Interferon-Lambda: A New Addition to an Old Family
Publication: Journal of Interferon & Cytokine Research
Volume 30, Issue Number 8
Abstract
The discovery and initial description of the interferon-λ (IFN-λ) family in early 2003 opened an exciting new chapter in the field of IFN research. There are 3 IFN-λ genes that encode 3 distinct but highly related proteins denoted IFN-λ1, -λ2, and -λ3. These proteins are also known as interleukin-29 (IL-29), IL-28A, and IL-28B, respectively. Collectively, these 3 cytokines comprise the type III subset of IFNs. They are distinct from both type I and type II IFNs for a number of reasons, including the fact that they signal through a heterodimeric receptor complex that is different from the receptors used by type I or type II IFNs. Although type I IFNs (IFN-α/β) and type III IFNs (IFN-λ) signal via distinct receptor complexes, they activate the same intracellular signaling pathway and many of the same biological activities, including antiviral activity, in a wide variety of target cells. Consistent with their antiviral activity, expression of the IFN-λ genes and their corresponding proteins is inducible by infection with many types of viruses. Therefore, expression of the type III IFNs (IFN-λs) and their primary biological activity are very similar to the type I IFNs. However, unlike IFN-α receptors which are broadly expressed on most cell types, including leukocytes, IFN-λ receptors are largely restricted to cells of epithelial origin. The potential clinical importance of IFN-λ as a novel antiviral therapeutic agent is already apparent. In addition, preclinical studies by several groups indicate that IFN-λ may also be useful as a potential therapeutic agent for other clinical indications, including certain types of cancer.
Get full access to this article
View all available purchase options and get full access to this article.
References
Abushahba WBalan MCastaneda IYuan YReuhl KRaveche Ede la ALasfar AKotenko SV2010. Antitumor activity of type I and type III interferons in BNL hepatoma modelCancer Immunol Immunother5971059-1071. Abushahba W, Balan M, Castaneda I, Yuan Y, Reuhl K, Raveche E, de la Torre A, Lasfar A, Kotenko SV. 2010. Antitumor activity of type I and type III interferons in BNL hepatoma model. Cancer Immunol Immunother 59(7):1059–1071.
Ank NWest HBartholdy CEriksson KThomsen ARPaludan SR2006. Lambda interferon (IFN-lambda), a type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivoJ Virol8094501-4509. Ank N, West H, Bartholdy C, Eriksson K, Thomsen AR, Paludan SR. 2006. Lambda interferon (IFN-lambda), a type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo. J Virol 80(9):4501–4509.
Bach EAAguet MSchreiber RD1997. The IFN-gamma receptor: a paradigm for cytokine receptor signalingAnnu Rev Immunol15563-591. Bach EA, Aguet M, Schreiber RD. 1997. The IFN-gamma receptor: a paradigm for cytokine receptor signaling. Annu Rev Immunol 15:563–591.
Bartlett NWButtigieg KKotenko SVSmith GL2005. Murine interferon lambdas (type-III interferons) exhibit potent antiviral activity in vivo in a poxvirus infection modelJ Gen Virol86Pt 61589-1596. Bartlett NW, Buttigieg K, Kotenko SV, Smith GL. 2005. Murine interferon lambdas (type-III interferons) exhibit potent antiviral activity in vivo in a poxvirus infection model. J Gen Virol 86(Pt 6):1589–1596.
Belardelli FFerrantini MProietti EKirkwood JM2002. Interferon-alpha in tumor immunity and immunotherapyCytokine Growth Factor Rev132119-134. Belardelli F, Ferrantini M, Proietti E, Kirkwood JM. 2002. Interferon-alpha in tumor immunity and immunotherapy. Cytokine Growth Factor Rev 13(2):119–134.
Biron CA2001. Interferons alpha and beta as immune regulators—a new lookImmunity146661-664. Biron CA. 2001. Interferons alpha and beta as immune regulators—a new look. Immunity 14(6):661–664.
Boehm UKlamp TGroot MHoward JC1997. Cellular responses to interferon-gammaAnnu Rev Immunol15749-795. Boehm U, Klamp T, Groot M, Howard JC. 1997. Cellular responses to interferon-gamma. Annu Rev Immunol 15:749–795.
Brand SBeigel FOlszak TZitzmann KEichhorst STOtte JMDiebold JDiepolder HAdler BAuernhammer CJGöke BDambacher J2005a. IL-28A and IL-29 mediate anti-proliferative and antiviral signals in intestinal epithelial cells and murine CMV infection increases colonic IL-28A expressionAm J Physiol Gastrointest Liver Physiol2895G960-G968. Brand S, Beigel F, Olszak T, Zitzmann K, Eichhorst ST, Otte JM, Diebold J, Diepolder H, Adler B, Auernhammer CJ, Göke B, Dambacher J. 2005a. IL-28A and IL-29 mediate anti-proliferative and antiviral signals in intestinal epithelial cells and murine CMV infection increases colonic IL-28A expression. Am J Physiol Gastrointest Liver Physiol 289(5):G960–G968.
