Research Article
No access
Published Online: 22 February 2022

GeneTargeter: Automated In Silico Design for Genome Editing in the Malaria Parasite, Plasmodium falciparum

Publication: The CRISPR Journal
Volume 5, Issue Number 1

Abstract

Functional characterization of the multitude of poorly described proteins in the human malarial pathogen, Plasmodium falciparum, requires tools to enable genome-scale perturbation studies. Here, we present GeneTargeter (genetargeter.mit.edu), a software tool for automating the design of homology-directed repair donor vectors to achieve gene knockouts, conditional knockdowns, and epitope tagging of P. falciparum genes. We demonstrate GeneTargeter-facilitated genome-scale design of six different types of knockout and conditional knockdown constructs for the P. falciparum genome and validate the computational design process experimentally with successful donor vector assembly and transfection. The software's modular nature accommodates arbitrary destination vectors and allows customizable designs that extend the genome manipulation outcomes attainable in Plasmodium and other organisms.

Get full access to this article

View all available purchase options and get full access to this article.

References

1. World Health Organization. World Malaria Report 2021. Geneva: World Health Organization, 2020.
2. World Health Organization. The Potential Impact of Health Service Disruptions on the Burden of Malaria: A Modelling Analysis for Countries in sub-Saharan Africa. Geneva: World Health Organization, 2020.
3. Noedl H, Se Y, Schaecher K, et al. Evidence of artemisinin-resistant malaria in Western Cambodia. N Engl J Med 2008;359:2619–2620.
4. Ashley EA, Dhorda M, Fairhurst RM, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 2014;371:411–423.
5. Ye R, Hu D, Zhang Y, et al. Distinctive origin of artemisinin-resistant Plasmodium falciparum on the China–Myanmar border. Sci Rep 2016;6:20100.
6. Saunders D, Lon C. Combination therapies for malaria are failing—what next? Lancet Infect Dis 2016;16:274–275.
7. Imwong M, Hien TT, Thuy-Nhien NT, et al. Spread of a single multidrug resistant malaria parasite lineage (PfPailin) to Vietnam. Lancet Infect Dis 2017;17:1022–1023.
8. Florent I, Maréchal E, Gascuel O, et al. Bioinformatic strategies to provide functional clues to the unknown genes in Plasmodium falciparum genome. Parasite 2010;17:273–283.
9. Webster WA, McFadden GI. From the genome to the phenome: tools to understand the basic biology of Plasmodium falciparum. J Eukaryot Microbiol 2014;61:655–671.
10. Bushell E, Gomes AR, Sanderson T, et al. Functional profiling of a Plasmodium genome reveals an abundance of essential genes. Cell 2017;170:260–272.
11. Zhang M, Wang C, Otto TD, et al. Uncovering the essential genes of the human malaria parasite Plasmodium falciparum by saturation mutagenesis. Science 2018;360:eaap7847.
12. Aurrecoechea C, Brestelli J, Brunk BP, et al. PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Res 2008;37:D539–D543.
13. Kudyba HM, Cobb DW, Vega-Rodríguez J, et al. Some conditions apply: systems for studying Plasmodium falciparum protein function. PLoS Pathog 2021;17:e1009442.
14. Collins CR, Das S, Wong EH, et al. Robust inducible Cre recombinase activity in the human malaria parasite Plasmodium falciparum enables efficient gene deletion within a single asexual erythrocytic growth cycle. Mol Microbiol 2013;88:687–701.
15. Jones ML, Das S, Belda H, et al. A versatile strategy for rapid conditional genome engineering using loxP sites in a small synthetic intron in Plasmodium falciparum. Sci Rep 2016;6:21800.
16. Birnbaum J, Flemming S, Reichard N, et al. A genetic system to study Plasmodium falciparum protein function. Nat Methods 2017;14:450–456.
17. Prommana P, Uthaipibull C, Wongsombat C, et al. Inducible knockdown of Plasmodium gene expression using the glmS ribozyme. PLoS One 2013;8:e73783.
18. Goldfless SJ, Wagner JC, Niles JC. Versatile control of Plasmodium falciparum gene expression with an inducible protein–RNA interaction. Nat Commun 2014;5:5329.
19. Ganesan SM, Falla A, Goldfless SJ, et al. Synthetic RNA–protein modules integrated with native translation mechanisms to control gene expression in malaria parasites. Nat Commun 2016;7:10727.
20. Nasamu AS, Falla A, Pasaje CFA, et al. An integrated platform for genome engineering and gene expression perturbation in Plasmodium falciparum. Sci Rep 2021;11:1–15.
21. Armstrong CM, Goldberg DE. An FKBP destabilization domain modulates protein levels in Plasmodium falciparum. Nat Methods 2007;4:1007.
22. Muralidharan V, Oksman A, Iwamoto M, et al. Asparagine repeat function in a Plasmodium falciparum protein assessed via a regulatable fluorescent affinity tag. Proc Natl Acad Sci U S A 2011;108:4411–4416.
23. Wagner JC, Platt RJ, Goldfless SJ, et al. Efficient CRISPR-Cas9–mediated genome editing in Plasmodium falciparum. Nat Methods 2014;11:915–918.
24. Ghorbal M, Gorman M, Macpherson CR, et al. Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system. Nat Biotechnol 2014;32:819.
25. Schwach F, Bushell E, Gomes AR, et al. Plasmo GEM, a database supporting a community resource for large-scale experimental genetics in malaria parasites. Nucleic Acids Res 2015;43:D1176–D1182.
26. Pfander C, Anar B, Schwach F, et al. A scalable pipeline for highly effective genetic modification of a malaria parasite. Nat Methods 2011;8:1078–1082.
