Research Article
No access
Published Online: 27 September 2013

Slow Turning Lateral Vessel Bioreactor Improves Embryoid Body Formation and Cardiogenic Differentiation of Mouse Embryonic Stem Cells

Publication: Cellular Reprogramming (Formerly "Cloning and Stem Cells")
Volume 15, Issue Number 5

Abstract

Embryonic stem cells (ESCs) have the ability to form aggregates, which are called embryoid bodies (EBs). EBs mimic early embryonic development and are commonly produced for cardiomyogenesis. Here, we describe a method of EB formation in hydrodynamic conditions using a slow-turning lateral vessel (STLV) bioreactor and the subsequent differentiation of EBs into cardiomyocytes. EBs formed in the STLV were compared with conventional techniques, such as hanging drop (HD) or static suspension cell culture (SSC), for homogeneity of EB size, shape, proliferation, apoptosis, and in vitro cardiac differentiation. After 3 days of culture, a four-fold improvement in the yield of EB formation/mL, a six-fold enhancement in total yield of EB/mL, and a nearly 10-fold reduction of cells that failed to incorporate into EBs were achieved in STLV versus SSC. During cardiac differentiation, a 1.5- to 4.2-fold increase in the area of cardiac troponin T (cTnT) per single EB in STLV versus SSC and HD was achieved. These results demonstrate that the STLV method improves the quality and quantity of ES cells to form EBs and enhances the efficiency of cardiac differentiation. We have demonstrated that the mechanical method of cell differentiation creates different microenvironments for the cells and thus influences their lineage commitments, even when genetic origin and the culture medium are the same. Ascorbic acid (ASC) improved further cardiac commitment in differentiation assays. Hence, this culture system is suitable for the production of large numbers of cells for clinical cell replacement therapies and industrial drug testing applications.

Get full access to this article

View all available purchase options and get full access to this article.

