Research Article
No access
Published Online: 23 December 2009

Profiling Muscle-Specific MicroRNA Expression after Peripheral Denervation and Reinnervation in a Rat Model

Publication: Journal of Neurotrauma
Volume 26, Issue Number 12

Abstract

MicroRNAs (miRNAs) are a class of highly conserved, non-coding RNAs involved in post-transcriptional gene regulation. The muscle-specific miRNAs, miR-1, miR-133a, and miR-206, are expressed in skeletal muscles and have been shown to contribute to muscle development. To profile their expression after sciatic nerve denervation and reinnervation, the soleus muscles of the rats were analyzed with quantitative real-time PCR at 1 week, 1 month, 2 months, and 4 months after the experiments. In addition, a combined approach using computational prediction by the miRanda website and the Agilent Whole Rat Genome 4 × 44 k oligo microarray experiment was performed to investigate the potential target genes of these three miRNAs in the denervated and reinnervated muscles. The results revealed that with the first downregulation of miR-1 and miR-133a within 1 month in the denervated muscle, the expression of miR-1 and miR-133 increased by ∼2-fold at 4 months after denervation and reinnervation; on the other hand, the expression of miR-206 was significantly increased to ∼3-fold 1 month later only following reinnervation but not following denervation, and lasted at least for 4 months. The expression pattern of miR-206 was different from that of miR-1 and miR-133a. Notably, two genes (Hnrpu and Npy) and one gene (Ptprd) were potentially regulated both in the denervated and reinnervated muscle by miR-1 and miR-133a, respectively. There were six potential target genes (Hnrpu, Lsamp, MGC108776, Mef2, Npy, and Ppfibp2) of the upregulated miR-206 in the reinnervated muscle. Among these, three (Hnrpu, Npy, and MGC108776) were potentially regulated by both miR-1 and miR-206. Because the Mef2 transcription factor was reported to promote the transformation of type II fast glycolytic fibers into type I slow oxidative fibers, the upregulation of miR-206 with decreased expression of the Mef2 transcript in the 4 month reinnervated muscle, which presented type II fiber predominance 4 months after nerve microanastomosis, might indicate the role of miR-206 in determining the fiber type after peripheral nerve regeneration.

Get full access to this article

View all available purchase options and get full access to this article.

