SSTR2-Based Reporters for Assessing Gene Transfer into Non–Small Cell Lung Cancer: Evaluation Using an Intrathoracic Mouse Model

    Published Online:https://doi.org/10.1089/hum.2010.109

    The most common cause of cancer-related deaths in North America is lung cancer, 85% of which is non–small cell lung cancer (NSCLC). Gene therapy is a promising approach, but has been hindered by lack of methods for localizing and quantifying gene expression in vivo. Human somatostatin receptor subtype-2 (SSTR2)-based reporters can be used to follow gene expression in vivo using ligands with greater affinity for this subtype. NSCLCs can express SSTR subtypes, which may interfere with SSTR2-based reporters. We assessed whether a SSTR2-based reporter can serve as a reporter of gene transfer into NSCLCs. SSTR subtype expression was assessed in NSCLC cell lines A549, H460, and H1299 using RT-PCR. After infection with an adenovirus containing hemagglutinin-A-tagged-SSTR2 (Ad-HA-SSTR2) or control insert, expression was assessed by immunologic techniques and binding to clinically-approved 111In-octreotide. In vivo, after magnetic resonance (MR) imaging, intrathoracic H460 tumors were injected with Ad-HA-SSTR2 or control virus (n = 6 mice/group) under ultrasound guidance. Intravenous injection of 111In-octreotide 2 days later was followed by planar and single-photon emission computed tomography (SPECT) imaging. Biodistribution into tumors was assessed in vivo using anatomic MR and functional gamma-camera images and ex vivo using excised organs/tumors. In human lung tumor samples (n = 70), SSTR2 expression was assessed using immunohistochemistry. All three NSCLC cell lines expressed different SSTR subtypes, but none expressed SSTR2. Upon Ad-HA-SSTR2 infection, HA-SSTR2 expression was seen in all three cell lines using antibodies targeting the HA domain or 111In-octreotide targeting the receptor domain (p < 0.05). Intrathoracic tumors infected with Ad-HA-SSTR2 were clearly visible by gamma-camera imaging; expression was quantified by both in vivo and ex vivo biodistribution analysis and demonstrated greater uptake in tumors infected with Ad-HA-SSTR2 compared with control virus (p < 0.05). Immunohistochemistry found that 78% of NSCLCs are negative for and 13% have low levels of SSTR2 expression. It is concluded that SSTR2-based reporters can serve as reporters of gene transfer into NSCLCs.

    Singh and colleagues describe the development of a new reporter system for the localization and quantification of gene transfer within the context of non–small cell lung cancer (NSCLC). Using this approach, the authors demonstrate successful application of this system for the imaging of gene transfer in three different NSCLC lines, in a mouse model of intrathoracic NSCLC and ex vivo in human NSCLC tumor samples.

    Back to Top