CRISPR-Cas9-Mediated Targeting of Multidrug Resistance Genes in Methicillin-Resistant Staphylococcus aureus
Publication: The CRISPR Journal
Abstract
Antibiotic resistance poses a global health crisis limiting the efficacy of available therapeutic agents. We explored CRISPR-Cas-based antimicrobials to combat multidrug resistance in methicillin-resistant Staphylococcus aureus (MRSA), targeting methicillin (mecA), gentamicin (aacA), and ciprofloxacin (grlA, grlB) resistance genes. Engineered CRISPR plasmids with specific single-guide RNAs were electroporated into MRSA strains. Real-time polymerase chain reaction assessed gene expression changes, while antibiotic susceptibility tests (ASTs) evaluated resistance status. Results showed a 1.5-fold decrease in mecA, a 5.5-fold decrease in grlA, a 6-fold decrease in grlB, and a 4-fold decrease in aacA expression. ASTs demonstrated the reversal of resistance to beta-lactam, quinolone, and aminoglycoside antibiotics. Western blot analysis revealed a 70% decrease in penicillin-binding protein 2a expression. Sanger sequencing confirmed point mutations in the grlB and aacA genes. Our findings highlight the potential of CRISPR-Cas9 technology to restore antibiotic efficacy against multidrug-resistant pathogens.
Get full access to this article
View all available purchase options and get full access to this article.
References
1. Katz L, Baltz RH. Natural product discovery: Past, present, and future. J Ind Microbiol Biotechnol 2016;43(2–3):155–176;
2. Prescott JF. The resistance tsunami, antimicrobial stewardship, and the golden age of microbiology. Vet Microbiol 2014;171(3–4):273–278;
3. Aslam B, Wang W, Arshad MI, et al. Antibiotic resistance: A rundown of a global crisis. Infect Drug Resist 2018;11:1645–1658;
4. World Health Organization. 10 global health issues to track in 2021. Available from: https://www.who.int/news-room/spotlight/10-global-health-issues-to-track-in-2021
5. O’Neill J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations, The Review on Antimicrobial Resistance. World Health Organization: London, UK; 2016.
6. Su Z, Honek JF. Emerging bacterial enzyme targets. Cur Opin Investig 2007;8(2):140–149.
7. World Health Organization (WHO). Antimicrobial Resistance: Global Report on Surveillance. World Health Organization: Switzerland; 2014.
8. World Health Organization (WHO). 2015 Global Action Plan on Antimicrobial Resistance. World Health Organization: Switzerland; 2014.
9. Kohanski MA, Dwyer DJ, Collins JJ. How antibiotics kill bacteria: From targets to networks. Nat Rev Microbiol 2010;8(6):423–435;
10. Lock RL, Harry EJ. Cell-division inhibitors: New insights for future antibiotics. Nat Rev Drug Discov 2008;7(4):324–338;
11. Njoroge J, Sperandio V. Jamming bacterial communication: New approaches for the treatment of infectious diseases. EMBO Mol Med 2009;1(4):201–210;
12. Schimmel P, Tao J, Hill J. Aminoacyl tRNA synthetases as targets for new anti-infectives. Faseb J 1998;12(15):1599–1609.
13. Duan C, Cao H, Zhang LH, et al. Harnessing the CRISPR-Cas Systems to Combat Antimicrobial Resistance. Front Microbiol 2021;12:716064;
14. Riordan SM, Heruth DP, Zhang LQ, et al. Application of CRISPR/Cas9 for biomedical discoveries. Cell Biosci 2015;5(1):33;
15. Wilkinson R, Wiedenheft B. A CRISPR method for genome engineering. F1000Prime Rep 2014;6:3;
16. Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012;337(6096):816–821;
17. Jiang W, Marraffini LA. CRISPR-Cas: New tools for genetic manipulation from bacterial immunity systems. Annu Rev Microbiol 2015;69:209–228;
18. Wang Z, Wang Y, Wang Y, et al. CRISPR/Cpf1-Mediated Multiplex and Large-Fragment Gene Editing in Staphylococcus aureus. ACS Synth Biol 2022;11(9):3049–3057;
19. World Health Organization. WHO publishes list of bacteria for which new antibiotics are urgently needed. Available from: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed
20. Moore PC, Lindsay JA. Genetic variation among hospital isolates of methicillin-sensitive Staphylococcus aureus: Evidence for horizontal transfer of virulence genes. J Clin Microbiol 2001;39(8):2760–2767;
21. Fergestad ME, Stamsås GA, Morales Angeles D, et al. Penicillin-binding protein PBP2a provides variable levels of protection toward different β-lactams in Staphylococcus aureus RN4220. Microbiologyopen 2020;9(8):e1057;
22. Lade H, Joo HS, Kim JS. Molecular Basis of Non-β-Lactam Antibiotics Resistance in Staphylococcus aureus. Antibiotics (Basel) 2022;11(10):1378;.