27. Gilbert LA, Horlbeck MA, Adamson B, et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 2014;159:647–661.
28. Hough SH, Kancleris K, Brody L, et al. Guide Picker is a comprehensive design tool for visualizing and selecting guides for CRISPR experiments. BMC Bioinformatics 2017;18:167.
29. Doench JG, Fusi N, Sullender M, et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 2016;34:184–191.
30. Hsu PD, Scott DA, Weinstein JA, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 2013;31:827–832.
31. Gibson DG, Young L, Chuang R-Y, et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 2009;6:343–345.
32. Koussis K, Withers-Martinez C, Baker DA, et al. Simultaneous multiple allelic replacement in the malaria parasite enables dissection of PKG function. Life Sci Alliance 2020;3:e201900626.
33. Kim HK, Song M, Lee J, et al. In vivo high-throughput profiling of CRISPR-Cpf1 activity. Nat Methods 2017;14:153–159.
34. Athey J, Alexaki A, Osipova E, et al. A new and updated resource for codon usage tables. BMC Bioinformatics 2017;18:391.
35. Hu JH, Miller SM, Geurts MH, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 2018;556:57–63.
36. Rajaram K, Liu HB, Prigge ST. Redesigned TetR-aptamer system to control gene expression in Plasmodium falciparum. mSphere 2020;5:e00457-20.
37. Sidik SM, Huet D, Ganesan SM, et al. A genome-wide CRISPR screen in Toxoplasma identifies essential apicomplexan genes. Cell 2016;166:1423–1435.
38. Nasamu AS, Glushakova S, Russo I, et al. Plasmepsins IX and X are essential and druggable mediators of malaria parasite egress and invasion. Science 2017;358:518–522.
39. Spillman NJ, Beck JR, Ganesan SM, et al. The chaperonin TRiC forms an oligomeric complex in the malaria parasite cytosol. Cell Microbiol 2017;19:e12719.
40. Amberg-Johnson K, Hari SB, Ganesan SM, et al. Small molecule inhibition of apicomplexan FtsH1 disrupts plastid biogenesis in human pathogens. Elife 2017;6:e29865.
41. Ke H, Dass S, Morrisey JM, et al. The mitochondrial ribosomal protein L13 is critical for the structural and functional integrity of the mitochondrion in Plasmodium falciparum. J Biol Chem 2018;293:8128–8137.
42. Walczak M, Ganesan SM, Niles JC, et al. ATG8 is essential specifically for an autophagy-independent function in apicoplast biogenesis in blood-stage malaria parasites. Mbio 2018;9:e02021-17.
43. Boucher MJ, Ghosh S, Zhang L, et al. Integrative proteomics and bioinformatic prediction enable a high-confidence apicoplast proteome in malaria parasites. PLoS Biol 2018;16:e2005895.
44. Garten M, Nasamu AS, Niles JC, et al. EXP2 is a nutrient-permeable channel in the vacuolar membrane of Plasmodium and is essential for protein export via PTEX. Nat Microbiol 2018;3:1090–1098.
45. Bhatnagar S, Nicklas S, Morrisey JM, et al. Diverse chemical compounds target Plasmodium falciparum plasma membrane lipid homeostasis. ACS Infect Dis 2019;5:550–558.
46. Istvan ES, Das S, Bhatnagar S, et al. Plasmodium Niemann-Pick type C1-related protein is a druggable target required for parasite membrane homeostasis. Elife 2019;8:e40529.
47. Rudlaff RM, Kraemer S, Streva VA, et al. An essential contractile ring protein controls cell division in Plasmodium falciparum. Nat Commun 2019;10:1–13.
48. Tang Y, Meister TR, Walczak M, et al. A mutagenesis screen for essential plastid biogenesis genes in human malaria parasites. PLoS Biol 2019;17:e3000136.
49. Raj DK, Mohapatra AD, Jnawali A, et al. Anti-PfGARP activates programmed cell death of parasites and reduces severe malaria. Nature 2020;582:104–108.
50. Ling L, Mulaka M, Munro J, et al. Genetic ablation of the mitoribosome in the malaria parasite Plasmodium falciparum sensitizes it to antimalarials that target mitochondrial functions. J Biol Chem 2020;295:7235–7248.
51. Florentin A, Stephens DR, Brooks CF, et al. Plastid biogenesis in malaria parasites requires the interactions and catalytic activity of the Clp proteolytic system. Proc Natl Acad Sci U S A 2020;117:13719–13729.
52. Swift RP, Rajaram K, Keutcha C, et al. The NTP generating activity of pyruvate kinase II is critical for apicoplast maintenance in Plasmodium falciparum. Elife 2020;9:e50807.
53. Zimbres FM, Valenciano AL, Merino EF, et al. Metabolomics profiling reveals new aspects of dolichol biosynthesis in Plasmodium falciparum. Sci Rep 2020;10:13264.
54. Nessel T, Beck JM, Rayatpisheh S, et al. EXP1 is required for organization of EXP2 in the intraerythrocytic malaria parasite vacuole. Cell Microbiol 2020;22:e13168.
55. Fierro MA, Asady B, Brooks CF, et al. An endoplasmic reticulum CREC family protein regulates the egress proteolytic cascade in malaria parasites. mBio 2020;11:e03078-19.
56. Ramanathan AA, Morrisey JM, Daly TM, et al. Oligomerization of the antimalarial drug target PfATP4 is essential for parasite survival. bioRxiv.
57. Boucher MJ, Yeh E. Disruption of apicoplast biogenesis by chemical stabilization of an imported protein evades the delayed-death phenotype in malaria parasites. mSphere 2019;4:e00710-18.
58. Cobb DW, Kudyba HM, Villegas A, et al. A druggable oxidative folding pathway in the endoplasmic reticulum of human malaria parasites. bioRxiv.
59. Sidik SM, Hackett CG, Tran F, et al. Efficient genome engineering of Toxoplasma gondii using CRISPR/Cas9. PLoS One 2014;9:e100450.