References

Ackley B.D.Harrington R.J.Hudson M.L.Williams L.Kenyon C.J.Chisholm A.D.Jin Y.2005. The two isoforms of the Caenorhabditis elegans leukocyte-common antigen related receptor tyrosine phosphatase PTP-3 function independently in axon guidance and synapse formationJ. Neurosci.177528-7517. Ackley, B.D., Harrington, R.J., Hudson, M.L., Williams, L., Kenyon, C.J., Chisholm, A.D., and Jin, Y. (2005). The two isoforms of the Caenorhabditis elegans leukocyte-common antigen related receptor tyrosine phosphatase PTP-3 function independently in axon guidance and synapse formation. J. Neurosci. 17, 7528–7517.
Baek D.Villén J.Shin C.Camargo F.D.Gygi SP.Bartel D.P.2008. The impact of microRNAs on protein outputNature45564-71. Baek, D., Villén, J., Shin, C., Camargo, F.D., Gygi, SP., and Bartel, D.P. (2008). The impact of microRNAs on protein output. Nature 455, 64–71.
Baldwin K.M.Haddad F.2001. Effects of different activity and inactivity paradigms on myosin heavy chain gene expression in striated muscleJ. Appl. Physiol.90345-357. Baldwin, K.M., and Haddad, F. (2001). Effects of different activity and inactivity paradigms on myosin heavy chain gene expression in striated muscle. J. Appl. Physiol. 90, 345–357.
Beuvink I.Kolb F.A.Budach W.Garnier A.Lange J.Natt F.Dengler U.Hall J.Filipowicz W.Weiler J.2007. A novel microarray approach reveals new tissue-specific signatures of known and predicted mammalian microRNAsNucleic Acids Res.35e52. Beuvink, I., Kolb, F.A., Budach, W., Garnier, A., Lange, J., Natt, F., Dengler, U., Hall, J., Filipowicz, W., and Weiler, J. (2007). A novel microarray approach reveals new tissue-specific signatures of known and predicted mammalian microRNAs. Nucleic Acids Res. 35, e52.
Biressi S.Molinaro M.Cossu G.2007. Cellular heterogeneity during vertebrate skeletal muscle developmentDev. Biol.308281-293. Biressi, S., Molinaro, M., and Cossu, G. (2007). Cellular heterogeneity during vertebrate skeletal muscle development. Dev. Biol. 308, 281–293.
Brennecke J.Stark A.Russell R.B.Cohen S.M.2005. Principles of microRNA-target recognitionPLoS Biol.3e85. Brennecke, J., Stark, A., Russell, R.B., and Cohen, S.M. (2005). Principles of microRNA-target recognition. PLoS Biol. 3, e85.
Carè A.Catalucci D.Felicetti F.Bonci D.Addario A.Gallo P.Bang ML.Segnalini P.Gu Y.Dalton N.D.Elia L.Latronico M.V.Høydal M.Autore C.Russo M.A.Dorn G.W. 2ndEllingsen O.Ruiz-Lozano P.Peterson K.L.Croce CM.Peschle C.Condorelli G.2007. MicroRNA-133 controls cardiac hypertrophyNat. Med.13613-618. Carè, A., Catalucci, D., Felicetti, F., Bonci, D., Addario, A., Gallo, P., Bang, ML., Segnalini, P., Gu, Y., Dalton, N.D., Elia, L., Latronico, M.V., Høydal, M., Autore, C., Russo, M.A., Dorn, G.W. 2nd., Ellingsen, O., Ruiz-Lozano, P., Peterson, K.L., Croce, CM., Peschle, C., and Condorelli, G. (2007). MicroRNA-133 controls cardiac hypertrophy. Nat. Med. 13, 613–618.
Chen J.F.Mandel E.M.Thomson J.M.Wu Q.Callis T.E.Hammond S.M.Conlon F.L.Wang D.Z.2006. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiationNat. Genet.38228-233. Chen, J.F., Mandel, E.M., Thomson, J.M., Wu, Q., Callis, T.E., Hammond, S.M., Conlon, F.L., and Wang, D.Z. (2006). The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet. 38, 228–233.
Darnell D.K.Kaur S.Stanislaw S.Konieczka J.H.Yatskievych T.A.Antin P.B.2006. MicroRNA expression during chick embryo developmentDev. Dyn.2353156-3165. Darnell, D.K., Kaur, S., Stanislaw, S., Konieczka, J.H., Yatskievych, T.A., and Antin, P.B. (2006). MicroRNA expression during chick embryo development. Dev. Dyn. 235, 3156–3165.
Eisenberg I.Eran A.Nishino I.Moggio M.Lamperti C.Amato A.A.Lidov H.G.Kang P.B.North K.N.Mitrani-Rosenbaum S.Flanigan K.M.Neely L.A.Whitney D.Beggs A.H.Kohane I.S.Kunkel L.M.2007. Distinctive patterns of microRNA expression in primary muscular disordersProc. Natl. Acad. Sci. USA10417016-17021. Eisenberg, I., Eran, A., Nishino, I., Moggio, M., Lamperti, C., Amato, A.A., Lidov, H.G., Kang, P.B., North, K.N., Mitrani-Rosenbaum, S., Flanigan, K.M., Neely, L.A., Whitney, D., Beggs, A.H., Kohane, I.S., and Kunkel, L.M. (2007). Distinctive patterns of microRNA expression in primary muscular disorders. Proc. Natl. Acad. Sci. USA 104, 17016–17021.
