Delivery of AAV2/9-Microdystrophin Genes Incorporating Helix 1 of the Coiled-Coil Motif in the C-Terminal Domain of Dystrophin Improves Muscle Pathology and Restores the Level of α1-Syntrophin and α-Dystrobrevin in Skeletal Muscles of mdx Mice
Abstract
Duchenne muscular dystrophy is a severe X-linked inherited muscle wasting disorder caused by mutations in the dystrophin gene. Adeno-associated virus (AAV) vectors have been extensively used to deliver genes efficiently for dystrophin expression in skeletal muscles. To overcome limited packaging capacity of AAV vectors (<5 kb), truncated recombinant microdystrophin genes with deletions of most of rod and carboxyl-terminal (CT) domains of dystrophin have been developed. We have previously shown the efficiency of mRNA sequence–optimized microdystrophin (ΔR4-23/ΔCT, called MD1) with deletion of spectrin-like repeat domain 4 to 23 and CT domain in ameliorating the pathology of dystrophic mdx mice. However, the CT domain of dystrophin is thought to recruit part of the dystrophin-associated protein complex, which acts as a mediator of signaling between extracellular matrix and cytoskeleton in muscle fibers. In this study, we extended the ΔR4-23/ΔCT microdystrophin by incorporating helix 1 of the coiled-coil motif in the CT domain of dystrophin (MD2), which contains the α1-syntrophin and α-dystrobrevin binding sites. Intramuscular injection of AAV2/9 expressing CT domain–extended microdystrophin showed efficient dystrophin expression in tibialis anterior muscles of mdx mice. The presence of the CT domain of dystrophin in MD2 increased the recruitment of α1-syntrophin and α-dystrobrevin at the sarcolemma and significantly improved the muscle resistance to lengthening contraction–induced muscle damage in the mdx mice compared with MD1. These results suggest that the incorporation of helix 1 of the coiled-coil motif in the CT domain of dystrophin to the microdystrophins will substantially improve their efficiency in restoring muscle function in patients with Duchenne muscular dystrophy.
Get full access to this article
View all available purchase options and get full access to this article.
References
Ahn A.H.Kunkel L.M.1995. Syntrophin binds to an alternatively spliced exon of dystrophinJ. Cell Biol.128363-371. Ahn, A.H., and Kunkel, L.M. (1995). Syntrophin binds to an alternatively spliced exon of dystrophin. J. Cell Biol. 128, 363–371.
Arechavala-Gomeza V.Kinali M.Feng L. et al.2010. Immunohistological intensity measurements as a tool to assess sarcolemma-associated protein expressionNeuropathol. Appl. Neurobiol.36265-274. Arechavala-Gomeza, V., Kinali, M., Feng, L., et al. (2010). Immunohistological intensity measurements as a tool to assess sarcolemma-associated protein expression. Neuropathol. Appl. Neurobiol. 36, 265–274.
Athanasopoulos T.Graham I.R.Foster H.Dickson G.2004. Recombinant adeno-associated viral (rAAV) vectors as therapeutic tools for Duchenne muscular dystrophy (DMD)Gene Ther.11Suppl. 1S109–21. Athanasopoulos, T., Graham, I.R., Foster, H., and Dickson, G. (2004). Recombinant adeno-associated viral (rAAV) vectors as therapeutic tools for Duchenne muscular dystrophy (DMD). Gene Ther. 11(Suppl. 1), S109–21.
Blake D.J.Tinsley J.M.Davies K.E. et al.1995. Coiled-coil regions in the carboxy-terminal domains of dystrophin and related proteins: potentials for protein-protein interactionsTrends Biochem. Sci.20133-135. Blake, D.J., Tinsley, J.M., Davies, K.E., et al. (1995). Coiled-coil regions in the carboxy-terminal domains of dystrophin and related proteins: potentials for protein-protein interactions. Trends Biochem. Sci. 20, 133–135.
Blake D.J.Weir A.Newey S.E.Davies K.E.2002. Function and genetics of dystrophin and dystrophin-related proteins in musclePhysiol. Rev.82291-329. Blake, D.J., Weir, A., Newey, S.E., and Davies, K.E. (2002). Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol. Rev. 82, 291–329.
Brenman J.E.Chao D.S.Gee S.H. et al.1996. Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by Pdz domainsCell84757-767. Brenman, J.E., Chao, D.S., Gee, S.H., et al. (1996). Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by Pdz domains. Cell 84, 757–767.
Campbell K.P.1995. Three muscular dystrophies: loss of cytoskeleton-extracellular matrix linkageCell80675-679. Campbell, K.P. (1995). Three muscular dystrophies: loss of cytoskeleton-extracellular matrix linkage. Cell 80, 675–679.