References

Akazawa H.Komuro I.2005. Cardiac transcription factor Csx/Nkx2-5: Its role in cardiac development and diseasesPharmacol. Ther.107252-268. Akazawa, H., and Komuro, I. (2005). Cardiac transcription factor Csx/Nkx2-5: Its role in cardiac development and diseases. Pharmacol. Ther. 107, 252–268.
Barile L.Cerisoli F.Frati G.Gaetani R.Chimenti I.Forte E.Cassinelli L.Spinardi L.Altomare C.Kizana E.Giacomello A.Messina E.Ottolenghi S.Magli M.C.2011. Bone marrow-derived cells can acquire cardiac stem cells properties in damaged heartJ. Cell. Mol. Med.1563-71. Barile, L., Cerisoli, F., Frati, G., Gaetani, R., Chimenti, I., Forte, E., Cassinelli, L., Spinardi, L., Altomare, C., Kizana, E., Giacomello, A., Messina, E., Ottolenghi, S., and Magli, M.C. (2011). Bone marrow-derived cells can acquire cardiac stem cells properties in damaged heart. J. Cell. Mol. Med. 15, 63–71.
Boheler K.R.Czyz J.Tweedie D.Yang H.T.Anisimov S.V.Wobus A.M.2002. Differentiation of pluripotent embryonic stem cells into cardiomyocytesCirc. Res.91189-201. Boheler, K.R., Czyz, J., Tweedie, D., Yang, H.T., Anisimov, S.V., and Wobus, A.M. (2002). Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ. Res. 91, 189–201.
Cao N.Liu Z.Chen Z.Wang J.Chen T.Zhao X.Ma Y.Qin L.Kang J.Wei B.Wang L.Jin Y.Yang H.T.2012. Ascorbic acid enhances the cardiac differentiation of induced pluripotent stem cells through promoting the proliferation of cardiac progenitor cellsCell Res.22219-236. Cao, N., Liu, Z., Chen, Z., Wang, J., Chen, T., Zhao, X., Ma, Y., Qin, L., Kang, J., Wei, B., Wang, L., Jin, Y., and Yang, H.T. (2012). Ascorbic acid enhances the cardiac differentiation of induced pluripotent stem cells through promoting the proliferation of cardiac progenitor cells. Cell Res. 22, 219–236.
Carpenedo R.L.Sargent C.Y.McDevitt T.C.2007. Rotary suspension culture enhances the efficiency, yield, and homogeneity of embryoid body differentiationStem Cells252224-2234. Carpenedo, R.L., Sargent, C.Y., and McDevitt, T.C. (2007). Rotary suspension culture enhances the efficiency, yield, and homogeneity of embryoid body differentiation. Stem Cells 25, 2224–2234.
Caspi O.Huber I.Kehat I.Habib M.Arbel G.Gepstein A.Yankelson L.Aronson D.Beyar R.Gepstein L.2007. Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat heartsJ. Am. Coll. Cardiol.501884-1893. Caspi, O., Huber, I., Kehat, I., Habib, M., Arbel, G., Gepstein, A., Yankelson, L., Aronson, D., Beyar, R., and Gepstein, L. (2007). Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J. Am. Coll. Cardiol. 50, 1884–1893.
Chen M.Lin Y.Q.Xie S.L.Wu H.F.Wang J.F.2011. Enrichment of cardiac differentiation of mouse embryonic stem cells by optimizing the hanging drop methodBiotechnol. Lett.33853-858. Chen, M., Lin, Y.Q., Xie, S.L., Wu, H.F., and Wang, J.F. (2011). Enrichment of cardiac differentiation of mouse embryonic stem cells by optimizing the hanging drop method. Biotechnol. Lett. 33, 853–858.
Chisti Y.2001. Hydrodynamic damage to animal cellsCrit. Rev. Biotechnol.2167-110. Chisti, Y. (2001). Hydrodynamic damage to animal cells. Crit. Rev. Biotechnol. 21, 67–110.
Choi D.Lee H.J.Jee S.Jin S.Koo S.K.Paik S.S.Jung S.C.Hwang S.Y.Lee K.S.Oh B.2005. In vitro differentiation of mouse embryonic stem cells: Enrichment of endodermal cells in the embryoid bodyStem Cells.23817-827. Choi, D., Lee, H.J., Jee, S., Jin, S., Koo, S.K., Paik, S.S., Jung, S.C., Hwang, S.Y., Lee, K.S., and Oh, B. (2005). In vitro differentiation of mouse embryonic stem cells: Enrichment of endodermal cells in the embryoid body. Stem Cells. 23, 817–827.
Dang S.M.Kyba M.Perlingeiro R.Daley G.Q.Zandstra P.W.2002. Efficiency of embryoid body formation and hematopoietic development from embryonic stem cells in different culture systemsBiotechnol. Bioeng.78442-453. Dang, S.M., Kyba, M., Perlingeiro, R., Daley, G.Q., and Zandstra, P.W. (2002). Efficiency of embryoid body formation and hematopoietic development from embryonic stem cells in different culture systems. Biotechnol. Bioeng. 78, 442–453.