23. Sader HS, Watters A, Fritsche A, et al. Penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. IUBMB Life 2014;66(8):572–577;
24. Doench JG, Hartenian E, Graham D, et al. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol 2014;32(12):1262–1267;
25. Hsu P, Scott D, Weinstein J, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 2013;31(9):827–832;
26. Chen W, Zhang Y, Yeo WS, et al. Rapid and efficient genome editing in Staphylococcus aureus by using an engineered CRISPR/Cas9 System. J Am Chem Soc 2017;139(10):3790–3795;
27. ISO 20776-1:2019. Available from: https://standards.iteh.ai/catalog/standards/sist/cfc459ae-0dee-4fb2-8ed7. e9458f6c7d6b/iso-20776-1-2019
28. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 13.0, 2023. Available from: http://www.eucast.org
29. The EUCAST Disk Diffusion Method for Antimicrobial Susceptibility Testing Version 11.0 (January 2023). Available from: www.eucast.org
30. Öztürk İ, Eraç Y, Ballar Kırmızibayrak P, et al. Nonsteroidal antiinflammatory drugs alter antibiotic susceptibility and expression of virulence related genes and protein A of Staphylococcus aureus. Turk J Med Sci 2021;51(2):835–847;
31. Beisel CL, Gomaa AA, Barrangou R. A CRISPR design for next-generation antimicrobials. Genome Biol 2014;15(11):516;
32. Selle K, Barrangou R. Harnessing CRISPR-Cas systems for bacterial genome editing. Trends Microbiol 2015;23(4):225–232;
33. Gomaa AA, Klumpe HE, Luo ML, et al. Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. mBio 2014;5(1):e00928-13–e00913;
34. Bikard D, Barrangou R. Using CRISPR-Cas systems as antimicrobials. Curr Opin Microbiol 2017;37:155–160;
35. Citorik RJ, Mimee M, Lu TK. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat Biotechnol 2014;32(11):1141–1145;
36. Yosef I, Manor M, Kiro R, et al. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc Natl Acad Sci U S A 2015;112(23):7267–7272;
37. Kim JS, Cho DH, Park M, et al. CRISPR/Cas9-Mediated Re-Sensitization of Antibiotic-Resistant Escherichia coli Harboring Extended-Spectrum β-Lactamases. J Microbiol Biotechnol 2016;26(2):394–401;
38. Bikard D, Euler CW, Jiang W, et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol 2014;32(11):1146–1150;
39. Guan J, Wang W, Sun B. Chromosomal Targeting by the Type III-A CRISPR-Cas System Can Reshape Genomes in Staphylococcus aureus. mSphere 2017;2(6):e00403-17;
40. Wang K, Nicholaou M. Suppression of antimicrobial resistance in MRSA using CRISPR-dCas9. Clin Lab Sci 2017;30(4):207–213;
41. Kang YK, Kwon K, Ryu JS, et al. Nonviral genome editing based on a polymer-derivatized CRISPR nanocomplex for targeting bacterial pathogens and antibiotic resistance. Bioconjug Chem 2018;29(11):3936;
42. Kiga K, Tan XE, Ibarra-Chávez R, et al. Development of CRISPR-Cas13a-based antimicrobials capable of sequence-specific killing of target bacteria. Nat Commun 2020;11(1):2934;
43. Hartman BJ, Tomasz A. Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus. J Bacteriol 1984;158(2):513–516;
44. Hiramatsu K, Katayama Y, Matsuo M, et al. Multi-drug-resistant Staphylococcus aureus and future chemotherapy. J Infect Chemother 2014;20(10):593–601;
45. Katayama Y, Ito T, Hiramatsu K. A new class of genetic element, staphylococcal cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 2000;44(6):1549–1555;
Information & Authors
Information
Published In
The CRISPR Journal
Copyright
Copyright 2024, Mary Ann Liebert, Inc., publishers.
History
Published online: 8 November 2024
Accepted: 30 September 2024
Received: 2 January 2024
Authors
Authors’ Contributions
A.A., C.T., and Ş.E. designed the experiments. A.A. performed microbiology and molecular biology experiments. A.A., C.T., and Ş.E. analyzed the data and wrote the article. All authors read and approved the final version of the article.
Author Disclosure Statement
The authors declare no competing interests.
Funding Information
This research was supported by the Ege University Scientific Research Projects Coordination by Grant number TDK-2020-21898.
Metrics & Citations
Metrics
Citations
Export Citation
Export citation
Select the format you want to export the citations of this publication.
View Options
Get Access
Access content
To read the fulltext, please use one of the options below to sign in or purchase access.⚠ Society Access
If you are a member of a society that has access to this content please log in via your society website and then return to this publication.