Grifone R.Demignon J.Houbron C.Souil E.Niro C.Seller M.J.Hamard G.Maire P.2005. Six1 and Six4 homeoproteins are required for Pax3 and Mrf expression during myogenesis in the mouse embryoDevelopment1322235-2249. Grifone, R., Demignon, J., Houbron, C., Souil, E., Niro, C., Seller, M.J., Hamard, G., and Maire, P. (2005). Six1 and Six4 homeoproteins are required for Pax3 and Mrf expression during myogenesis in the mouse embryo. Development 132, 2235–2249.
Hertel J.Lindemeyer M.Missal K.Fried C.Tanzer A.Flamm C.Hofacker I.L.Stadler P.F.2006. The expansion of the metazoan microRNA repertoireBMC Genomics725. Hertel, J., Lindemeyer, M., Missal, K., Fried, C., Tanzer, A., Flamm, C., Hofacker, I.L., and Stadler, P.F. (2006). The expansion of the metazoan microRNA repertoire. BMC Genomics 7, 25.
Johnson K.G.McKinnell I.W.Stoker A.W.Holt C.E.2001. Receptor protein tyrosine phosphatases regulate retinal ganglion cell axon outgrowth in the developing Xenopus visual systemJ. Neurobiol.4999-117. Johnson, K.G., McKinnell, I.W., Stoker, A.W., and Holt, C.E. (2001). Receptor protein tyrosine phosphatases regulate retinal ganglion cell axon outgrowth in the developing Xenopus visual system. J. Neurobiol. 49, 99–117.
Kim H.K.Lee Y.S.Sivaprasad U.Malhotra A.Dutta A.2006. Muscle-specific microRNA miR-206 promotes muscle differentiationJ. Cell Biol.174677-687. Kim, H.K., Lee, Y.S., Sivaprasad, U., Malhotra, A., and Dutta, A. (2006). Muscle-specific microRNA miR-206 promotes muscle differentiation. J. Cell Biol. 174, 677–687.
Kloosterman W.P.Plasterk R.H.2006. The diverse functions of microRNAs in animal development and diseaseDev. Cell11441-450. Kloosterman, W.P., and Plasterk, R.H. (2006). The diverse functions of microRNAs in animal development and disease. Dev. Cell 11, 441–450.
Lewis B.P.Burge C.B.Bartel D.P.2005. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targetsCell12015-20. Lewis, B.P., Burge, C.B., and Bartel, D.P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20.
Lewis B.P.Shih I.H.Jones-Rhoades M.W.Bartel D.P.Burge C.B.2003. Prediction of mammalian microRNA targetsCell115787-798. Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W., Bartel, D.P., and Burge, C.B. (2003). Prediction of mammalian microRNA targets. Cell 115, 787–798.
Liang Y.Ridzon D.Wong L.Chen C.2007. Characterization of microRNA expression profiles in normal human tissuesBMC Genomics8166. Liang, Y., Ridzon, D., Wong, L., and Chen, C. (2007). Characterization of microRNA expression profiles in normal human tissues. BMC Genomics 8, 166.
Liu N.Williams A.H.Kim Y.McAnally J.Bezprozvannaya S.Sutherland L.B.Richardson J.A.Bassel-Duby R.Olson E.N.2007. An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133Proc. Natl. Acad. Sci. USA10420844-20849. Liu, N., Williams, A.H., Kim, Y., McAnally, J., Bezprozvannaya, S., Sutherland, L.B., Richardson, J.A., Bassel-Duby, R., and Olson, E.N. (2007). An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133. Proc. Natl. Acad. Sci. USA 104, 20844–20849.
McCarthy J.J.Esser K.A.2007. MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophyJ. Appl. Physiol.102306-313. McCarthy, J.J., and Esser, K.A. (2007). MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. J. Appl. Physiol. 102, 306–313.
2353
McCarthy J.J.Esser K.A.Andrade F.H.2007. MicroRNA-206 is overexpressed in the diaphragm but not the hindlimb muscle of mdx mouse AmJ. Physiol. Cell. Physiol.293C451-457. McCarthy, J.J., Esser, K.A., and Andrade, F.H. (2007). MicroRNA-206 is overexpressed in the diaphragm but not the hindlimb muscle of mdx mouse Am. J. Physiol. Cell. Physiol. 293, C451–457.
McKinsey T.A.Zhang C.L.Olson E.N.2002. Signaling chromatin to make muscleCurr. Opin. Cell. Biol.14763-772. McKinsey, T.A., Zhang, C.L., and Olson, E.N. (2002). Signaling chromatin to make muscle. Curr. Opin. Cell. Biol. 14, 763–772.
Meister G.Tuschl T.2004. Mechanisms of gene silencing by double-stranded RNANature431343-349. Meister, G., and Tuschl, T. (2004). Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343–349.