Brand SZitzmann KDambacher JBeigel FOlszak TVlotides GEichhorst STGöke BDiepolder HAuernhammer CJ2005b. SOCS-1 inhibits expression of the antiviral proteins, 2′,5′-OAS and MxA, induced by the novel interferon-lambdas, IL-28A and IL-29Biochem Biophys Res Commun3312543-548. Brand S, Zitzmann K, Dambacher J, Beigel F, Olszak T, Vlotides G, Eichhorst ST, Göke B, Diepolder H, Auernhammer CJ. 2005b. SOCS-1 inhibits expression of the antiviral proteins, 2′,5′-OAS and MxA, induced by the novel interferon-lambdas, IL-28A and IL-29. Biochem Biophys Res Commun 331(2):543–548.
Coccia EMSevera MGiacomini EMonneron DRemoli MEJulkunen ICella MLande RUzé G2004. Viral infection and Toll-like receptor agonists induce a differential expression of type I and lambda interferons in human plasmacytoid and monocyte-derived dendritic cellsEur J Immunol343796-805. Coccia EM, Severa M, Giacomini E, Monneron D, Remoli ME, Julkunen I, Cella M, Lande R, Uzé G. 2004. Viral infection and Toll-like receptor agonists induce a differential expression of type I and lambda interferons in human plasmacytoid and monocyte-derived dendritic cells. Eur J Immunol 34(3):796–805.
Dalton DKPitts-Meek SKeshav SFigari ISBradley AStewart TA1993. Multiple defects of immune cell function in mice with disrupted interferon-gamma genesScience25951021739-1742. Dalton DK, Pitts-Meek S, Keshav S, Figari IS, Bradley A, Stewart TA. 1993. Multiple defects of immune cell function in mice with disrupted interferon-gamma genes. Science 259(5102):1739–1742.
De Maeyer EDe Maeyer-Guignard J1998. Type I interferonsInt Rev Immunol171–453-73. De Maeyer E, De Maeyer-Guignard J. 1998. Type I interferons. Int Rev Immunol 17(1–4):53–73.
Donnelly RPSheikh FKotenko SVDickensheets H2004. The expanded family of class II cytokines that share the IL-10 receptor-2 (IL-10R2) chainJ Leukoc Biol762314-321. Donnelly RP, Sheikh F, Kotenko SV, Dickensheets H. 2004. The expanded family of class II cytokines that share the IL-10 receptor-2 (IL-10R2) chain. J Leukoc Biol 76(2):314–321.
Dorman SEPicard CLammas DHeyne Kvan Dissel JTBaretto RRosenzweig SDNewport MLevin MRoesler JKumararatne DCasanova JLHolland SM2004. Clinical features of dominant and recessive interferon gamma receptor 1 deficienciesLancet36494512113-2121. Dorman SE, Picard C, Lammas D, Heyne K, van Dissel JT, Baretto R, Rosenzweig SD, Newport M, Levin M, Roesler J, Kumararatne D, Casanova JL, Holland SM. 2004. Clinical features of dominant and recessive interferon gamma receptor 1 deficiencies. Lancet 364(9451):2113–2121.
Doyle SESchreckhise HKhuu-Duong KHenderson KRosler RStorey HYao LLiu HBarahmand-Pour FSivakumar PChan CBirks CFoster DClegg CHWietzke-Braun PMihm SKlucher KM2006. Interleukin-29 uses a type 1 interferon-like program to promote antiviral responses in human hepatocytesHepatology444896-906. Doyle SE, Schreckhise H, Khuu-Duong K, Henderson K, Rosler R, Storey H, Yao L, Liu H, Barahmand-Pour F, Sivakumar P, Chan C, Birks C, Foster D, Clegg CH, Wietzke-Braun P, Mihm S, Klucher KM. 2006. Interleukin-29 uses a type 1 interferon-like program to promote antiviral responses in human hepatocytes. Hepatology 44(4):896–906.
Dumoutier LLejeune DHor SFickenscher HRenauld JC2003. Cloning of a new type II cytokine receptor activating signal transducer and activator of transcription (STAT)1, STAT2 and STAT3Biochem J370Pt 2391-396. Dumoutier L, Lejeune D, Hor S, Fickenscher H, Renauld JC. 2003. Cloning of a new type II cytokine receptor activating signal transducer and activator of transcription (STAT)1, STAT2 and STAT3. Biochem J 370(Pt 2):391–396.
