Research Article
No access
Published Online: 4 February 2015

Susceptibility and Tolerance of Human Gut Culturable Aerobic Microbiota to Wine Polyphenols

Publication: Microbial Drug Resistance
Volume 21, Issue Number 1

Abstract

Diet is one of the main factors that could affect quantitatively and qualitatively the stability of the gut microbiota. Polyphenols are abundantly present in the human diet and have an antimicrobial effect inducing selective changes in the microbiota composition, with potential beneficial effects for the human health. Our aim was to determine the human gut microbiota susceptibility toward wine polyphenols. Susceptibility to two commercial wine phenolic extracts (Vitaflavan® and Provinols™) was determined in isolates from fecal samples from 36 gastrointestinal healthy volunteers. To select the polyphenol-resistant isolates, feces were seeded in plates containing 1 mg/ml of phenolic extract. The minimal inhibitory concentration to polyphenols in the collected isolates was assessed by the agar dilution method. Overall results showed that Gram-negative isolates are most tolerant to the presence of both grape seed and red wine extracts. Furthermore, we purified to homogeneity the phenolic fractions by high-performance liquid chromatography (HPLC) to determine their antimicrobial effect and their influence on bacterial growth in four selected ATCC strains using the BioScreen apparatus. Results showed that the antimicrobial activity of the wine polyphenols is the result of the interaction of both the flavan-3-ol type and the bacteria. Bacterial Intraspecies differences in the phenolic susceptibility suggest the existence of polyphenol-resistant mechanisms that are uncharacterized as yet.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Alakom H.L., Puupponen-Pimiä R., Aura A.M., Helander I.M., Nohynek L., Oksman-Caldentey K.M., and Saarela M. 2007. Weakening of Salmonella with selected microbial metabolites of berry-derived phenolic compounds and organic acids. J. Agric. Food Chem. 55:3905–3912.
2.
Aron P.M., and Kennedy J.A. 2008. Flavan-3-ols: nature, occurrence and biological activity. Mol. Nutr. Food Res. 52:79–104.
3.
Baquero F., and Nombela C. 2012. The microbiome as a human organ. Clin. Microbiol. Infect. 18 Suppl 4:2–4.
4.
Carroll I.M., Threadgill D.W., and Threadgill D.S. 2009. The gastrointestinal microbiome: a malleable, third genome of mammals. Mamm. Genome 20:395–403.
5.
Clinical and Laboratory Standards Institute. 2006. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Seventh edition: approved standard M7-A7. CLSI, Wayne, PA.
6.
Cueva C., Moreno-Arribas M.V., Martín-Alvarez P.J., Bills G., Vicente M.F., Basilio A., Rivas C.L., Requena T., Rodríguez J.M., and Bartolomé B. 2010. Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Res. Microbiol. 161:372–382.
7.
Delgado S., Suárez A., and Mayo B. 2006. Identification of dominant Bacteria in feces and colonic mucosa from healthy Spanish adults by culturing and by 16S rDNA sequence analysis. Dig. Dis. Sci. 51:744–751.
8.
Femia A.P., Caderni G., Vignali F., Salvadori M., Giannini A., Biggeri A., Gee J., Przybylska K., Cheynier V., and Dolara P. 2005. Effect of polyphenolic extracts from red wine and 4-OH-coumaric acid on 1,2-dimethylhydrazine-induced colon carcinogenesis in rats. Eur. J. Nutr. 44:79–84.
9.
Forester S.C., and Waterhouse A.L. 2009. Metabolites are key to understanding health effects of wine polyphenolics. J. Nutr. 139:1824S–1831S.
10.
González-Manzano S., Santos-Buelga C., Pérez-Alonso J.J., Rivas-Gonzalo J.C., and Escribano-Bailón M.T. 2006. Characterization of the mean degree of polymerization of proanthocyanidins in red wines using liquid chromatography-mass spectrometry (LC-MS). J. Agric. Food Chem. 54:4326–4332.
11.
Guarner F., and Malagelada J. R. 2003. Gut flora in health and disease. Lancet 360:512–519.
12.
Ikigai H., Nakae T., Hara Y., and Shimamura T. 1993. Bactericidal catechins damage the lipid bilayer. Biochim. Biophys. Acta. 1147:132–136.
13.
Kemperman R.A., Bolca S., Roger L.C., and Vaughan E.E. 2010. Novel approaches for analysing gut microbes and dietary polyphenols: challenges and opportunities. Microbiology 156:3224–3231.
14.
Lee H.C., Jenner A.M., Low C.S., and Lee Y.K. 2006. Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Res. Microbiol. 157:876–884.
15.
Magrone T., and Jirillo E. 2011. Potential application of dietary polyphenols from red wine to attaining healthy ageing. Curr. Top Med. Chem. 11:1780–1796.
16.
