head motion on multiple measures of functional connectivity: Relevance for studies of neurodevelopment in youthNeuroimage60623-632. Satterthwaite TD, Wolf DH, Loughead J, Ruparel K, Elliott MA, Hakonarson H, Gur RC, Gur RE. 2012. Impact of in-scanner head motion on multiple measures of functional connectivity: Relevance for studies of neurodevelopment in youth. Neuroimage 60:623–632.
Siegle GJThompson WCarter CSSteinhauer SFThase ME.2007. Increased amygdala and decreased dorsolateral prefrontal BOLD responses in unipolar depression: related and independent featuresBiol Psychiatry610198-209. Siegle GJ, Thompson W, Carter CS, Steinhauer SF, Thase, ME. 2007. Increased amygdala and decreased dorsolateral prefrontal BOLD responses in unipolar depression: related and independent features. Biol Psychiatry 610:198–209.
Shehzad ZKelly AMReiss PTGee DGGotimer KUddin LQLee SHMargulies DSRoy AKBiswal BBPetkova ECastellanos FXMilham MP2009. The resting brain: unconstrained yet reliableCereb Cortex192209-2229. Shehzad Z, Kelly AM, Reiss PT, Gee DG, Gotimer K, Uddin LQ, Lee SH, Margulies DS, Roy AK, Biswal BB, Petkova E, Castellanos FX, Milham MP. 2009. The resting brain: unconstrained yet reliable. Cereb Cortex 19:2209–2229.
Stevens MPearlson GDCalhoun VD2009. Changes in the interaction of resting state neural networks from adolescence to adulthoodHum Brain Mapp302356-2366. Stevens M, Pearlson GD, Calhoun VD. 2009. Changes in the interaction of resting state neural networks from adolescence to adulthood. Hum Brain Mapp 30:2356–2366.
Uddin LQKelly AMBiswal BBCastellanos FXMilham MP2009. Functional connectivity of default mode network components: correlation, anticorrelation, and causalityHum Brain Mapp30625-637. Uddin LQ, Kelly AM, Biswal BB, Castellanos FX, Milham MP. 2009. Functional connectivity of default mode network components: correlation, anticorrelation, and causality. Hum Brain Mapp 30:625–637.
Uddin LZSupekar KAmin HRykhlevskaia ENguyen DAGreicius MDMenon V2010. Dissociable connectivity within human angular gyrus and intraparietal sulcus: evidence from functional and structural connectivityCereb Cortex202636-2646. Uddin LZ, Supekar K, Amin H, Rykhlevskaia E, Nguyen DA, Greicius MD, Menon V. 2010. Dissociable connectivity within human angular gyrus and intraparietal sulcus: evidence from functional and structural connectivity. Cereb Cortex 20:2636–2646.
Van Dijk KRHedden TVenkataraman AEvans KCLazar SWBuckner RL2010. Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimizationJ Neurophysiol103297-321. Van Dijk KR, Hedden T, Venkataraman A, Evans KC, Lazar SW, Buckner RL. 2010. Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J Neurophysiol 103:297–321.
Van Dijk KRSabuncu MRBuckner RL2012. The influence of head motion on intrinsic functional connectivity MRINeuroimage59431-438. Van Dijk KR, Sabuncu MR, Buckner RL. 2012. The influence of head motion on intrinsic functional connectivity MRI. Neuroimage 59:431–438.
Vincent JLPatel GHFox MDSnyder AZBaker JTVan Essen DCZempel JMSnyder LHCorbetta MRaichle ME2007. Intrinsic functional architecture in the anaesthetized monkey brainNature44783-86. Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, Van Essen DC, Zempel JM, Snyder LH, Corbetta M, Raichle ME. 2007. Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447:83–86.
Wang KLiang MWang LTian LZhang XLi KJiang T2007. Altered functional connectivity in early Alzheimer's disease: a resting-state fMRI studyHum Brain Mapp28967-978. Wang K, Liang M, Wang L, Tian L, Zhang X, Li K, Jiang T. 2007. Altered functional connectivity in early Alzheimer's disease: a resting-state fMRI study. Hum Brain Mapp 28:967–978.
Watts DJStrogatz SH1998. Collective dynamics of “small-world” networksNature393440-442. Watts DJ, Strogatz SH. 1998. Collective dynamics of “small-world” networks. Nature 393:440–442.
Weissenbacher AKasess CGerstl FLanzenberger RMoser EWindischberger C2009. Correlations and anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of preprocessing strategiesNeuroimage471408-1416. Weissenbacher A, Kasess C, Gerstl F, Lanzenberger R, Moser E, Windischberger C. 2009. Correlations and anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of preprocessing strategies. Neuroimage 47:1408–1416.
Weng SJWiggins JLPeltier SJCarrasco MRisi SLord CMonk CS2010. Alterations of resting state functional connectivity in the default network in adolescents with autism spectrum disorderBrain Res1313202-214. Weng SJ, Wiggins JL, Peltier SJ, Carrasco M, Risi S, Lord C, Monk CS. 2010. Alterations of resting state functional connectivity in the default network in adolescents with autism spectrum disorder. Brain Res 1313:202–214.
Whitfield-Gabrieli SFord J2012. Assessment of default mode network activity and connectivity in psychopathologyAnnu Rev Clin Psychol849-76. Whitfield-Gabrieli S, Ford J. 2012. Assessment of default mode network activity and connectivity in psychopathology. Annu Rev Clin Psychol 8:49–76.
Whitfield-Gabrieli SThermenos HWMilanovic STsuang MTFaraone SVMcCarley RWShenton MEGreen AINieto-Castanon ALaViolette PWojcik JGabrieli JSeidman LJ2009. Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophreniaProc Natl Acad Sci U S A1061279-1284. Whitfield-Gabrieli S, Thermenos HW, Milanovic S, Tsuang MT, Faraone SV, McCarley RW, Shenton ME, Green, AI, Nieto-Castanon A, LaViolette P, Wojcik J, Gabrieli J, Seidman LJ. 2009. Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc Natl Acad Sci U S A 106:1279–1284.
Zuo XNDi Martino AKelly CShehzad ZEGee DGKlein DFCastellanos FXBiswal BBMilham MP2010a. The oscillating brain: complex and reliableNeuroimage491432-1445. Zuo XN, Di Martino A, Kelly C, Shehzad ZE, Gee DG, Klein DF, Castellanos FX, Biswal BB, Milham MP. 2010a. The oscillating brain: complex and reliable. Neuroimage 49:1432–1445.
Zuo XNKelly CAdelstein JSKlein DFCastellanos FXMilham MP2010b. Reliable intrinsic connectivity networks: Test-retest evaluation using ICA and dual regression approachNeuroimage492163-2177. Zuo XN, Kelly C, Adelstein JS, Klein DF, Castellanos FX, Milham MP. 2010b. Reliable intrinsic connectivity networks: Test-retest evaluation using ICA and dual regression approach. Neuroimage 49:2163–2177.
Information & Authors
Information
Published In
Copyright
Copyright 2012, Mary Ann Liebert, Inc.
History
Published online: 6 August 2012
Published ahead of print: 19 July 2012
Published in print: 2012
Published ahead of production: 29 May 2012
Topics
Authors
Author Disclosure Statement
The authors of the study have no conflict of interest to declare.
Metrics & Citations
Metrics
Citations
Export Citation
Export citation
Select the format you want to export the citations of this publication.
View Options
Get Access
Access content
To read the fulltext, please use one of the options below to sign in or purchase access.⚠ Society Access
If you are a member of a society that has access to this content please log in via your society website and then return to this publication.