Dumoutier LTounsi AMichiels TSommereyns CKotenko SVRenauld JC2004. Role of the interleukin (IL)-28 receptor tyrosine residues for antiviral and anti-proliferative activity of IL-29/interferon-lambda 1: similarities with type I interferon signalingJ Biol Chem2793132269-32274. Dumoutier L, Tounsi A, Michiels T, Sommereyns C, Kotenko SV, Renauld JC. 2004. Role of the interleukin (IL)-28 receptor tyrosine residues for antiviral and anti-proliferative activity of IL-29/interferon-lambda 1: similarities with type I interferon signaling. J Biol Chem 279(31):32269–32274.
Eferl RWagner EF2003. AP-1: a double-edged sword in tumorigenesisNat Rev Cancer311859-868. Eferl R, Wagner EF. 2003. AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3(11):859–868.
Gad HHHamming OJHartmann R2010. The structure of human interferon-lambda and what it has taught usJ Interferon Cytokine Res308565-571. Gad HH, Hamming OJ, Hartmann R. 2010. The structure of human interferon-lambda and what it has taught us. J Interferon Cytokine Res 30(8):565–571.
Gautier GHumbert MDeauvieau FScuiller MHiscott JBates EETrinchieri GCaux CGarrone P2005. A type I interferon autocrine-paracrine loop is involved in Toll-like receptor-induced interleukin-12 p70 secretion by dendritic cellsJ Exp Med20191435-1446. Gautier G, Humbert M, Deauvieau F, Scuiller M, Hiscott J, Bates EE, Trinchieri G, Caux C, Garrone P. 2005. A type I interferon autocrine-paracrine loop is involved in Toll-like receptor-induced interleukin-12 p70 secretion by dendritic cells. J Exp Med 201(9):1435–1446.
Hardy MPOwczarek CMJermiin LSEjdebäck MHertzog PJ2004. Characterization of the type I interferon locus and identification of novel genesGenomics842331-345. Hardy MP, Owczarek CM, Jermiin LS, Ejdebäck M, Hertzog PJ. 2004. Characterization of the type I interferon locus and identification of novel genes. Genomics 84(2):331–345.
Hör SPirzer HDumoutier LBauer FWittmann SSticht HRenauld JCde Waal Malefyt RFickenscher H2004. The T-cell lymphokine interleukin-26 targets epithelial cells through the interleukin-20 receptor 1 and interleukin-10 receptor 2 chainsJ Biol Chem2793233343-33351. Hör S, Pirzer H, Dumoutier L, Bauer F, Wittmann S, Sticht H, Renauld JC, de Waal Malefyt R, Fickenscher H. 2004. The T-cell lymphokine interleukin-26 targets epithelial cells through the interleukin-20 receptor 1 and interleukin-10 receptor 2 chains. J Biol Chem 279(32):33343–33351.
Huang JSmirnov SVLewis-Antes ABalan MLi WTang SSilke GVPütz MMSmith GLKotenko SV2007. Inhibition of type I and type III interferons by a secreted glycoprotein from Yaba-like disease virusProc Natl Acad Sci U S A104239822-9827. Huang J, Smirnov SV, Lewis-Antes A, Balan M, Li W, Tang S, Silke GV, Pütz MM, Smith GL, Kotenko SV. 2007. Inhibition of type I and type III interferons by a secreted glycoprotein from Yaba-like disease virus. Proc Natl Acad Sci U S A 104(23):9822–9827.
Huang SHendriks WAlthage AHemmi SBluethmann HKamijo RVilcek JZinkernagel RMAguet M1993. Immune response in mice that lack the interferon-gamma receptorScience25951021742-1745. Huang S, Hendriks W, Althage A, Hemmi S, Bluethmann H, Kamijo R, Vilcek J, Zinkernagel RM, Aguet M. 1993. Immune response in mice that lack the interferon-gamma receptor. Science 259(5102):1742–1745.
Hwang SYHertzog PJHolland KASumarsono SHTymms MJHamilton JAWhitty GBertoncello IKola I1995. A null mutation in the gene encoding a type I interferon receptor component eliminates antiproliferative and antiviral responses to interferons alpha and beta and alters macrophage responsesProc Natl Acad Sci U S A922411284-11288. Hwang SY, Hertzog PJ, Holland KA, Sumarsono SH, Tymms MJ, Hamilton JA, Whitty G, Bertoncello I, Kola I. 1995. A null mutation in the gene encoding a type I interferon receptor component eliminates antiproliferative and antiviral responses to interferons alpha and beta and alters macrophage responses. Proc Natl Acad Sci U S A 92(24):11284–11288.
