Research Article
No access
Published Online: 8 May 2019

Evaluation of EDTA- and DPA-Based Microdilution Phenotypic Tests for the Detection of MCR-Mediated Colistin Resistance in Enterobacteriaceae

Publication: Microbial Drug Resistance
Volume 25, Issue Number 4

Abstract

The emergence of the colistin-resistant (COL-R) Enterobacteriaceae represents a worrying health issue. However, only a portion of these strains may carry the plasmid-mediated mcr colistin resistance genes. We evaluated the ability of both ethylenediaminetetraacetic acid (EDTA)-based and dipicolinic acid (DPA)-based broth microdilution (BMD) tests to detect mcr-1 to mcr-5 producers. Of 92 Enterobacteriaceae (85 COL-R), 44 mcr-positive strains (39 Escherichia coli, 3 Klebsiella pneumoniae, and 2 Salmonella spp.) were tested. EDTA (100 μg/mL) was tested in Mueller–Hinton broth (MHB), whereas the DPA (900 μg/mL) was used in cation-adjusted MHB. Results were categorized as positive if in presence of chelator strains exhibited ≥3 two fold MIC decrease compared to the COL MIC alone. The EDTA-based BMD assay detected 41 mcr-positive strains, but 22 false-positive strains (including 12 E. coli and 4 K. pneumoniae) were recorded (sensitivity [SN], 93.2%; specificity [SP], 54.2%). The DPA-based BMD assay detected 37 mcr-positive strains, with 7 false-negative (2 E. coli, 3 K. pneumoniae, 2 Salmonella spp.) strains (SN, 84.1%; SP, 100%). Overall, the EDTA-based BMD assay is not accurate to detect mcr producers, whereas the DPA-based BMD test (“colistin-MAC test”) demonstrated good accuracy, but only when implemented for E. coli strains (SN, 94.9%; SP, 100%). With the aim to prevent the dissemination of mcr-possessing E. coli strains, the COL-MAC test could be implemented by clinical laboratories that are unable to perform molecular tests. Moreover, this assay could be applied to screen large collections of isolates to reveal the expression of new mcr-like genes not yet targeted by the current molecular assays.

Get full access to this article

View all available purchase options and get full access to this article.

