Combining CRISPR/Cas9 and rAAV Templates for Efficient Gene Editing
Publication: nucleic acid therapeutics
Volume 25, Issue Number 6
Abstract
Altering endogenous genes in cells is an integral tool of modern cell biology. The ease-of-use of the CRISPR/Cas9 system to introduce genomic DNA breaks at specific sites in vivo has led to its rapid and wide adoption. In the absence of a DNA template, the lesion is repaired by nonhomologous end joining resolving as internal deletions. However, in the presence of a homologous DNA template, homology-directed repair occurs with variable efficiencies. Recent work has demonstrated that highly efficient gene targeting can be induced by combining CRISPR/Cas9 targeting of genomic loci with recombinant adeno-associated virus (rAAV) to provide a single-stranded homologous DNA template. Here we review the current state of CRISPR/Cas-based gene editing and provide a practical guide to applying the CRISPR/Cas and rAAV system for highly efficient, time- and cost-effective gene targeting.
Get full access to this article
View all available purchase options and get full access to this article.
References
1.
Scherer S and Davis RW. (1979). Replacement of chromosome segments with altered DNA sequences constructed in vitro. Proc Natl Acad Sci U S A 76:4951–4955.
2.
Smithies O, Gregg RG, Boggs SS, Koralewski MA and Kucherlapati RS. (1985). Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature 317:230–234.
3.
Thomas KR, Folger KR and Capecchi MR. (1986). High frequency targeting of genes to specific sites in the mammalian genome. Cell 44:419–428.
4.
Mansour SL, Thomas KR and Capecchi MR. (1988). Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336:348–352.
5.
Rong YS and Golic KG. (2000). Gene targeting by homologous recombination in Drosophila. Science 288:2013–2018.
6.
Rudin N, Sugarman E and Haber JE. (1989). Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae. Genetics 122:519–534.
7.
Plessis A, Perrin A, Haber JE and Dujon B. (1992). Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus. Genetics 130:451–460.
8.
Rouet P, Smih F and Jasin M. (1994). Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol 14:8096–8106.
9.
Choulika A, Perrin A, Dujon B and Nicolas JF. (1995). Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol Cell Biol 15:1968–1973.
10.
Chevalier BS, Kortemme T, Chadsey MS, Baker D, Monnat RJ and Stoddard BL. (2002). Design, activity, and structure of a highly specific artificial endonuclease. Mol Cell 10:895–905.
11.
Miller J, McLachlan AD and Klug A. (1985). Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J 4:1609–1614.
12.
Pavletich NP and Pabo CO. (1991). Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science 252:809–817.
13.
Kim YG, Cha J and Chandrasegaran S. (1996). Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93:1156–1160.
14.
Bibikova M, Beumer K, Trautman JK and Carroll D. (2003). Enhancing gene targeting with designed zinc finger nucleases. Science 300:764.
15.
Bibikova M, Golic M, Golic KG and Carroll D. (2002). Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161:1169–1175.
16.
Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A and Bonas U. (2009). Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512.
17.
Moscou MJ and Bogdanove AJ. (2009). A simple cipher governs DNA recognition by TAL effectors. Science 326:1501.
18.
Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ and Voytas DF. (2010). Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761.
19.
Ishino Y, Shinagawa H, Makino K, Amemura M and Nakata A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169:5429–5433.
20.
Mojica FJ, Diez-Villasenor C, Soria E and Juez G. (2000). Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol 36:244–246.
21.
Makarova KS, Aravind L, Grishin NV, Rogozin IB and Koonin EV. (2002). A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Res 30:482–496.
22.
Bolotin A, Quinquis B, Sorokin A and Ehrlich SD. (2005). Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151:2551–2561.
23.
Mojica FJ, Diez-Villasenor C, Garcia-Martinez J and Soria E. (2005). Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60:174–182.
24.
Pourcel C, Salvignol G and Vergnaud G. (2005). CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151:653–663.
25.
Haft DH, Selengut J, Mongodin EF and Nelson KE. (2005). A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol 1:e60.
26.
Makarova KS, Grishin NV, Shabalina SA, Wolf YI and Koonin EV. (2006). A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct 1:7.
27.