Iversen MBPaludan SR2010. Mechanisms of type III interferon expressionJ Interferon Cytokine Res308573-578. Iversen MB, Paludan SR. 2010. Mechanisms of type III interferon expression. J Interferon Cytokine Res 30(8):573–578.
Karpala AJMorris KRBroadway MMMcWaters PGO'Neil TEGoossens KELowenthal JWBean AG2008. Molecular cloning, expression, and characterization of chicken IFN-lambdaJ Interferon Cytokine Res286341-350. Karpala AJ, Morris KR, Broadway MM, McWaters PG, O'Neil TE, Goossens KE, Lowenthal JW, Bean AG. 2008. Molecular cloning, expression, and characterization of chicken IFN-lambda. J Interferon Cytokine Res 28(6):341–350.
Kotenko SV2002. The family of IL-10-related cytokines and their receptors: related, but to what extent?Cytokine Growth Factor Rev133223-240. Kotenko SV. 2002. The family of IL-10-related cytokines and their receptors: related, but to what extent? Cytokine Growth Factor Rev 13(3):223–240.
Kotenko SVDonnelly RP2006. Type-III interferons: the interferon-λ familyMeager AThe interferons: Characterization and applicationWeinheim, GermanyWiley-VCH Verlag GmbH & Co141-163. Kotenko SV, Donnelly RP. 2006. Type-III interferons: the interferon-λ family. In: Meager A, ed. The interferons: Characterization and application. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. pp 141–163.
Kotenko SVGallagher GBaurin VVLewis-Antes AShen MShah NKLanger JASheikh FDickensheets HDonnelly RP2003. IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complexNat Immunol4169-77. Kotenko SV, Gallagher G, Baurin VV, Lewis-Antes A, Shen M, Shah NK, Langer JA, Sheikh F, Dickensheets H, Donnelly RP. 2003. IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol 4(1):69–77.
Kotenko SVIzotova LSMirochnitchenko OVEsterova EDickensheets HDonnelly RPPestka S2001. Identification of the functional interleukin-22 (IL-22) receptor complex: the IL-10R2 chain (IL-10R-beta) is a common chain of both the IL-10 and IL-22 receptor complexesJ Biol Chem27642725-2732. Kotenko SV, Izotova LS, Mirochnitchenko OV, Esterova E, Dickensheets H, Donnelly RP, Pestka S. 2001. Identification of the functional interleukin-22 (IL-22) receptor complex: the IL-10R2 chain (IL-10R-beta) is a common chain of both the IL-10 and IL-22 receptor complexes. J Biol Chem 276(4):2725–2732.
Kotenko SVKrause CDIzotova LSPollack BPWu WPestka S1997. Identification and functional characterization of a second chain of the interleukin-10 receptor complexEMBO J16195894-5903. Kotenko SV, Krause CD, Izotova LS, Pollack BP, Wu W, Pestka S. 1997. Identification and functional characterization of a second chain of the interleukin-10 receptor complex. EMBO J 16(19):5894–5903.
Kotenko SVLanger JA2004. Full house: 12 receptors for 27 cytokinesInt Immunopharmacol45593-608. Kotenko SV, Langer JA. 2004. Full house: 12 receptors for 27 cytokines. Int Immunopharmacol 4(5):593–608.
LaFleur DWNardelli BTsareva TMather DFeng PSemenuk MTaylor KBuergin MChinchilla DRoshke VChen GRuben SMPitha PMColeman TAMoore PA2001. Interferon-kappa, a novel type I interferon expressed in human keratinocytesJ Biol Chem2764339765-39771. LaFleur DW, Nardelli B, Tsareva T, Mather D, Feng P, Semenuk M, Taylor K, Buergin M, Chinchilla D, Roshke V, Chen G, Ruben SM, Pitha PM, Coleman TA, Moore PA. 2001. Interferon-kappa, a novel type I interferon expressed in human keratinocytes. J Biol Chem 276(43):39765–39771.
Langer JACutrone ECKotenko S2004. The class II cytokine receptor (CRF2) family: overview and patterns of receptor-ligand interactionsCytokine Growth Factor Rev15133-48. Langer JA, Cutrone EC, Kotenko S. 2004. The class II cytokine receptor (CRF2) family: overview and patterns of receptor-ligand interactions. Cytokine Growth Factor Rev 15(1):33–48.
Lasfar ALewis-Antes ASmirnov SVAnantha SAbushahba WTian BReuhl KDickensheets HSheikh FDonnelly RPRaveche EKotenko SV2006. Characterization of the mouse IFN-lambda ligand-receptor system: IFN-lambdas exhibit antitumor activity against B16 melanomaCancer Res6684468-4677. Lasfar A, Lewis-Antes A, Smirnov SV, Anantha S, Abushahba W, Tian B, Reuhl K, Dickensheets H, Sheikh F, Donnelly RP, Raveche E, Kotenko SV. 2006. Characterization of the mouse IFN-lambda ligand-receptor system: IFN-lambdas exhibit antitumor activity against B16 melanoma. Cancer Res 66(8):4468–4677.