Desbaillets I.Ziegler U.Groscurth P.Gassmann M.2000. Embryoid bodies: An in vitro model of mouse embryogenesisExp. Physiol.85645-651. Desbaillets, I., Ziegler, U., Groscurth, P., and Gassmann, M. (2000). Embryoid bodies: An in vitro model of mouse embryogenesis. Exp. Physiol. 85, 645–651.
Fujita J.Crane A.M.Souza M.K.Dejosez M.Kyba M.Flavell R.A.Thomson J.A.Zwaka T.P.2008. Caspase activity mediates the differentiation of embryonic stem cellsCell Stem Cell2595-601. Fujita, J., Crane, A.M., Souza, M.K., Dejosez, M., Kyba, M., Flavell, R.A., Thomson, J.A., and Zwaka, T.P. (2008). Caspase activity mediates the differentiation of embryonic stem cells. Cell Stem Cell 2, 595–601.
Gerecht-Nir S.Cohen S.Itskovitz-Eldor J.2004. Bioreactor cultivation enhances the efficiency of human embryoid body (hEB) formation and differentiationBiotechnol. Bioeng.86493-502. Gerecht-Nir, S., Cohen, S., and Itskovitz-Eldor, J. (2004). Bioreactor cultivation enhances the efficiency of human embryoid body (hEB) formation and differentiation. Biotechnol. Bioeng. 86, 493–502.
Gonzales C.Ullrich N.D.Gerber S.Berthonneche C.Niggli E.Pedrazzini T.2012. Isolation of cardiovascular precursor cells from the human fetal heartTiss. Eng. Part A.18198-207. Gonzales, C., Ullrich, N.D., Gerber, S., Berthonneche, C., Niggli, E., and Pedrazzini, T. (2012). Isolation of cardiovascular precursor cells from the human fetal heart. Tiss. Eng. Part A. 18, 198–207.
Graichen R.Xu X.Braam S.R.Balakrishnan T.Norfiza S.Sieh S.Soo S.Y.Tham S.C.Mummery C.Colman A.Zweigerdt R.Davidson B.P.2008. Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPKDifferentiation.76357-370. Graichen, R., Xu, X., Braam, S.R., Balakrishnan, T., Norfiza, S., Sieh, S., Soo, S.Y., Tham, S.C., Mummery, C., Colman, A., Zweigerdt, R., and Davidson, B.P. (2008). Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK. Differentiation. 76, 357–370.
Hammond T.G.Hammond J.M.2001. Optimized suspension culture: The rotating-wall vesselAm. J. Physiol. Renal Physiol.281F12-F25. Hammond, T.G., and Hammond, J.M. (2001). Optimized suspension culture: The rotating-wall vessel. Am. J. Physiol. Renal Physiol. 281, F12–F25.
He W.Ye L.Li S.Liu H.Wang Q.Fu X.Han W.Chen Z.2012. Stirred suspension culture improves embryoid body formation and cardiogenic differentiation of genetically modified embryonic stem cellsBiol. Pharm. Bull.35308-316. He, W., Ye, L., Li, S., Liu, H., Wang, Q., Fu, X., Han, W., and Chen, Z. (2012). Stirred suspension culture improves embryoid body formation and cardiogenic differentiation of genetically modified embryonic stem cells. Biol. Pharm. Bull. 35, 308–316.
Heng B.C.Haider H.Sim E.K.Cao T.Ng S.C.2004. Strategies for directing the differentiation of stem cells into the cardiomyogenic lineage in vitroCardiovasc. Res.6234-42. Heng, B.C., Haider, H., Sim, E.K., Cao, T., and Ng, S.C. (2004). Strategies for directing the differentiation of stem cells into the cardiomyogenic lineage in vitro. Cardiovasc. Res. 62, 34-–42.
Hopfl G.Gassmann M.Desbaillets I.2004. Differentiating embryonic stem cells into embryoid bodiesMethods Mol. Biol.25479-98. Hopfl, G., Gassmann, M., and Desbaillets, I. (2004). Differentiating embryonic stem cells into embryoid bodies. Methods Mol. Biol. 254, 79–98.
Invernici G.Cristini S.Madeddu P.Brock S.Spillmann F.Bernasconi P.Cappelletti C.Calatozzolo C.Fascio U.Bisleri G.Muneretto C.Alessandri G.Parati E.A.2008. Human adult skeletal muscle stem cells differentiate into cardiomyocyte phenotype in vitroExp. Cell Res.314366-376. Invernici, G., Cristini, S., Madeddu, P., Brock, S., Spillmann, F., Bernasconi, P., Cappelletti, C., Calatozzolo, C., Fascio, U., Bisleri, G., Muneretto, C., Alessandri, G., and Parati, E.A. (2008). Human adult skeletal muscle stem cells differentiate into cardiomyocyte phenotype in vitro. Exp. Cell Res. 314, 366–376.