Must A.Tasa G.Lang A.Vasar E.Kõks S.Maron E.Väli M.2008. Association of limbic system-associated membrane protein (LSAMP) to male completed suicideBMC Med. Genet.239-34. Must, A., Tasa, G., Lang, A., Vasar, E., Kõks, S., Maron, E., and Väli, M. (2008). Association of limbic system-associated membrane protein (LSAMP) to male completed suicide. BMC Med. Genet. 23, 9–34.
Nakajima N.Takahashi T.Kitamura R.Isodono K.Asada S.Ueyama T.Matsubara H.Oh H.2006. MicroRNA-1 facilitates skeletal myogenic differentiation without affecting osteoblastic and adipogenic differentiationBiochem. Biophys. Res. Commun.3501006-1012. Nakajima, N., Takahashi, T., Kitamura, R., Isodono, K., Asada, S., Ueyama, T., Matsubara, H., and Oh, H. (2006). MicroRNA-1 facilitates skeletal myogenic differentiation without affecting osteoblastic and adipogenic differentiation. Biochem. Biophys. Res. Commun. 350, 1006–1012.
Nilsen T.W.2007. Mechanisms of microRNA-mediated gene regulation in animal cellsTrends. Genet.23243-249. Nilsen, T.W. (2007). Mechanisms of microRNA-mediated gene regulation in animal cells. Trends. Genet. 23, 243–249.
Pillai R.S.Bhattacharyya S.N.Filipowicz W.2007. Repression of protein synthesis by miRNAs: how many mechanisms?Trends Cell. Biol.17118-126. Pillai, R.S., Bhattacharyya, S.N., and Filipowicz, W. (2007). Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell. Biol. 17, 118–126.
Potthoff M.J.Wu H.Arnold M.A.Shelton J.M.Backs J.McAnally J.Richardson J.A.Bassel-Duby R.Olson E.N.2007. Histone deacetylase degradation and MEF2 activation promote the formation of slow-twitch myofibersJ. Clin. Invest.1172459-2467. Potthoff, M.J., Wu, H., Arnold, M.A., Shelton, J.M., Backs, J., McAnally, J., Richardson, J.A., Bassel-Duby, R., and Olson, E.N. (2007). Histone deacetylase degradation and MEF2 activation promote the formation of slow-twitch myofibers. J. Clin. Invest. 117, 2459–2467.
Potthoff M.J.Olson E.N.2007. MEF2: A central regulator of diverse developmental programsDevelopment1344131-4140. Potthoff, M.J., and Olson, E.N. (2007). MEF2: A central regulator of diverse developmental programs. Development 134, 4131–4140.
Rajewsky N.2006. microRNA target predictions in animalsNat. Genet.38S8-13. Rajewsky, N. (2006). microRNA target predictions in animals. Nat. Genet. 38, S8–13.
Rao P.K.Kumar R.M.Farkhondeh M.Baskerville S.Lodish H.F.2006. Myogenic factors that regulate expression of musclespecific microRNAsProc. Natl. Acad. Sci. USA1038721-8726. Rao, P.K., Kumar, R.M., Farkhondeh, M., Baskerville, S., and Lodish, H.F. (2006). Myogenic factors that regulate expression of musclespecific microRNAs. Proc. Natl. Acad. Sci. USA 103, 8721–8726.
Rosenberg M.I.Georges S.A.Asawachaicharn A.Analau E.Tapscott S.J.2006. MyoD inhibits Fstl1 and Utrn expression by inducing transcription of miR-206J. Cell Biol.17577-85. Rosenberg, M.I., Georges, S.A., Asawachaicharn, A., Analau, E., and Tapscott, S.J. (2006). MyoD inhibits Fstl1 and Utrn expression by inducing transcription of miR-206. J. Cell Biol. 175, 77–85.
Schiaffino S.Sandri M.Murgia M.2007. Activity-dependent signaling pathways controlling muscle diversity and plasticityPhysiology (Bethesda)22269-278. Schiaffino, S., Sandri, M., and Murgia, M. (2007). Activity-dependent signaling pathways controlling muscle diversity and plasticity. Physiology (Bethesda) 22, 269–278.
Sokol N.S.Ambros V.2005. Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growthGenes Dev.192343-2354. Sokol, N.S., and Ambros, V. (2005). Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth. Genes Dev. 19, 2343–2354.
Stoker W.A.2001. Receptor tyrosine phosphatases in axon growth and guidanceCurr. Opin. Neurobiol.1195-102. Stoker, W.A. (2001). Receptor tyrosine phosphatases in axon growth and guidance. Curr. Opin. Neurobiol. 11, 95–102.
Sugiura T.Miyata H.Kawai Y.Matoba H.Murakami N.1993. Changes in myosin heavy chain isoform expression of overloaded rat skeletal musclesInt. J. Biochem.251609-1613. Sugiura, T., Miyata, H., Kawai, Y., Matoba, H., and Murakami, N. (1993). Changes in myosin heavy chain isoform expression of overloaded rat skeletal muscles. Int. J. Biochem. 25, 1609–1613.