Le Bon ATough DF2002. Links between innate and adaptive immunity via type I interferonCurr Opin Immunol144432-436. Le Bon A, Tough DF. 2002. Links between innate and adaptive immunity via type I interferon. Curr Opin Immunol 14(4):432–436.
Levy DEGarcia-Sastre A2001. The virus battles: IFN induction of the antiviral state and mechanisms of viral evasionCytokine Growth Factor Rev122–3143-156. Levy DE, Garcia-Sastre A. 2001. The virus battles: IFN induction of the antiviral state and mechanisms of viral evasion. Cytokine Growth Factor Rev 12(2–3):143–156.
Li QVerma IM2002. NF-kappaB regulation in the immune systemNat Rev Immunol210725-734. Li Q, Verma IM. 2002. NF-kappaB regulation in the immune system. Nat Rev Immunol 2(10):725–734.
Li WLewis-Antes AHuang JBalan MKotenko SV2008. Regulation of apoptosis by type III interferonsCell Prolif416960-979. Li W, Lewis-Antes A, Huang J, Balan M, Kotenko SV. 2008. Regulation of apoptosis by type III interferons. Cell Prolif 41(6):960–979.
Lu BEbensperger CDembic ZWang YKvatyuk MLu TCoffman RLPestka SRothman PB1998. Targeted disruption of the interferon-gamma receptor 2 gene results in severe immune defects in miceProc Natl Acad Sci U S A95148233-8238. Lu B, Ebensperger C, Dembic Z, Wang Y, Kvatyuk M, Lu T, Coffman RL, Pestka S, Rothman PB. 1998. Targeted disruption of the interferon-gamma receptor 2 gene results in severe immune defects in mice. Proc Natl Acad Sci U S A 95(14):8233–8238.
Maher SGSheikh FScarzello AJRomero-Weaver ALBaker DPDonnelly RPGamero AM2008. IFN-alpha and IFN-lambda differ in their anti-proliferative effects and duration of JAK/STAT signalingCancer Biol Ther771109-1115. Maher SG, Sheikh F, Scarzello AJ, Romero-Weaver AL, Baker DP, Donnelly RP, Gamero AM. 2008. IFN-alpha and IFN-lambda differ in their anti-proliferative effects and duration of JAK/STAT signaling. Cancer Biol Ther 7(7):1109–1115.
Marcello TGrakoui ABarba-Spaeth GMachlin ESKotenko SVMacDonald MRRice CM2006. Interferons alpha and lambda inhibit hepatitis C virus replication with distinct signal transduction and gene regulation kineticsGastroenterology13161887-1898. Marcello T, Grakoui A, Barba-Spaeth G, Machlin ES, Kotenko SV, MacDonald MR, Rice CM. 2006. Interferons alpha and lambda inhibit hepatitis C virus replication with distinct signal transduction and gene regulation kinetics. Gastroenterology 131(6):1887–1898.
Meager AVisvalingam KDilger PBryan DWadhwa M2005. Biological activity of interleukins-28 and -29: comparison with type I interferonsCytokine312109-118. Meager A, Visvalingam K, Dilger P, Bryan D, Wadhwa M. 2005. Biological activity of interleukins-28 and -29: comparison with type I interferons. Cytokine 31(2):109–118.
Miller DMKlucher KMFreeman JAHausman DFFontana DWilliams DE2009. Interferon-lambda as a potential new therapeutic for hepatitis CAnn N Y Acad Sci118280-87. Miller DM, Klucher KM, Freeman JA, Hausman DF, Fontana D, Williams DE. 2009. Interferon-lambda as a potential new therapeutic for hepatitis C. Ann N Y Acad Sci 1182:80–87.
Mordstein MMichiels TStaeheli P2010. What have we learned from the IL-28 receptor knockout mouse?J Interferon Cytokine Res308579-584. Mordstein M, Michiels T, Staeheli P. 2010. What have we learned from the IL-28 receptor knockout mouse? J Interferon Cytokine Res 30(8):579–584.