References

1. Haenni M., Beyrouthy R., Lupo A., Chatre P., Madec J.Y., and Bonnet R. 2018. Epidemic spread of Escherichia coli ST744 isolates carrying mcr-3 and blaCTX-M-55 in cattle in France. J. Antimicrob. Chemother. 73:533–536.
2. Carattoli A., Villa L., Feudi C., Curcio L., Orsini S., Luppi A., Pezzotti G., and Magistrali C.F. 2017. Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Euro. Surveill. 22:30589.
3. Donà V., Bernasconi O.J., Pires J., Collaud A., Overesch G., Ramette A., Perreten V., and Endimiani A. 2017. Heterogeneous genetic location of mcr-1 in colistin-resistant Escherichia coli isolates from humans and retail chicken meat in Switzerland: amergence of mcr-1-carrying IncK2 plasmids. Antimicrob. Agents Chemother. 61:e01245–17.
4. Poirel L., Jayol A., and Nordmann P. 2017. Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin. Microbiol. Rev. 30:557–596.
5. Partridge S.R., Di Pilato V., Doi Y., Feldgarden M., Haft D.H., Klimke W., Kumar-Singh S., Liu J.H., Malhotra-Kumar S., Prasad A., Rossolini G.M., Schwarz S., Shen J., Walsh T., Wang Y., and Xavier B.B. 2018. Proposal for assignment of allele numbers for mobile colistin resistance (mcr) genes. J. Antimicrob. Chemother. 73:2625–2630.
6. Wang X., Wang Y., Zhou Y., Li J., Yin W., Wang S., Zhang S., Shen J., and Shen Z. 2018. Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae. Emerg. Microbes Infect. 7:122.
7. Bernasconi O.J., Kuenzli E., Pires J., Tinguely R., Carattoli A., Hatz C., Perreten V., and Endimiani A. 2016. Travelers can import colistin-resistant Enterobacteriaceae, including those possessing the plasmid-mediated mcr-1 gene. Antimicrob. Agents Chemother. 60:5080–5084.
8. Perreten V., Strauss C., Collaud A., and Gerber D. 2016. Colistin resistance gene mcr-1 in avian-pathogenic Escherichia coli in South Africa. Antimicrob. Agents Chemother. 60:4414–4415.
9. Zurfuh K., Poirel L., Nordmann P., Nuesch-Inderbinen M., Hachler H., and Stephan R. 2016. Occurrence of the plasmid-borne mcr-1 colistin resistance gene in extended-spectrum-β-lactamase-producing Enterobacteriaceae in river water and imported vegetable samples in Switzerland. Antimicrob. Agents Chemother. 60:2594–2595.
10. Bernasconi O.J., Principe L., Tinguely R., Karczmarek A., Perreten V., Luzzaro F., and Endimiani A. 2017. Evaluation of a new commercial microarray platform for the simultaneous detection of beta-lactamase and mcr-1 and mcr-2 genes in Enterobacteriaceae. J. Clin. Microbiol. 55:3138–3141.
11. Dona V., Bernasconi O.J., Kasraian S., Tinguely R., and Endimiani A. 2017. A SYBR(R) green-based real-time PCR method for improved detection of mcr-1-mediated colistin resistance in human stool samples. J. Glob. Antimicrob. Resist. 9:57–60.
12. Rebelo A.R., Bortolaia V., Kjeldgaard J.S., Pedersen S.K., Leekitcharoenphon P., Hansen I.M., Guerra B., Malorny B., Borowiak M., Hammerl J.A., Battisti A., Franco A., Alba, P. Perrin-Guyomard A., Granier S.A., De Frutos Escobar C., Malhotra-Kumar S., Villa L., Carattoli A., and Hendriksen R.S. 2018. Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Euro. Surveill. 23.
13. Zou D., Huang S., Lei H., Yang Z., Su Y., He X., Zhao Q., Wang Y., Liu W., and Huang L. 2017. Sensitive and rapid detection of the plasmid-encoded colistin-resistance gene mcr-1 in Enterobacteriaceae isolates by loop-mediated isothermal amplification. Front. Microbiol. 8:2356.
14. Bontron S., Poirel L., and Nordmann P. 2016. Real-time PCR for detection of plasmid-mediated polymyxin resistance (mcr-1) from cultured bacteria and stools. J. Antimicrob. Chemother. 71:2318–2320.
15. Jayol A., Nordmann P., Andre C., Poirel L., and Dubois V. 2018. Evaluation of three broth microdilution systems to determine colistin susceptibility of Gram-negative bacilli. J. Antimicrob. Chemother. 73:1272–1278.
16. Matuschek E., Ahman J., Webster C., and Kahlmeter G. 2018. Antimicrobial susceptibility testing of colistin—evaluation of seven commercial MIC products against standard broth microdilution for Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter spp. Clin. Microbiol Infect. 24:865–870.
