Research Article
No access
Published Online: 29 June 2009

Traumatically Induced Altered Membrane Permeability: Its Relationship to Traumatically Induced Reactive Axonal Change

Publication: Journal of Neurotrauma
Volume 11, Issue Number 5

ABSTRACT

Recent studies have suggested that severe forms of traumatic brain injury (TBI) can be associated with direct alterations of the axolemma. The present study evaluated whether injuries of mild to moderate severity are associated with comparable change. To this end, we used extracellular horseradish peroxidase (HRP) to determine if altered axolemmal permeability occurred following the traumatic event. Adult cats received intrathecal infusions of peroxidase and then were prepared for mild to moderate fluid percussion injury. At intervals ranging from 5 min to 3 h, animals were perfused with aldehydes and prepared for the histochemical visualization of the peroxidase, in addition to the immunocytochemical visualization of the neurofilament 68 kD subunit, a long recognized marker of reactive axonal change. The histochemically and immunocytochemically prepared tissue was examined at both the light and electron microscopic level. With mild TBI, the injured animals displayed a repertoire of neurofilament misalignment and axonal swelling consistent with that previously described in our laboratories, yet these changes were not associated with the passage of peroxidase from the extracellular to the intraaxonal compartment. With moderate injury, on the other hand, focal axolemmal permeability change to the extracellularly confined peroxidase was recognized. This peroxidase passage was associated with local mitochondrial abnormalities in addition to an increased packing of the neurofilaments. Over a 3 h course, these neurofilaments began to disassemble, showing a delayed progression of reactive axonal change. Collectively, the results of this investigation suggest that traumatically induced axonal injury involves complex subsets of pathobiology, one evoking rapid primary neurofilamentous change and misalignment, the other eliciting altered membrane permeability concomitant with rapid neurofilament compaction, leading to a delayed progression of reactive axonal change.

Get full access to this article

View all available purchase options and get full access to this article.

Information & Authors

Information

Published In

cover image Journal of Neurotrauma
Journal of Neurotrauma
Volume 11Issue Number 5October 1994
Pages: 507 - 522
PubMed: 7861444

History

Published online: 29 June 2009
Published in print: October 1994

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top