Muir AJShiffman MLZaman AYoffe Bde la Torre AFlamm SGordon SCMarotta PVierling JMCarlos Lopez-Talavera JByrnes-Blake KFontana DFreeman JGray THausman DHunder NNLawitz E2010. Phase 1b study of pegylated interferon-lambda 1 with or without ribavirin in patients with chronic genotype 1 hepatitis C virus infectionHepatology May 14[Epub ahead of print]. Muir AJ, Shiffman ML, Zaman A, Yoffe B, de la Torre A, Flamm S, Gordon SC, Marotta P, Vierling JM, Carlos Lopez-Talavera J, Byrnes-Blake K, Fontana D, Freeman J, Gray T, Hausman D, Hunder NN, Lawitz E. 2010. Phase 1b study of pegylated interferon-lambda 1 with or without ribavirin in patients with chronic genotype 1 hepatitis C virus infection. Hepatology May 14 [Epub ahead of print].
Müller USteinhoff UReis LFHemmi SPavlovic JZinkernagel RMAguet M1994. Functional role of type I and type II interferons in antiviral defenseScience26451671918-1921. Müller U, Steinhoff U, Reis LF, Hemmi S, Pavlovic J, Zinkernagel RM, Aguet M. 1994. Functional role of type I and type II interferons in antiviral defense. Science 264(5167):1918–1921.
Novelli FCasanova JL2004. The role of IL-12, IL-23 and IFN-gamma in immunity to virusesCytokine Growth Factor Rev155367-377. Novelli F, Casanova JL. 2004. The role of IL-12, IL-23 and IFN-gamma in immunity to viruses. Cytokine Growth Factor Rev 15(5):367–377.
Numasaki MTagawa MIwata FSuzuki TNakamura AOkada MIwakura YAiba SYamaya M2007. IL-28 elicits antitumor responses against murine fibrosarcomaJ Immunol17885086-5098. Numasaki M, Tagawa M, Iwata F, Suzuki T, Nakamura A, Okada M, Iwakura Y, Aiba S, Yamaya M. 2007. IL-28 elicits antitumor responses against murine fibrosarcoma. J Immunol 178(8):5086–5098.
Onoguchi KYoneyama MTakemura AAkira STaniguchi TNamiki HFujita T2007. Viral infections activate types I and III interferon genes through a common mechanismJ Biol Chem282107576-7581. Onoguchi K, Yoneyama M, Takemura A, Akira S, Taniguchi T, Namiki H, Fujita T. 2007. Viral infections activate types I and III interferon genes through a common mechanism. J Biol Chem 282(10):7576–7581.
Osterlund PVeckman VSirén JKlucher KMHiscott JMatikainen SJulkunen I2005. Gene expression and antiviral activity of alpha/beta interferons and interleukin-29 in virus-infected human myeloid dendritic cellsJ Virol79159608-9617. Osterlund P, Veckman V, Sirén J, Klucher KM, Hiscott J, Matikainen S, Julkunen I. 2005. Gene expression and antiviral activity of alpha/beta interferons and interleukin-29 in virus-infected human myeloid dendritic cells. J Virol 79(15):9608–9617.
Osterlund PIPietilä TEVeckman VKotenko SVJulkunen I2007. IFN regulatory factor family members differentially regulate the expression of type III IFN (IFN-lambda) genesJ Immunol17963434-3442. Osterlund PI, Pietilä TE, Veckman V, Kotenko SV, Julkunen I. 2007. IFN regulatory factor family members differentially regulate the expression of type III IFN (IFN-lambda) genes. J Immunol 179(6):3434–3442.
Pagliaccetti NERobek MD2010. Interferon-lambda in the immune response to hepatitis B virus and hepatitis C virusJ Interferon Cytokine Res308585-590. Pagliaccetti NE, Robek MD. 2010. Interferon-lambda in the immune response to hepatitis B virus and hepatitis C virus. J Interferon Cytokine Res 30(8):585–590.
Pestka SKotenko SVMuthukumaran GIzotova LSCook JRGarotta G1997. The interferon gamma (IFN-gamma) receptor: a paradigm for the multi-chain cytokine receptorCytokine Growth Factor Rev83189-206. Pestka S, Kotenko SV, Muthukumaran G, Izotova LS, Cook JR, Garotta G. 1997. The interferon gamma (IFN-gamma) receptor: a paradigm for the multi-chain cytokine receptor. Cytokine Growth Factor Rev 8(3):189–206.
Pestka SKrause CDSarkar DWalter MRShi YFisher PB2004a. Interleukin-10 and related cytokines and receptorsAnnu Rev Immunol22929-979. Pestka S, Krause CD, Sarkar D, Walter MR, Shi Y, Fisher PB. 2004a. Interleukin-10 and related cytokines and receptors. Annu Rev Immunol 22:929–979.
Pestka SKrause CDWalter MR2004b. Interferons, interferon-like cytokines, and their receptorsImmunol Rev2028-32. Pestka S, Krause CD, Walter MR. 2004b. Interferons, interferon-like cytokines, and their receptors. Immunol Rev 202:8–32.