Crawford G.E.Faulkner J.A.Crosbie R.H. et al.2000. Assembly of the dystrophin-associated protein complex does not require the dystrophin COOH-terminal domainJ. Cell Biol.1501399-1410. Crawford, G.E., Faulkner, J.A., Crosbie, R.H., et al. (2000). Assembly of the dystrophin-associated protein complex does not require the dystrophin COOH-terminal domain. J. Cell Biol. 150, 1399–1410.
Emery A.E.H.Muntoni F.2003Duchenne muscular dystrophyOxford University PressOxford270. Emery, A.E.H., and Muntoni, F. (2003). Duchenne muscular dystrophy. (Oxford University Press, Oxford) pp. 270.
Fabb S.A.Wells D.J.Serpente P.Dickson G.2002. Adeno-associated virus vector gene transfer and sarcolemmal expression of a 144 kDa micro-dystrophin effectively restores the dystrophin-associated protein complex and inhibits myofibre degeneration in nude/mdx miceHum. Mol. Genet.11733-741. Fabb, S.A., Wells, D.J., Serpente, P., and Dickson, G. (2002). Adeno-associated virus vector gene transfer and sarcolemmal expression of a 144 kDa micro-dystrophin effectively restores the dystrophin-associated protein complex and inhibits myofibre degeneration in nude/mdx mice. Hum. Mol. Genet. 11, 733–741.
Foster H.Sharp P.S.Athanasopoulos T. et al.2008. Codon and mRNA sequence optimization of microdystrophin transgenes improves expression and physiological outcome in dystrophic mdx mice following AAV2/8 gene transferMol. Ther.161825-1832. Foster, H., Sharp, P.S., Athanasopoulos, T., et al. (2008). Codon and mRNA sequence optimization of microdystrophin transgenes improves expression and physiological outcome in dystrophic mdx mice following AAV2/8 gene transfer. Mol. Ther. 16, 1825–1832.
Fuentes-Mera L.Rodriguez-Munoz R.Gonzalez-Ramirez R. et al.2006. Characterization of a novel Dp71 dystrophin-associated protein complex (DAPC) present in the nucleus of HeLa cells: members of the nuclear DAPC associate with the nuclear matrixExp. Cell Res.3123023-3035. Fuentes-Mera, L., Rodriguez-Munoz, R., Gonzalez-Ramirez, R., et al. (2006). Characterization of a novel Dp71 dystrophin-associated protein complex (DAPC) present in the nucleus of HeLa cells: members of the nuclear DAPC associate with the nuclear matrix. Exp. Cell Res. 312, 3023–3035.
Gee S.H.Madhavan R.Levinson S.R. et al.1998. Interaction of muscle and brain sodium channels with multiple members of the syntrophin family of dystrophin-associated proteinsJ. Neurosci.18128-137. Gee, S.H., Madhavan, R., Levinson, S.R., et al. (1998). Interaction of muscle and brain sodium channels with multiple members of the syntrophin family of dystrophin-associated proteins. J. Neurosci. 18, 128–137.
Grady R.M.Grange R.W.Lau K.S. et al.1999. Role for alpha-dystrobrevin in the pathogenesis of dystrophin-dependent muscular dystrophiesNat. Cell Biol.1215-220. Grady, R.M., Grange, R.W., Lau, K.S., et al. (1999). Role for alpha-dystrobrevin in the pathogenesis of dystrophin-dependent muscular dystrophies. Nat. Cell Biol. 1, 215–220.
Gregorevic P.Blankinship M.J.Allen J.M.Chamberlain J.S.2008. Systemic microdystrophin gene delivery improves skeletal muscle structure and function in old dystrophic mdx miceMol. Ther.16657-664. Gregorevic, P., Blankinship, M.J., Allen, J.M., and Chamberlain, J.S. (2008). Systemic microdystrophin gene delivery improves skeletal muscle structure and function in old dystrophic mdx mice. Mol. Ther. 16, 657–664.
Hosaka Y.Yokota T.Miyagoe-Suzuki Y. et al.2002. Alpha1-syntrophin-deficient skeletal muscle exhibits hypertrophy and aberrant formation of neuromuscular junctions during regenerationJ. Cell Biol.1581097-1107. Hosaka, Y., Yokota, T., Miyagoe-Suzuki, Y., et al. (2002). Alpha1-syntrophin-deficient skeletal muscle exhibits hypertrophy and aberrant formation of neuromuscular junctions during regeneration. J. Cell Biol. 158, 1097–1107.