Karbanová J.Mokry J.2002. Histological and histochemical analysis of embryoid bodiesActa. Histochem.104361-365. Karbanová, J., and Mokry, J. (2002). Histological and histochemical analysis of embryoid bodies. Acta. Histochem. 104, 361–365.
Kehat I.Kenyagin-Karsenti D.Snir M.Segev H.Amit M.Gepstein A.Livne E.Binah O.Itskovitz-Eldor J.Gepstein L.2001. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytesJ. Clin. Invest.108407-414. Kehat, I., Kenyagin-Karsenti, D., Snir, M., Segev, H., Amit, M., Gepstein, A., Livne, E., Binah, O., Itskovitz-Eldor, J., and Gepstein, L. (2001). Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest. 108, 407–414.
Kobolak J.Mamo S.Rungsiwiwut R.Ujhelly O.Csonka E.Hadlaczky G.Dinnyes A.2012. Comparative analysis of nuclear transfer embryo-derived mouse embryonic stem cells. Part I: Cellular characterizationCell. Reprogram.1456-67. Kobolak, J., Mamo, S., Rungsiwiwut, R., Ujhelly, O., Csonka, E., Hadlaczky, G., and Dinnyes, A. (2012). Comparative analysis of nuclear transfer embryo-derived mouse embryonic stem cells. Part I: Cellular characterization. Cell. Reprogram. 14, 56–67.
Koike M.Sakaki S.Amano Y.Kurosawa H.2007. Characterization of embryoid bodies of mouse embryonic stem cells formed under various culture conditions and estimation of differentiation status of such bodiesJ. Biosci. Bioeng.104294-299. Koike, M., Sakaki, S., Amano, Y., and Kurosawa, H. (2007). Characterization of embryoid bodies of mouse embryonic stem cells formed under various culture conditions and estimation of differentiation status of such bodies. J. Biosci. Bioeng. 104, 294–299.
Kurosawa H.2007. Methods for inducing embryoid body formation: In vitro differentiation system of embryonic stem cellsJ. Biosci. Bioeng.103389-398. Kurosawa, H. (2007). Methods for inducing embryoid body formation: In vitro differentiation system of embryonic stem cells. J. Biosci. Bioeng. 103, 389–398.
Laflamme M.A.Zbinden S.Epstein S.E.Murry C.E.2007. Cell-based therapy for myocardial ischemia and infarction: Pathophysiological mechanismsAnnu. Rev. Pathol.2307-339. Laflamme, M.A., Zbinden, S., Epstein, S.E., and Murry, C.E. (2007). Cell-based therapy for myocardial ischemia and infarction: Pathophysiological mechanisms. Annu. Rev. Pathol. 2, 307–339.
Lü S.Liu S.He W.Duan C.Li Y.Liu Z.Zhang Y.Hao T.Wang Y.Li D.Wang C.Gao S.2008. Bioreactor cultivation enhances NTEB formation and differentiation of NTES cells into cardiomyocytesCloning Stem Cells10363-370. Lü, S., Liu, S., He, W., Duan, C., Li, Y., Liu, Z., Zhang, Y., Hao, T., Wang, Y., Li, D., Wang, C., and Gao, S. (2008). Bioreactor cultivation enhances NTEB formation and differentiation of NTES cells into cardiomyocytes. Cloning Stem Cells 10, 363–370.
Ma Q.Zhou B.Pu W.T.2008. Reassessment of Isl1 and Nkx2-5 cardiac fate maps using a Gata4-based reporter of Cre activityDev. Biol.32398-104. Ma, Q., Zhou, B., and Pu, W.T. (2008). Reassessment of Isl1 and Nkx2-5 cardiac fate maps using a Gata4-based reporter of Cre activity. Dev. Biol. 323, 98–104.
Magin T.M.McWhir J.Melton D.W.1992. A new mouse embryonic stem cell line with good germ line contribution and gene targeting frequencyNucleic Acids Res.203795-3796. Magin, T.M., McWhir, J., and Melton, D.W. (1992). A new mouse embryonic stem cell line with good germ line contribution and gene targeting frequency. Nucleic Acids Res. 20, 3795–3796.
Messina E.De Angelis L.Frati G.Morrone S.Chimenti S.Fiordaliso F.Salio M.Battaglia M.Latronico M.V.Coletta M.Vivarelli E.Frati L.Cossu G.Giacomello A.2004. Isolation and expansion of adult cardiac stem cells from human and murine heartCirc. Res.95911-921. Messina, E., De Angelis, L., Frati, G., Morrone, S., Chimenti, S., Fiordaliso, F., Salio, M., Battaglia, M., Latronico, M.V., Coletta, M., Vivarelli, E., Frati, L., Cossu, G., and Giacomello, A. (2004). Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ. Res. 95, 911–921.