Information & Authors

Information

Published In

cover image The CRISPR Journal
The CRISPR Journal
Volume 5Issue Number 1February 2022
Pages: 155 - 164
PubMed: 35191751

History

Published online: 22 February 2022
Published in print: February 2022

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Pablo Cárdenas
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Lisl Y. Esherick
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Gaël Chambonnier
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Sumanta Dey
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Present address: Pfizer, Inc., Cambridge, Massachusetts, USA.
Christopher V. Turlo
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Armiyaw Sebastian Nasamu
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Present address: Center for Global Infectious Disease Research, Seattle, WA, USA.
Jacquin C. Niles* [email protected]
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.

Notes

*
Address correspondence to: Jacquin C. Niles, MD, PhD, Department of Biological Engineering, Massachusetts Institute of Technology, Room 56-341, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA, [email protected]

Author Disclosure Statement

J.C.N. is listed as one of the inventors on a patent of the genetically encoded protein-binding RNA aptamer technology utilized. No other authors have competing interests to declare.

Funding Information

This work was supported by grants from the Bill and Melinda Gates Foundation (OPP1162467 and OPP1158199); Broad Next10; National Institute of General Medical Sciences Center for Integrative Synthetic Biology Grant (P50 GM098792); National Institutes of Environmental Health Sciences Core Center Grant (P30-ES002109) and National Institutes of Environmental Health Sciences Training Grant (T32-ES007020 (L.Y.E.).

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top