Kameya S.Miyagoe Y.Nonaka I. et al.1999. Alpha1-syntrophin gene disruption results in the absence of neuronal-type nitric-oxide synthase at the sarcolemma but does not induce muscle degenerationJ. Biol. Chem.2742193-2200. Kameya, S., Miyagoe, Y., Nonaka, I., et al. (1999). Alpha1-syntrophin gene disruption results in the absence of neuronal-type nitric-oxide synthase at the sarcolemma but does not induce muscle degeneration. J. Biol. Chem. 274, 2193–2200.
Kobayashi Y.M.Rader E.P.Crawford R.W. et al.2008. Sarcolemma-localized nNOS is required to maintain activity after mild exerciseNature456511-515. Kobayashi, Y.M., Rader, E.P., Crawford, R.W., et al. (2008). Sarcolemma-localized nNOS is required to maintain activity after mild exercise. Nature 456, 511–515.
Koenig M.Hoffman E.P.Bertelson C.J. et al.1987. Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individualsCell50509-517. Koenig, M., Hoffman, E.P., Bertelson, C.J., et al. (1987). Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50, 509–517.
Lai Y.Yue Y.Liu M. et al.2005. Efficient in vivo gene expression by trans-splicing adeno-associated viral vectorsNat. Biotechnol.231435-1439. Lai, Y., Yue, Y., Liu, M., et al. (2005). Efficient in vivo gene expression by trans-splicing adeno-associated viral vectors. Nat. Biotechnol. 23, 1435–1439.
Lai Y.Thomas G.D.Yue Y. et al.2009. Dystrophins carrying spectrin-like repeats 16 and 17 anchor nNOS to the sarcolemma and enhance exercise performance in a mouse model of muscular dystrophyJ. Clin. Invest.119624-635. Lai, Y., Thomas, G.D., Yue, Y., et al. (2009). Dystrophins carrying spectrin-like repeats 16 and 17 anchor nNOS to the sarcolemma and enhance exercise performance in a mouse model of muscular dystrophy. J. Clin. Invest. 119, 624–635.
Li X.Eastman E.M.Schwartz R.J.Draghia-Akli R.1999. Synthetic muscle promoters: activities exceeding naturally occurring regulatory sequencesNat. Biotechnol.17241-245. Li, X., Eastman, E.M., Schwartz, R.J., and Draghia-Akli, R.(1999). Synthetic muscle promoters: activities exceeding naturally occurring regulatory sequences. Nat. Biotechnol. 17, 241–245.
Li J.Sun W.Wang B. et al.2008. Protein trans-splicing as a means for viral vector-mediated in vivo gene therapyHum. Gene Ther.19958-964. Li, J., Sun, W., Wang, B., et al. (2008). Protein trans-splicing as a means for viral vector-mediated in vivo gene therapy. Hum. Gene Ther. 19, 958–964.
Muntoni F.Torelli S.Ferlini A.2003. Dystrophin and mutations: one gene, several proteins, multiple phenotypesLancet Neurol.2731-740. Muntoni, F., Torelli, S., and Ferlini, A. (2003). Dystrophin and mutations: one gene, several proteins, multiple phenotypes. Lancet Neurol. 2, 731–740.
Newey S.E.Benson M.A.Ponting C.P. et al.2000. Alternative splicing of dystrobrevin regulates the stoichiometry of syntrophin binding to the dystrophin protein complexCurr. Biol.101295-1298. Newey, S.E., Benson, M.A., Ponting, C.P., et al. (2000). Alternative splicing of dystrobrevin regulates the stoichiometry of syntrophin binding to the dystrophin protein complex. Curr. Biol. 10, 1295–1298.
Petrof B.J.Shrager J.B.Stedman H.H. et al.1993. Dystrophin protects the sarcolemma from stresses developed during muscle contractionProc. Natl. Acad. Sci. U. S. A.903710-3714. Petrof, B.J., Shrager, J.B., Stedman, H.H., et al. (1993). Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc. Natl. Acad. Sci. U. S. A. 90, 3710–3714.
Sadoulet-Puccio H.M.Rajala M.Kunkel L.M.1997. Dystrobrevin and dystrophin: an interaction through coiled-coil motifsProc. Natl. Acad. Sci. U. S. A.9412413-12418. Sadoulet-Puccio, H.M., Rajala, M., and Kunkel, L.M. (1997). Dystrobrevin and dystrophin: an interaction through coiled-coil motifs. Proc. Natl. Acad. Sci. U. S. A. 94, 12413–12418.
Sherratt T.G.Vulliamy T.Strong P.N.1992. Evolutionary conservation of the dystrophin central rod domainBiochem. J.287Pt 3755-759. Sherratt, T.G., Vulliamy, T., and Strong, P.N. (1992). Evolutionary conservation of the dystrophin central rod domain. Biochem. J. 287(Pt 3), 755–759.