Ramos EL2010. Preclinical and clinical development of pegylated interferon-lambda 1 in chronic hepatitis CJ Interferon Cytokine Res308591-595. Ramos EL. 2010. Preclinical and clinical development of pegylated interferon-lambda 1 in chronic hepatitis C. J Interferon Cytokine Res 30(8):591–595.
Renauld JC2003. Class II cytokine receptors and their ligands: key antiviral and inflammatory modulatorsNat Rev Immunol38667-676. Renauld JC. 2003. Class II cytokine receptors and their ligands: key antiviral and inflammatory modulators. Nat Rev Immunol 3(8):667–676.
Robek MDBoyd BSChisari FV2005. Lambda interferon inhibits hepatitis B and C virus replicationJ Virol7963851-3854. Robek MD, Boyd BS, Chisari FV. 2005. Lambda interferon inhibits hepatitis B and C virus replication. J Virol 79(6):3851–3854.
Samuel CE2001. Antiviral actions of interferonsClin Microbiol Rev144778-809. Samuel CE. 2001. Antiviral actions of interferons. Clin Microbiol Rev 14(4):778–809.
Sato AOhtsuki MHata MKobayashi EMurakami T2006. Antitumor activity of IFN-λ in murine tumor modelsJ Immunol176127686-7694. Sato A, Ohtsuki M, Hata M, Kobayashi E, Murakami T. 2006. Antitumor activity of IFN-λ in murine tumor models. J Immunol 176(12):7686–7694.
Sheikh FBaurin VVLewis-Antes AShah NKSmirnov SVAnantha SDickensheets HDumoutier LRenauld JCZdanov ADonnelly RPKotenko SV2004. Cutting edge: IL-26 signals through a novel receptor complex composed of IL-20 receptor 1 and IL-10 receptor 2J Immunol17242006-2010. Sheikh F, Baurin VV, Lewis-Antes A, Shah NK, Smirnov SV, Anantha S, Dickensheets H, Dumoutier L, Renauld JC, Zdanov A, Donnelly RP, Kotenko SV. 2004. Cutting edge: IL-26 signals through a novel receptor complex composed of IL-20 receptor 1 and IL-10 receptor 2. J Immunol 172(4):2006–2010.
Sheppard PKindsvogel WXu WHenderson KSchlutsmeyer SWhitmore TEKuestner RGarrigues UBirks CRoraback JOstrander CDong DShin JPresnell SFox BHaldeman BCooper ETaft DGilbert TGrant FJTackett MKrivan WMcKnight GClegg CFoster DKlucher KM2003. IL-28, IL-29 and their class II cytokine receptor IL-28RNat Immunol4163-68. Sheppard P, Kindsvogel W, Xu W, Henderson K, Schlutsmeyer S, Whitmore TE, Kuestner R, Garrigues U, Birks C, Roraback J, Ostrander C, Dong D, Shin J, Presnell S, Fox B, Haldeman B, Cooper E, Taft D, Gilbert T, Grant FJ, Tackett M, Krivan W, McKnight G, Clegg C, Foster D, Klucher KM. 2003. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol 4(1):63–68.
Silverman NManiatis T2001. NF-kappaB signaling pathways in mammalian and insect innate immunityGenes Dev15182321-2342. Silverman N, Maniatis T. 2001. NF-kappaB signaling pathways in mammalian and insect innate immunity. Genes Dev 15(18):2321–2342.
Sirén JPirhonen JJulkunen IMatikainen S2005. IFN-alpha regulates TLR-dependent gene expression of IFN-alpha, IFN-beta, IL-28, and IL-29J Immunol17441932-1937. Sirén J, Pirhonen J, Julkunen I, Matikainen S. 2005. IFN-alpha regulates TLR-dependent gene expression of IFN-alpha, IFN-beta, IL-28, and IL-29. J Immunol 174(4):1932–1937.
Sommereyns CPaul SStaeheli PMichiels T2008. IFN-lambda (IFN-λ) is expressed in a tissue-dependent fashion and primarily acts on epithelial cells in vivoPLoS Pathog43e1000017. Sommereyns C, Paul S, Staeheli P, Michiels T. 2008. IFN-lambda (IFN-λ) is expressed in a tissue-dependent fashion and primarily acts on epithelial cells in vivo. PLoS Pathog 4(3):e1000017.
Spann KMTran KCChi BRabin RLCollins PL2004. Suppression of the induction of alpha, beta, and lambda interferons by the NS1 and NS2 proteins of human respiratory syncytial virus in human epithelial cells and macrophagesJ Virol7884363-4369. Spann KM, Tran KC, Chi B, Rabin RL, Collins PL. 2004. Suppression of the induction of alpha, beta, and lambda interferons by the NS1 and NS2 proteins of human respiratory syncytial virus in human epithelial cells and macrophages. J Virol 78(8):4363–4369.