17. Chew K.L., La M.V., Lin R.T.P., J.W.P. Teo. 2017. Colistin and polymyxin B susceptibility testing for carbapenem-resistant and mcr-positive Enterobacteriaceae: comparison of sensititre, MicroScan, Vitek 2, and Etest with broth microdilution. J. Clin. Microbiol. 55:2609–2616.
18. Poirel L., Larpin Y., Dobias J., Stephan R., Decousser J.W., Madec J.Y., and Nordmann P. 2018. Rapid Polymyxin NP test for the detection of polymyxin resistance mediated by the mcr-1/mcr-2 genes. Diagn. Microbiol. Infect. Dis. 90:7–10.
19. Jayol A., Nordmann P., Lehours P., Poirel L., and Dubois V. 2018. Comparison of methods for detection of plasmid-mediated and chromosomally encoded colistin resistance in Enterobacteriaceae. Clin. Microbiol. Infect. 24:175–179.
20. Nordmann P., Jayol A., and Poirel L. 2016. Rapid detection of polymyxin resistance in Enterobacteriaceae. Emerg. Infect. Dis. 22:1038–1043.
21. Pires J., Bernasconi O.J., Hauser C., Tinguely R., Atkinson A., Perreten V., Dona V., Rauch A., Furrer H., and Endimiani A. 2017. Intestinal colonisation with extended-spectrum cephalosporin- and colistin-resistant Enterobacteriaceae in HIV-positive individuals in Switzerland: molecular features and risk factors. Int. J. Antimicrob. Agents. 49:519–521.
22. Principe L., Piazza A., Mauri C., Anesi A., Bracco S., Brigante G., Casari E., Agrappi C., Caltagirone M., Novazzi F., Migliavacca R., Pagani L., and Luzzaro F. 2018. Multicenter prospective study on the prevalence of colistin resistance in Escherichia coli: relevance of mcr-1-positive clinical isolates in Lombardy, Northern Italy. Infect. Drug Resist. 11:377–385.
23. World Health Organization (WHO). 2015. Global Action Plan on Antimicrobial Resistance. Sixty-eighth World Health Assembly (document WHA68/2015/REC/1, Annex 3.) WHO Press, Geneva, Switzerland.
24. Hinchliffe P., Yang Q.E., Portal E., Young T., Li H., Tooke C.L., Carvalho M.J., Paterson N.G., Brem J., Niumsup P.R., Tansawai U., Lei L., Li M., Shen Z., Wang Y., Schofield C.J., Mulholland A.J., Shen J., Fey N., Walsh T.R., and Spencer J. 2017. Insights into the mechanistic basis of plasmid-mediated colistin resistance from crystal structures of the catalytic domain of MCR-1. Sci. Rep. 7:39392.
25. Coates K., Walsh T.R., Spencer J., and Hinchliffe P. 2017. 1.12 A resolution crystal structure of the catalytic domain of the plasmid-mediated colistin resistance determinant MCR-2. Acta. Crystallogr. F. Struct. Biol. Commun. 73:443–449.
26. Esposito F., Fernandes M.R., Lopes R., Munoz M., Sabino C.P., Cunha M.P., Silva K.C., Cayo R., Martins W., Moreno A.M., Knobl T., Gales A.C., and Lincopan N. 2017. Detection of colistin-resistant MCR-1-positive Escherichia coli by use of assays based on inhibition by EDTA and zeta potential. J. Clin. Microbiol. 55:3454–3465.
27.Coppi M., Cannatelli A., Antonelli A., Baccani I., Di Pilato V., Sennati S., Giani T., and Rossolini G.M. 2018. A simple phenotypic method for screening of MCR-1-mediated colistin resistance. Clin. Microbiol. Infect. 24:201.e1–201.e3.
28. European Committee on Antimicrobial Susceptibility Testing (EUCAST). 2018. Breakpoint tables for interpretation of MICs and zone diameters. Version 8.0. Available at www.eucast.org (Online.)
29. Leclercq R., Canton R., Brown D.F., Giske C.G., Heisig P., MacGowan A.P., Mouton J.W., Nordmann P., Rodloff A.C., Rossolini G.M., Soussy C.J., Steinbakk M., Winstanley T.G., and Kahlmeter G. 2013. EUCAST expert rules in antimicrobial susceptibility testing. Clin. Microbiol. Infect. 19:141–160.
30. Clinical and Laboratory Standards Institute (CLSI). 2017. Performance Standards for Antimicrobial Susceptibility Testing; CLSI document M100-S27, Wayne, PA.
31. Xavier B.B., Lammens C., Ruhal R., Kumar-Singh S., Butaye P., Goossens H., Malhotra-Kumar S. 2016. Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. Euro. Surveill. 21:pii=30280.