Suzuki A.Yoshida M.Ozawa E.1995. Mammalian alpha 1- and beta 1-syntrophin bind to the alternative splice-prone region of the dystrophin COOH terminusJ. Cell Biol.128373-381. Suzuki, A., Yoshida, M., and Ozawa, E. (1995). Mammalian alpha 1- and beta 1-syntrophin bind to the alternative splice-prone region of the dystrophin COOH terminus. J. Cell Biol. 128, 373–381.
Thomas G.D.Shaul P.W.Yuhanna I.S. et al.2003. Vasomodulation by skeletal muscle-derived nitric oxide requires alpha-syntrophin-mediated sarcolemmal localization of neuronal nitric oxide synthaseCirc. Res.92554-560. Thomas, G.D., Shaul, P.W., Yuhanna, I.S., et al. (2003). Vasomodulation by skeletal muscle-derived nitric oxide requires alpha-syntrophin-mediated sarcolemmal localization of neuronal nitric oxide synthase. Circ. Res. 92, 554–560.
Tinsley J.M.Blake D.J.Zuellig R.A.Davies K.E.1994. Increasing complexity of the dystrophin-associated protein complexProc. Natl. Acad. Sci. U. S. A.918307-8313. Tinsley, J.M., Blake, D.J., Zuellig, R.A., and Davies, K.E. (1994). Increasing complexity of the dystrophin-associated protein complex. Proc. Natl. Acad. Sci. U. S. A. 91, 8307–8313.
Turk R.Sterrenburg E.De Meijer E.J. et al.2005. Muscle regeneration in dystrophin-deficient mdx mice studied by gene expression profilingBMC Genomics698. Turk, R., Sterrenburg, E., De Meijer, E.J., et al. (2005). Muscle regeneration in dystrophin-deficient mdx mice studied by gene expression profiling. BMC Genomics 6, 98.
Williams J.C.Armesilla A.L.Mohamed T.M. et al.2006. The sarcolemmal calcium pump, alpha-1 syntrophin, and neuronal nitric-oxide synthase are parts of a macromolecular protein complexJ. Biol. Chem.28123341-23348. Williams, J.C., Armesilla, A.L., Mohamed, T.M., et al. (2006). The sarcolemmal calcium pump, alpha-1 syntrophin, and neuronal nitric-oxide synthase are parts of a macromolecular protein complex. J. Biol. Chem. 281, 23341–23348.
Yan Z.Lei-Butters D.C.Zhang Y. et al.2007. Hybrid adeno-associated virus bearing nonhomologous inverted terminal repeats enhances dual-vector reconstruction of minigenes in vivoHum. Gene Ther.1881-87. Yan, Z., Lei-Butters, D.C., Zhang, Y., et al. (2007). Hybrid adeno-associated virus bearing nonhomologous inverted terminal repeats enhances dual-vector reconstruction of minigenes in vivo. Hum. Gene Ther. 18, 81–87.
Yoshimura M.Sakamoto M.Ikemoto M. et al.2004. AAV vector-mediated microdystrophin expression in a relatively small percentage of mdx myofibers improved the mdx phenotypeMol. Ther.10821-828. Yoshimura, M., Sakamoto, M., Ikemoto, M., et al. (2004). AAV vector-mediated microdystrophin expression in a relatively small percentage of mdx myofibers improved the mdx phenotype. Mol. Ther. 10, 821–828.
Yue Y.Liu M.Duan D.2006. C-terminal-truncated microdystrophin recruits dystrobrevin and syntrophin to the dystrophin-associated glycoprotein complex and reduces muscular dystrophy in symptomatic utrophin/dystrophin double-knockout miceMol. Ther.1479-87. Yue, Y., Liu, M., and Duan, D. (2006). C-terminal-truncated microdystrophin recruits dystrobrevin and syntrophin to the dystrophin-associated glycoprotein complex and reduces muscular dystrophy in symptomatic utrophin/dystrophin double-knockout mice. Mol. Ther. 14, 79–87.
Information & Authors
Information
Published In

Copyright
Copyright 2011, Mary Ann Liebert, Inc.
History
Published in print: November 2011
Published ahead of print: 25 May 2011
Published online: 31 March 2011
Accepted: 31 March 2011
Received: 7 February 2011
Topics
Authors
Author Disclosure Statement
No conflicts of interest.
Metrics & Citations
Metrics
Citations
Export Citation
Export citation
Select the format you want to export the citations of this publication.
View Options
Access content
To read the fulltext, please use one of the options below to sign in or purchase access.⚠ Society Access
If you are a member of a society that has access to this content please log in via your society website and then return to this publication.