Mayer R., Stecher G., Wuerzner R., Silva R.C., Sultana T., Trojer L., Feuerstein I., Krieg C., Abel G., Popp M., Bobleter O., and Bonn G.K. 2008. Proanthocyanidins: target compounds as antibacterial agents. J. Agric. Food Chem. 56:6959–6966.
17.
Monagas M., Urpi-Sarda M., Sánchez-Patán F., Llorach R., Garrido I., Gómez-Cordovés C., Andres-Lacueva C., and Bartolomé B. 2010. Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites. Food Funct. 1:233–253.
18.
Mullin G.E. 2011. Red wine, grapes, and better health—resveratrol. Nutr. Clin. Pract. 26:722–723.
19.
Nelson K.E., Thonney M.L., Woolston T.K., Zinder S., and Pell A.N. 1998. Phenotypic and phylogenetic characterization of ruminal tannin-tolerant bacteria. Appl. Environ. Microbiol. 64:3824–3830.
20.
Rauha J.P., Remes S., Heinonen M., Hopia A., Kähkönen M., Kujala T., Pihlaja K., Vuorela H., and Vuorela P. 2000. Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Int. J. Food Microbiol. 56:3–12.
21.
Requena T., Monagas M., Pozo-Bayón M.A., Martín-Álvarez P.J., Bartolomé B., del Campo R., Ávila M., Martínez-Cuesta M.C., Peláez C., and Moreno-Arribas M.V. 2010. Perspectives of the potential implications of wine polyphenols on human oral and gut microbiota. Trends Food Sci. Technol. 21:332–344.
22.
Romero C., Medina E., Vargas J., Brenes M., and De Castro A. 2007. Antibacterial effect of phenolic compounds from different wines. Food Control 18:93–101.
23.
Romier B., Schneider Y.J., Larondelle Y., and During A. 2009. Dietary polyphenols can modulate the intestinal inflammatory response. Nutr. Rev. 67:363–378.
24.
Sánchez-Patán F., Cueva C., Monagas M., Walton G.E., Gibson G.R., Quintanilla-López J.E., Lebrón-Aguilar R., Martín-Álvarez P.J., Moreno-Arribas M.V., and Bartolomé B. 2012. In vitro fermentation of a red wine extract by human gut microbiota: changes in microbial groups and formation of phenolic metabolites. J. Agric. Food Chem. 60:2136–2147.
25.
Selma M.V., Espín J.C., and Tomás-Barberán F.A. 2009. Interaction between phenolics and gut microbiota: role in human health. J. Agric. Food Chem. 57:6485–6501.
26.
Shan B., Cai Y.Z., Brooks J.D., and Corke H. 2007. Antibacterial properties and major bioactive components of cinnamon stick (Cinnamomun burmannii): activity against foodborne pathogenic bacteria. J. Agric. Food Chem. 55:5484–5490.
27.
Shanks O.C., Kelty C.A., Archibeque S., Jenkins M., Newton R.J., McLellan S., Huse S.M., and Sogin M.L. 2011. Community structures of fecal bacteria in cattle from different animal feeding operations. Appl. Environ. Microbiol. 77:2992–3001.
28.
Smith A.H., and Mackie R.I. 2004. Effect of condensed tannins on bacterial diversity and metabolic activity in the rat gastrointestinal tract. Appl. Environ. Microbiol. 70:1104–1115.
29.
Smith A.H., Zoetendal E., and Mackie R.I. 2005. Bacterial mechanisms to overcome inhibitory effects of dietary tannins. Microb. Ecol. 50:197–205.
30.
Tabasco R., Sánchez-Patán F., Monagas M., Bartolomé B., Moreno-Arribas M.V., Peláez C., and Requena T. 2011. Effect of grape polyphenols on lactic acid bacteria and bifidobacteria growth: resistance and metabolism. Food Microbiol. 28:1345–1352.
31.
Tzounis X., Rodriguez-Mateos A., Vulevic J., Gibson G.R., Kwik-Uribe C., and Spencer J.P. 2011. Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. Am. J. Clin. Nutr. 93:62–72.
32.
Tzounis X., Vulevic J., Kuhnle G.G., George T., Leonczak J., Gibson G.R., Kwik-Uribe C., and Spencer J.P. 2008. Flavonol monomer-induced changes to the human faecal microflora. Br. J. Nutr. 99:782–792.
33.
van Duynhoven J., Vaughan E.E., Jacobs D.M., Kemperman R.A., van Velzen E.J., Gross G., Roger L.C., Possemiers S., Smilde A.K., Doré J., Westerhuis J.A., and Van de Wiele T. 2011. Metabolic fate of polyphenols in the human superorganism. Proc. Natl. Acad. Sci. U. S. A. 108 Suppl 1:4531–4538.
34.
Visioli F., De La Lastra C.A., Andres-Lacueva C., Aviram M., Calhau C., Cassano A., D'Archivio M., Faria A., Favé G., Fogliano V., Llorach R., Vitaglione P., Zoratti M., and Edeas M. 2011. Polyphenols and human health: a prospectus. Crit. Rev. Food Sci. Nutr. 51:524–546.
35.
Walter J., and Ley R. 2011. The human gut microbiome: ecology and recent evolutionary changes. Ann. Rev. Microbiol. 65:411–429.
36.
Yamakoshi J., Tokutake S., Kikuchi M., Kubota Y., Konishi H., and Mitsuoka T. 2001. Effect of proanthocyanidin-rich extract from grape seeds on human fecal flora and fecal odor. Microbiol. Ecol. Health Dis. 13:25–31.
37.
Zoetendal E.G., Rajilic-Stojanovic M., and de Vos W.M. 2008. High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 57:1605–1615.