Steen HCGamero AM2010. Interferon-lambda as a potential therapeutic agent in cancer treatmentJ Interferon Cytokine Res308597-602. Steen HC, Gamero AM. 2010. Interferon-lambda as a potential therapeutic agent in cancer treatment. J Interferon Cytokine Res 30(8):597–602.
Steinhoff UMüller USchertler AHengartner HAguet MZinkernagel RM1995. Antiviral protection by vesicular stomatitis virus-specific antibodies in alpha/beta interferon receptor-deficient miceJ Virol6942153-2158. Steinhoff U, Müller U, Schertler A, Hengartner H, Aguet M, Zinkernagel RM. 1995. Antiviral protection by vesicular stomatitis virus-specific antibodies in alpha/beta interferon receptor-deficient mice. J Virol 69(4):2153–2158.
Thomson SJGoh FGBanks HKrausgruber TKotenko SVFoxwell BMUdalova IA2009. The role of transposable elements in the regulation of IFN-lambda1 gene expressionProc Natl Acad Sci U S A1062811564-11569. Thomson SJ, Goh FG, Banks H, Krausgruber T, Kotenko SV, Foxwell BM, Udalova IA. 2009. The role of transposable elements in the regulation of IFN-lambda1 gene expression. Proc Natl Acad Sci U S A 106(28):11564–11569.
Tissari JSirén JMeri SJulkunen IMatikainen S2005. IFN-alpha enhances TLR3-mediated antiviral cytokine expression in human endothelial and epithelial cells by up-regulating TLR3 expressionJ Immunol17474289-4294. Tissari J, Sirén J, Meri S, Julkunen I, Matikainen S. 2005. IFN-alpha enhances TLR3-mediated antiviral cytokine expression in human endothelial and epithelial cells by up-regulating TLR3 expression. J Immunol 174(7):4289–4294.
Wathelet MGLin CHParekh BSRonco LVHowley PMManiatis T1998. Virus infection induces the assembly of coordinately activated transcription factors on the IFN-beta enhancer in vivoMol Cell14507-518. Wathelet MG, Lin CH, Parekh BS, Ronco LV, Howley PM, Maniatis T. 1998. Virus infection induces the assembly of coordinately activated transcription factors on the IFN-beta enhancer in vivo. Mol Cell 1(4):507–518.
Witte KGruetz GVolk HDLooman ACAsadullah KSterry WSabat RWolk K2009. Despite IFN-lambda receptor expression, blood immune cells, but not keratinocytes or melanocytes, have an impaired response to type-III interferonsGenes Immun108702-714. Witte K, Gruetz G, Volk HD, Looman AC, Asadullah K, Sterry W, Sabat R, Wolk K. 2009. Despite IFN-lambda receptor expression, blood immune cells, but not keratinocytes or melanocytes, have an impaired response to type-III interferons. Genes Immun 10(8):702–714.
Wolk KWitte KSabat R2010. Interleukin-28 and interleukin-29: novel regulators of skin biologyJ Interferon Cytokine Res308617-628. Wolk K, Witte K, Sabat R. 2010. Interleukin-28 and interleukin-29: novel regulators of skin biology. J Interferon Cytokine Res 30(8):617–628.
Xie MHAggarwal SHo WHFoster JZhang ZStinson JWood WIGoddard ADGurney AL2000. Interleukin (IL)-22, a novel human cytokine that signals through the interferon receptor-related proteins CRF2-4 and IL-22RJ Biol Chem2754031335-31339. Xie MH, Aggarwal S, Ho WH, Foster J, Zhang Z, Stinson J, Wood WI, Goddard AD, Gurney AL. 2000. Interleukin (IL)-22, a novel human cytokine that signals through the interferon receptor-related proteins CRF2-4 and IL-22R. J Biol Chem 275(40):31335–31339.
Information & Authors
Information
Published In
Journal of Interferon & Cytokine Research
Volume 30 • Issue Number 8 • August 2010
Pages: 555 - 564
PubMed: 20712453
Copyright
Copyright 2010, Mary Ann Liebert, Inc.
History
Published online: 13 September 2010
Published in print: August 2010
Accepted: 7 July 2010
Received: 7 July 2010
Topics
Authors
Author Disclosure Statement
No competing financial interests exist.
Metrics & Citations
Metrics
Citations
Export Citation
Export citation
Select the format you want to export the citations of this publication.
View Options
Get Access
Access content
To read the fulltext, please use one of the options below to sign in or purchase access.⚠ Society Access
If you are a member of a society that has access to this content please log in via your society website and then return to this publication.