Mummery C.Ward D.van den Brink C.E.Bird S.D.Doevendans P.A.Opthof T.Brutel de la Riviere A.Tertoolen L.van der Heyden M.Pera M.2002. Cardiomyocyte differentiation of mouse and human embryonic stem cellsJ. Anat.200233-242. Mummery, C., Ward, D., van den Brink, C.E., Bird, S.D., Doevendans, P.A., Opthof, T., Brutel de la Riviere, A., Tertoolen, L., van der Heyden, M., and Pera, M. (2002). Cardiomyocyte differentiation of mouse and human embryonic stem cells. J. Anat. 200, 233–242.
Mummery C.Ward-van Oostwaard D.Doevendans P.Spijker R.van den Brink S.Hassink R.van der Heyden M.Opthof T.Pera M.de la Riviere A.B.Passier R.Tertoolen L.2003. Differentiation of human embryonic stem cells to cardiomyocytes: Role of coculture with visceral endoderm-like cellsCirculation.1072733-2740. Mummery, C., Ward-van Oostwaard, D., Doevendans, P., Spijker, R., van den Brink, S., Hassink, R., van der Heyden, M., Opthof, T., Pera, M., de la Riviere, A.B., Passier, R., and Tertoolen, L. (2003). Differentiation of human embryonic stem cells to cardiomyocytes: Role of coculture with visceral endoderm-like cells. Circulation. 107, 2733–2740.
Mummery C.van der Heyden M.A.de Boer T.P.Passier R.Ward D.van den Brink S.van Rooijen M.van de Stolpe A.2007. Cardiomyocytes from human and mouse embryonic stem cellsMethods Mol. Med.140249-272. Mummery, C., van der Heyden, M.A., de Boer, T.P., Passier, R., Ward, D., van den Brink, S., van Rooijen, M., and van de Stolpe, A. (2007). Cardiomyocytes from human and mouse embryonic stem cells. Methods Mol. Med. 140, 249–272.
Nagy A.Gertsenstein M.Vintersten K.Behringer R.2006a. Preparing feeder cell layers from STO or mouse embryo fibroblast (MEF) cells: Treatment with mitomycin CCSH. Protoc.20061. Nagy, A., Gertsenstein, M., Vintersten, K., and Behringer, R. (2006a). Preparing feeder cell layers from STO or mouse embryo fibroblast (MEF) cells: Treatment with mitomycin C. CSH. Protoc. 2006 (1).
Nagy A.Gertsenstein M.Vintersten K.Behringer R.2006b. Preparing mouse embryo fibroblastsCSH. Protoc.20061. Nagy, A., Gertsenstein, M., Vintersten, K., and Behringer, R. (2006b). Preparing mouse embryo fibroblasts. CSH. Protoc. 2006 (1).
Passier R.Mummery C.2005. Cardiomyocyte differentiation from embryonic and adult stem cellsCurr. Opin. Biotechnol.16498-502. Passier, R., and Mummery, C. (2005). Cardiomyocyte differentiation from embryonic and adult stem cells. Curr. Opin. Biotechnol. 16, 498–502.
Pekkanen-Mattila M.Kerkela E.Tanskanen J.M.Pietila M.Pelto-Huikko M.Hyttinen J.Skottman H.Suuronen R.Aalto-Setala K.2009. Substantial variation in the cardiac differentiation of human embryonic stem cell lines derived and propagated under the same conditions—a comparison of multiple cell linesAnn. Med.41360-370. Pekkanen-Mattila, M., Kerkela, E., Tanskanen, J.M., Pietila, M., Pelto-Huikko, M., Hyttinen, J., Skottman, H., Suuronen, R., and Aalto-Setala, K. (2009). Substantial variation in the cardiac differentiation of human embryonic stem cell lines derived and propagated under the same conditions—a comparison of multiple cell lines. Ann. Med. 41, 360–370.
Pekkanen-Mattila M.Pelto-Huikko M.Kujala V.Suuronen R.Skottman H.Aalto-Setälä K.Kerkelä E.2010. Spatial and temporal expression pattern of germ layer markers during human embryonic stem cell differentiation in embryoid bodiesHistochem. Cell. Biol.133595-606. Pekkanen-Mattila, M., Pelto-Huikko, M., Kujala, V., Suuronen, R., Skottman, H., Aalto-Setälä, K., and Kerkelä, E. (2010). Spatial and temporal expression pattern of germ layer markers during human embryonic stem cell differentiation in embryoid bodies. Histochem. Cell. Biol. 133, 595–606.
Penn M.S.Mal N.2006. Stem cells in cardiovascular disease: Methods and protocolsMethods Mol. Med.129329-351. Penn, M.S., and Mal, N. (2006). Stem cells in cardiovascular disease: Methods and protocols. Methods Mol. Med. 129, 329–351.