Sweetman D.Rathjen T.Jefferson M.Wheeler G.Smith T.G.Wheeler G.N.Münsterberg A.Dalmay T.2006. FGF-4 signaling is involved in mir-206 expression in developing somites of chicken embryosDev Dyn.2352185-2191. Sweetman, D., Rathjen, T., Jefferson, M., Wheeler, G., Smith, T.G., Wheeler, G.N., Münsterberg, A., and Dalmay, T. (2006). FGF-4 signaling is involved in mir-206 expression in developing somites of chicken embryos. Dev Dyn. 235, 2185–2191.
Talmadge R.J.2000. Myosin heavy chain isoform expression following reduced neuromuscular activity: potential regulatory mechanismsMuscle Nerve23661-679. Talmadge, R.J. (2000). Myosin heavy chain isoform expression following reduced neuromuscular activity: potential regulatory mechanisms. Muscle Nerve 23, 661–679.
van Rooij E.Sutherland L.B.Qi X.Richardson J.A.Hill J.Olson E.N.2007. Control of stress-dependent cardiac growth and gene expression by a microRNAScience316575-579. van Rooij, E., Sutherland, L.B., Qi, X., Richardson, J.A., Hill, J., and Olson, E.N. (2007). Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316, 575–579.
Wienholds E.Kloosterman W.P.Miska E.Alvarez-Saavedra E.Berezikov E.de Bruijn E.Horvitz H.R.Kauppinen S.Plasterk R.H.2005. MicroRNA expression in zebrafish embryonic developmentScience309310-311. Wienholds, E., Kloosterman, W.P., Miska, E., Alvarez-Saavedra, E., Berezikov, E., de Bruijn, E., Horvitz, H.R., Kauppinen, S., and Plasterk, R.H. (2005). MicroRNA expression in zebrafish embryonic development. Science 309, 310–311.
Wu H.Rothermel B.Kanatous S.Rosenberg P.Naya F.J.Shelton J.M.Hutcheson K.A.DiMaio J.M.Olson E.N.Bassel-Duby R.Williams R.S.2001. Activation of MEF2 by muscle activity is mediated through a calcineurin-dependent pathwayEMBO J.206414-6423. Wu, H., Rothermel, B., Kanatous, S., Rosenberg, P., Naya, F.J., Shelton, J.M., Hutcheson, K.A., DiMaio, J.M., Olson, E.N., Bassel-Duby, R., and Williams, R.S. (2001). Activation of MEF2 by muscle activity is mediated through a calcineurin-dependent pathway. EMBO J. 20, 6414–6423.
Xu C.Lu Y.Pan Z.Chu W.Luo X.Lin H.Xiao J.Shan H.Wang Z.Yang B.2007. The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytesJ. Cell Sci.1203045-3052. Xu, C., Lu, Y., Pan, Z., Chu, W., Luo, X., Lin, H., Xiao, J., Shan, H., Wang, Z., and Yang, B. (2007). The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J. Cell Sci. 120, 3045–3052.
Yang B.Lin H.Xiao J.Lu Y.Luo X.Li B.Zhang Y.Xu C.Bai Y.Wang H.Chen G.Wang Z.2007. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2Nat. Med.13486-491. Yang, B., Lin, H., Xiao, J., Lu, Y., Luo, X., Li, B., Zhang, Y., Xu, C., Bai, Y., Wang, H., Chen, G., and Wang, Z. (2007). The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat. Med. 13, 486–491.
Yuasa K.Hagiwara Y.Ando M.Nakamura A.Takeda S.Hijikata T.2008. MicroRNA-206 is highly expressed in newly formed muscle fibers: implications regarding potential for muscle regeneration and maturation in muscular dystrophyCell Struct. Funct.33163-169. Yuasa, K., Hagiwara, Y., Ando, M., Nakamura, A., Takeda, S., and Hijikata, T. (2008). MicroRNA-206 is highly expressed in newly formed muscle fibers: implications regarding potential for muscle regeneration and maturation in muscular dystrophy. Cell Struct. Funct. 33, 163–169.
Zhao S.H.Nettleton D.Liu W.Fitzsimmons C.Ernst C.W.Raney N.E.Tuggle C.K.2003. Complementary DNA macroarray analyses of differential gene expression in porcine fetal and postnatal muscleJ. Anim. Sci.812179-2188. Zhao, S.H., Nettleton, D., Liu, W., Fitzsimmons, C., Ernst, C.W., Raney, N.E., and Tuggle, C.K. (2003). Complementary DNA macroarray analyses of differential gene expression in porcine fetal and postnatal muscle. J. Anim. Sci. 81, 2179–2188.
Zhao Y.Samal E.Srivastava D.2005. Serum response factor regulates a muscle-specific mircroRNA that targets Hand2 during cardiogenesisNature436214-220. Zhao, Y., Samal, E., and Srivastava, D. (2005). Serum response factor regulates a muscle-specific mircroRNA that targets Hand2 during cardiogenesis. Nature 436, 214–220.
Zhao Y.Srivastava D.2007. A developmental view of micro-RNA functionTrends Biochem. Sci.32189-197. Zhao, Y., and Srivastava, D. (2007). A developmental view of micro-RNA function. Trends Biochem. Sci. 32, 189–197.