Jansen R, Embden JD, Gaastra W and Schouls LM. (2002). Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43:1565–1575.
28.
Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA and Horvath P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712.
29.
Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadan AH and Moineau S. (2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67–71.
30.
Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J and Charpentier E. (2011). CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602–607.
31.
Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P and Siksnys V. (2011). The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 39:9275–9282.
32.
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA and Charpentier E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821.
33.
Gasiunas G, Barrangou R, Horvath P and Siksnys V. (2012). Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109:E2579–E2586.
34.
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA and Zhang F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823.
35.
Jinek M, East A, Cheng A, Lin S, Ma E and Doudna J. (2013). RNA-programmed genome editing in human cells. Elife 2:e00471.
36.
Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE and Church GM. (2013). RNA-guided human genome engineering via Cas9. Science 339:823–826.
37.
Kaulich M, Lee YJ, Lonn P, Springer AD, Meade BR and Dowdy SF. (2015). Efficient CRISPR-rAAV engineering of endogenous genes to study protein function by allele-specific RNAi. Nucleic Acids Res 43:e45.
38.
Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK and Sander JD. (2013). High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31:822–826.
39.
Kuscu C, Arslan S, Singh R, Thorpe J and Adli M. (2014). Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol 32:677–683.
40.
Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, et al. (2013). DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832.
41.
Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M, Smith I, Sullender M, Ebert BL, Xavier RJ and Root DE. (2014). Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol 32:1262–1267.
42.
Fu Y, Sander JD, Reyon D, Cascio VM and Joung JK. (2014). Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32:279–284.
43.
Kim D, Bae S, Park J, Kim E, Kim S, Yu HR, Hwang J, Kim JI and Kim JS. (2015). Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods 12:237–243.
44.
Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH and Joung JK. (2013). CRISPR RNA-guided activation of endogenous human genes. Nat Methods 10:977–979.
45.
Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, Guimaraes C, Panning B, Ploegh HL, et al. (2014). Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159:647–661.
46.
Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L and Church GM. (2013). CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31:833–838.
47.
Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y and Zhang F. (2013). Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380–1389.
48.
Shen B, Zhang W, Zhang J, Zhou J, Wang J, Chen L, Wang L, Hodgkins A, Iyer V, Huang X and Skarnes WC. (2014). Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods 11:399–402.
49.
Guilinger JP, Thompson DB and Liu DR. (2014). Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol 32:577–582.
50.
Zhou Y, Zhu S, Cai C, Yuan P, Li C, Huang Y and Wei W. (2014). High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 509:487–491.
51.
Wang T, Wei JJ, Sabatini DM and Lander ES. (2014). Genetic screens in human cells using the CRISPR-Cas9 system. Science 343:80–84.
52.
Koike-Yusa H, Li Y, Tan EP, Velasco-Herrera Mdel C and Yusa K. (2014). Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol 32:267–273.
53.
Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, Heckl D, Ebert BL, Root DE, Doench JG and Zhang F. (2014). Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343:84–87.
54.
Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, Dahlman JE, Parnas O, Eisenhaure TM, et al. (2014). CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159:440–455.
55.
Dow LE, Fisher J, O'Rourke KP, Muley A, Kastenhuber ER, Livshits G, Tschaharganeh DF, Socci ND and Lowe SW. (2015). Inducible in vivo genome editing with CRISPR-Cas9. Nat Biotechnol 33:390–394.
56.
Xue W, Chen S, Yin H, Tammela T, Papagiannakopoulos T, Joshi NS, Cai W, Yang G, Bronson R, et al. (2014). CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514:380–384.
57.
Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, Grompe M, Koteliansky V, Sharp PA, Jacks T and Anderson DG. (2014). Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol 32:551–553.
58.
Swiech L, Heidenreich M, Banerjee A, Habib N, Li Y, Trombetta J, Sur M and Zhang F. (2015). In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol 33:102–106.
59.
Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, et al. (2011). Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9:467–477.
60.
van der Oost J, Westra ER, Jackson RN and Wiedenheft B. (2014). Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat Rev Microbiol 12:479–492.
61.
Hsu PD, Lander ES and Zhang F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278.
62.
Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, Anders C, Hauer M, Zhou K, et al. (2014). Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343:1247997.
63.
Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, et al. (2013). CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:442–451.
64.
Cheng AW, Wang H, Yang H, Shi L, Katz Y, Theunissen TW, Rangarajan S, Shivalila CS, Dadon DB and Jaenisch R. (2013). Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res 23:1163–1171.
65.
Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS and Vale RD. (2014). A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159:635–646.
66.
Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li GW, Park J, Blackburn EH, Weissman JS, Qi LS and Huang B. (2013). Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155:1479–1491.
67.
Ma H, Naseri A, Reyes-Gutierrez P, Wolfe SA, Zhang S and Pederson T. (2015). Multicolor CRISPR labeling of chromosomal loci in human cells. Proc Natl Acad Sci U S A 112:3002–3007.
68.
Hilton IB, D'Ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE and Gersbach CA. (2015). Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 33:510–517.
69.
Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, et al. (2015). Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517:583–588.
70.
Shi J, Wang E, Milazzo JP, Wang Z, Kinney JB and Vakoc CR. (2015). Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat Biotechnol 33:661–667.
71.
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA and Zhang F. (2013). Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308.
72.
McCutcheon JP and von Dohlen CD. (2011). An interdependent metabolic patchwork in the nested symbiosis of mealybugs. Curr Biol 21:1366–1372.
73.
Chang YJ, Land M, Hauser L, Chertkov O, Del Rio TG, Nolan M, Copeland A, Tice H, Cheng JF, et al. (2011). Non-contiguous finished genome sequence and contextual data of the filamentous soil bacterium Ktedonobacter racemifer type strain (SOSP1-21). Stand Genomic Sci 5:97–111.
74.
Pruitt KD, Brown GR, Hiatt SM, Thibaud-Nissen F, Astashyn A, Ermolaeva O, Farrell CM, Hart J, Landrum MJ, et al. (2014). RefSeq: an update on mammalian reference sequences. Nucleic Acids Res 42:D756–D763.
75.
Antal CE, Hudson AM, Kang E, Zanca C, Wirth C, Stephenson NL, Trotter EW, Gallegos LL, Miller CJ, et al. (2015). Cancer-associated protein kinase C mutations reveal kinase's role as tumor suppressor. Cell 160:489–502.
76.
Bottcher R, Hollmann M, Merk K, Nitschko V, Obermaier C, Philippou-Massier J, Wieland I, Gaul U and Forstemann K. (2014). Efficient chromosomal gene modification with CRISPR/cas9 and PCR-based homologous recombination donors in cultured Drosophila cells. Nucleic Acids Res 42:e89.
77.
Rong Z, Zhu S, Xu Y and Fu X. (2014). Homologous recombination in human embryonic stem cells using CRISPR/Cas9 nickase and a long DNA donor template. Protein Cell 5:258–260.
78.
Vasileva A and Jessberger R. (2005). Precise hit: adeno-associated virus in gene targeting. Nat Rev Microbiol 3:837–847.
79.
Deyle DR and Russell DW. (2009). Adeno-associated virus vector integration. Curr Opin Mol Ther 11:442–447.
80.
Miller DG, Trobridge GD, Petek LM, Jacobs MA, Kaul R and Russell DW. (2005). Large-scale analysis of adeno-associated virus vector integration sites in normal human cells. J Virol 79:11434–11442.
81.
Nakai H, Wu X, Fuess S, Storm TA, Munroe D, Montini E, Burgess SM, Grompe M and Kay MA. (2005). Large-scale molecular characterization of adeno-associated virus vector integration in mouse liver. J Virol 79:3606–3614.
82.
Inagaki K, Lewis SM, Wu X, Ma C, Munroe DJ, Fuess S, Storm TA, Kay MA and Nakai H. (2007). DNA palindromes with a modest arm length of greater, similar 20 base pairs are a significant target for recombinant adeno-associated virus vector integration in the liver, muscles, and heart in mice. J Virol 81:11290–11303.
83.
McLaughlin SK, Collis P, Hermonat PL and Muzyczka N. (1988). Adeno-associated virus general transduction vectors: analysis of proviral structures. J Virol 62:1963–1973.
84.