Information & Authors

Information

Published In

cover image Microbial Drug Resistance
Microbial Drug Resistance
Volume 21Issue Number 1February 2015
Pages: 17 - 24
PubMed: 25191749

History

Published online: 4 February 2015
Published in print: February 2015
Published ahead of print: 5 September 2014

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Carolina Cueva
Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Madrid, Spain.
Begoña Bartolomé
Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Madrid, Spain.
M. Victoria Moreno-Arribas
Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Madrid, Spain.
Irene Bustos
Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Madrid, Spain.
Teresa Requena
Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Madrid, Spain.
Susana González-Manzano
Grupo de Investigación en Polifenoles, Unidad de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain.
Celestino Santos-Buelga
Grupo de Investigación en Polifenoles, Unidad de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain.
María-Carmen Turrientes
Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
Rosa del Campo
Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.

Notes

Address correspondence to:Rosa del Campo, MD, PhDServicio de MicrobiologíaHospital Universitario Ramón y CajalInstituto Ramón y Cajalde Investigación Sanitaria (IRYCIS)Ctra. Colmenar Km 9,1Madrid 28034Spain
E-mail: [email protected]

Disclosure Statement

No competing financial interests exist.

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/EPUB

Full Text

View Full Text

Figures

Tables

Media

Share

Share

Copy the content Link

Share on social media

Back to Top