Information & Authors

Information

Published In

cover image Journal of Neurotrauma
Journal of Neurotrauma
Volume 26Issue Number 12December 2009
Pages: 2345 - 2353
PubMed: 19586368

History

Published online: 23 December 2009
Published ahead of print: 6 December 2009
Published in print: December 2009
Published ahead of production: 8 July 2009

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Seng-Feng Jeng
Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital–Kaohsiung Medical Center, Chang Gung University College of Medicine, Taiwan.
Cheng-Shyuan Rau
Department of Neurosurgery, Chang Gung Memorial Hospital–Kaohsiung Medical Center, Chang Gung University College of Medicine, Taiwan.
Po-Chou Liliang
Department of Neurosurgery, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan.
Chia-Jung Wu
Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital–Kaohsiung Medical Center, Chang Gung University College of Medicine, Taiwan.
Tsu-Hsiang Lu
Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital–Kaohsiung Medical Center, Chang Gung University College of Medicine, Taiwan.
Yi-Chun Chen
Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital–Kaohsiung Medical Center, Chang Gung University College of Medicine, Taiwan.
Chia-Jung Lin
Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital–Kaohsiung Medical Center, Chang Gung University College of Medicine, Taiwan.
Ching-Hua Hsieh
Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital–Kaohsiung Medical Center, Chang Gung University College of Medicine, Taiwan.

Notes

Address correspondence to:
Ching-Hua Hsieh, M.D., Ph.D.
Department of Plastic and Reconstructive Surgery
Chang Gung Memorial Hospital
Kaohsiung Medical Center
123, Ta-Pei Road
Niao-Sung Hsiang, Kaohsiung Hsien
Taiwan
E-mail: [email protected]

Author Disclosure Statement

No competing financial interests exist.

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Topics

Back to Top