Ranganayakulu G.Elliott D.A.Harvey R.P.Olson E.N.1998. Divergent roles for NK-2 class homeobox genes in cardiogenesis in flies and miceDevelopment1253037-3048. Ranganayakulu, G., Elliott, D.A., Harvey, R.P., and Olson, E.N. (1998). Divergent roles for NK-2 class homeobox genes in cardiogenesis in flies and mice. Development 125, 3037–3048.
Reinecke H.Murry C.E.2000. Transmural replacement of myocardium after skeletal myoblast grafting into the heart. Too much of a good thing?Cardiovasc. Pathol.9337-344. Reinecke, H., and Murry, C.E. (2000). Transmural replacement of myocardium after skeletal myoblast grafting into the heart. Too much of a good thing? Cardiovasc. Pathol. 9, 337–344.
Rungarunlert S.Techakumphu M.Pirity M.K.Dinnyes A.2009. Embryoid body formation from embryonic and induced pluripotent stem cells: Benefits of bioreactorsWorld J. Stem Cells.111-21. Rungarunlert, S., Techakumphu, M., Pirity, M.K., Dinnyes, A. (2009). Embryoid body formation from embryonic and induced pluripotent stem cells: Benefits of bioreactors. World J. Stem Cells. 1, 11–21.
Rungarunlert S.Klincumhom N.Bock I.Nemes C.Techakumphu M.Pirity M.K.Dinnyes A.2011. Enhanced cardiac differentiation of mouse embryonic stem cells by use of the slow-turning, lateral vessel (STLV) bioreactorBiotechnol. Lett.331565-1573. Rungarunlert, S., Klincumhom, N., Bock, I., Nemes, C., Techakumphu, M., Pirity, M.K., and Dinnyes, A. (2011). Enhanced cardiac differentiation of mouse embryonic stem cells by use of the slow-turning, lateral vessel (STLV) bioreactor. Biotechnol. Lett. 33, 1565–1573.
Schwartz R.J.Olson E.N.1999. Building the heart piece by piece: Modularity of cis-elements regulating Nkx2-5 transcriptionDevelopment1264187-4192. Schwartz, R.J., and Olson, E.N. (1999). Building the heart piece by piece: Modularity of cis-elements regulating Nkx2-5 transcription. Development 126, 4187–4192.
Snir M.Kehat I.Gepstein A.Coleman R.Itskovitz-Eldor J.Livne E.Gepstein L.2003. Assessment of the ultrastructural and proliferative properties of human embryonic stem cell-derived cardiomyocytesAm. J. Physiol. Heart Circ. Physiol.285H2355-H2363. Snir, M., Kehat, I., Gepstein, A., Coleman, R., Itskovitz-Eldor, J., Livne, E., and Gepstein, L. (2003). Assessment of the ultrastructural and proliferative properties of human embryonic stem cell-derived cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 285, H2355–H2363.
Takahashi T.Lord B.Schulze P.C.Fryer R.M.Sarang S.S.Gullans S.R.Lee R.T.2003. Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytesCirculation1071912-1916. Takahashi, T., Lord, B., Schulze, P.C., Fryer, R.M., Sarang, S.S., Gullans, S.R., and Lee, R.T. (2003). Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation 107, 1912–1916.
White S.M.Claycomb W.C.2003. Cardiac cell transplantation: Protocols and applicationsMethods Mol. Biol.21983-95. White, S.M., and Claycomb, W.C. (2003). Cardiac cell transplantation: Protocols and applications. Methods Mol. Biol. 219, 83–95.
Yirme G.Amit M.Laevsky I.Osenberg S.Itskovitz-Eldor J.2008. Establishing a dynamic process for the formation, propagation, and differentiation of human embryoid bodiesStem Cells Dev.171227-1241. Yirme, G., Amit, M., Laevsky, I., Osenberg, S., and Itskovitz-Eldor, J. (2008). Establishing a dynamic process for the formation, propagation, and differentiation of human embryoid bodies. Stem Cells Dev. 17, 1227–1241.
Zhou B.von Gise A.Ma Q.Rivera-Feliciano J.Pu W.T.2008. Nkx2-5- and Isl1-expressing cardiac progenitors contribute to proepicardiumBiochem. Biophys. Res. Commun.375450-453. Zhou, B., von Gise, A., Ma, Q., Rivera-Feliciano, J., and Pu, W.T. (2008). Nkx2-5- and Isl1-expressing cardiac progenitors contribute to proepicardium. Biochem. Biophys. Res. Commun. 375, 450–453.