32. Borowiak M., Fischer J., Hammerl J.A., Hendriksen R.S., Szabo I., and Malorny B. 2017. Identification of a novel transposon-associated phosphoethanolamine transferase gene, mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp. enterica serovar Paratyphi B. J. Antimicrob. Chemother. 72:3317–3324.
33. Yang Y.Q., Li Y.X., Lei C.W., Zhang A.Y., and Wang H.N. 2018. Novel plasmid-mediated colistin resistance gene mcr-7.1 in Klebsiella pneumoniae. J. Antimicrob. Chemother. [Epub ahead of print];.
34. Bernasconi O.J., Dona V., Pires J., Kuenzli E., Hatz C., Luzzaro F., Perreten V., and Endimiani A. 2018. Deciphering the complete deletion of the mgrB locus in an unusual colistin-resistant Klebsiella pneumoniae colonizing the gut of a traveler returning from India. Int. J. Antimicrob. Agents. 51:529–531.
35. Clément M., Ramette A., Bernasconi O., Principe L., Luzzaro F., and Endimiani A. 2018. Whole-genome sequence of the first extended-spectrum β-lactamase-producing strain of Salmonella enterica subsp. enterica serovar Napoli. Microbiol. Resour. Announc. 7:e00973.
36. Kieffer N., Aires-de-Sousa M., Nordmann P., and Poirel L. 2017. High rate of MCR-1-producing Escherichia coli and Klebsiella pneumoniae among pigs, Portugal. Emerg. Infect. Dis. 23:2023–2029.
37. Cannatelli A., Giani T., Aiezza N., Di Pilato V., Principe L., Luzzaro F., Galeotti C.L., and Rossolini G.M. 2017. An allelic variant of the PmrB sensor kinase responsible for colistin resistance in an Escherichia coli strain of clinical origin. Sci. Rep. 7:5071.
38. Seiffert S.N., Perreten V., Johannes S., Droz S., Bodmer T., and Endimiani A. 2014. OXA-48 carbapenemase-producing Salmonella enterica serovar Kentucky isolate of sequence type 198 in a patient transferred from Libya to Switzerland. Antimicrob. Agents Chemother. 58:2446–2449.
39. Clinical and Laboratory Standards Institute (CLSI). 2015. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard. 10th ed. CLSI document M07-A10, Wayne, PA.
40. Clinical and Laboratory Standards Institute (CLSI). 2018. Development of In Vitro Susceptibility Testing Criteria and Quality Control Parameters. 5th ed. CLSI document M23, Wayne, PA.
41. Carretto E., Brovarone F., Nardini P., Russello G., Barbarini D., Pongolini S., Gagliotti C., Carattoli A., and Sarti M. 2018. Detection of mcr-4 positive Salmonella enterica serovar Typhimurium in clinical isolates of human origin, Italy, October to November 2016. Euro. Surveill. 23:pii=17-00821.

Information & Authors

Information

Published In

cover image Microbial Drug Resistance
Microbial Drug Resistance
Volume 25Issue Number 4May 2019
Pages: 494 - 500
PubMed: 30431401

History

Published online: 8 May 2019
Published in print: May 2019
Published ahead of print: 15 November 2018

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Thomas Büdel*
Institute for Infectious Diseases, University of Bern, Bern, Switzerland.
Mathieu Clément*
Institute for Infectious Diseases, University of Bern, Bern, Switzerland.
Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.
Odette J. Bernasconi
Institute for Infectious Diseases, University of Bern, Bern, Switzerland.
Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.
Luigi Principe
Clinical Microbiology and Virology Unit, A. Manzoni Hospital, Lecco, Italy.
Vincent Perreten
Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland.
Francesco Luzzaro
Clinical Microbiology and Virology Unit, A. Manzoni Hospital, Lecco, Italy.
Andrea Endimiani [email protected]
Institute for Infectious Diseases, University of Bern, Bern, Switzerland.

Notes

*
These authors' contributed equally to this work.
Address correspondence to: Andrea Endimiani, MD, PhD, Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, Bern CH-3001, Switzerland [email protected]; [email protected]

Disclosure Statement

No competing financial interests exist.

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top