Lebkowski JS, McNally MM, Okarma TB and Lerch LB. (1988). Adeno-associated virus: a vector system for efficient introduction and integration of DNA into a variety of mammalian cell types. Mol Cell Biol 8:3988–3996.
85.
Rutledge EA and Russell DW. (1997). Adeno-associated virus vector integration junctions. J Virol 71:8429–8436.
86.
Miller DG, Rutledge EA and Russell DW. (2002). Chromosomal effects of adeno-associated virus vector integration. Nat Genet 30:147–148.
87.
Grimm D, Lee JS, Wang L, Desai T, Akache B, Storm TA and Kay MA. (2008). In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses. J Virol 82:5887–5911.
88.
Kim JS, Bonifant C, Bunz F, Lane WS and Waldman T. (2008). Epitope tagging of endogenous genes in diverse human cell lines. Nucleic Acids Res 36:e127.
89.
Szymczak AL, Workman CJ, Wang Y, Vignali KM, Dilioglou S, Vanin EF and Vignali DA. (2004). Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector. Nat Biotechnol 22:589–594.
90.
Hirata RK and Russell DW. (2000). Design and packaging of adeno-associated virus gene targeting vectors. J Virol 74:4612–4620.
91.
Wu Z, Yang H and Colosi P. (2010). Effect of genome size on AAV vector packaging. Mol Ther 18:80–86.
92.
Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, Kang Y, Zhao X, Si W, et al. (2014). Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156:836–843.
93.
Zuris JA, Thompson DB, Shu Y, Guilinger JP, Bessen JL, Hu JH, Maeder ML, Joung JK, Chen ZY and Liu DR. (2015). Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol 33:73–80.
94.
Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, et al. (2015). In vivo genome editing using Staphylococcus aureus Cas9. Nature 520:186–191.
95.
Brinkman EK, Chen T, Amendola M and van Steensel B. (2014). Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res 42:e168.
96.
Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA and Liu DR. (2013). High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31:839–843.
97.
Veres A, Gosis BS, Ding Q, Collins R, Ragavendran A, Brand H, Erdin S, Talkowski ME and Musunuru K. (2014). Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell 15:27–30.
98.
Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, Wyvekens N, Khayter C, Iafrate AJ, et al. (2015). GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33:187–197.
99.
Crosetto N, Mitra A, Silva MJ, Bienko M, Dojer N, Wang Q, Karaca E, Chiarle R, Skrzypczak M, et al. (2013). Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nat Methods 10:361–365.
100.
Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR and Ploegh HL. (2015). Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol 33:538–542.
101.
Auer TO, Duroure K, De Cian A, Concordet JP and Del Bene F. (2014). Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res 24:142–153.
102.
D'Astolfo DS, Pagliero RJ, Pras A, Karthaus WR, Clevers H, Prasad V, Lebbink RJ, Rehmann H and Geijsen N. (2015). Efficient intracellular delivery of native proteins. Cell 161:674–690.
103.
Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE, Roy S, Steinfeld I, Lunstad BD, Kaiser RJ, et al. (2015). Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat Biotechnol 33:985–989.
104.
Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F and Jaenisch R. (2013). One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918.
105.
Zetsche B, Volz SE and Zhang F. (2015). A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat Biotechnol 33:139–142.
106.
Wright AV, Sternberg SH, Taylor DW, Staahl BT, Bardales JA, Kornfeld JE and Doudna JA. (2015). Rational design of a split-Cas9 enzyme complex. Proc Natl Acad Sci U S A 112:2984–2989.
Information & Authors
Information
Published In
Copyright
Copyright 2015, Mary Ann Liebert, Inc.
History
Published in print: December 2015
Published online: 23 November 2015
Published ahead of print: 5 November 2015
Accepted: 28 September 2015
Received: 20 April 2015
Topics
Authors
Author Disclosure Statement
No competing financial interests exist.
Metrics & Citations
Metrics
Citations
Export Citation
Export citation
Select the format you want to export the citations of this publication.
View Options
Get Access
Access content
To read the fulltext, please use one of the options below to sign in or purchase access.⚠ Society Access
If you are a member of a society that has access to this content please log in via your society website and then return to this publication.