Information & Authors

Information

Published In

cover image Cellular Reprogramming
Cellular Reprogramming (Formerly "Cloning and Stem Cells")
Volume 15Issue Number 5October 2013
Pages: 443 - 458
PubMed: 24020697

History

Published in print: October 2013
Published online: 27 September 2013
Published ahead of print: 10 September 2013

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Sasitorn Rungarunlert
BioTalentum Ltd., Gödöllö, H-2100, Hungary.
Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
Department of Preclinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakorn Pathom, 73710, Thailand.
Nuttha Klincumhom
BioTalentum Ltd., Gödöllö, H-2100, Hungary.
Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
Theerawat Tharasanit
Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
Mongkol Techakumphu
Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
Melinda K. Pirity
BioTalentum Ltd., Gödöllö, H-2100, Hungary.
Present address: Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged H-6726, Hungary.
Andras Dinnyes
BioTalentum Ltd., Gödöllö, H-2100, Hungary.
Molecular Animal Biotechnology Laboratory, Szent Istvan University, H-2100 Gödöllö, Hungary.
Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands.

Notes

Address correspondence to:Andras DinnyesBioTalentum Ltd.Gödöllö, H-2100,Hungary
E-mail: [email protected]

Author Disclosure Statement

The authors declare that no conflicting financial interests exist.

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top