Rapid Communication
No access
Published Online: 20 May 2010

Prokineticin 2 Expression Is Associated with Neural Repair of Injured Adult Zebrafish Telencephalon

Publication: Journal of Neurotrauma
Volume 27, Issue Number 5

Abstract

Prokineticin 2 (PROK2) is a secreted protein that regulates diverse biological processes including olfactory bulb neurogenesis in adult mammals. However, its precise role in this process is as yet not fully understood. Because it is well known that adult teleost fish, including zebrafish, display an intense proliferative activity in several brain regions, we took advantage of this feature to analyze the distribution of PROK2 transcripts in the adult zebrafish brain and during injury-induced telencephalon (TC) regeneration. First, we characterized the zebrafish PROK2 gene and showed that its transcription takes place in almost all proliferating areas previously identified in adult zebrafish brain. Moreover, in TC, PROK2 transcription was mainly restricted to neurons. Next, using a novel model of TC injury in adult zebrafish, we observed that TC lesion induced a dramatic increase in cell proliferation within the injured hemisphere in regions located both adjacent and distal to injury sites. Moreover, our data strongly suggest that cell proliferation was followed by the migration of newly generated neurons toward injury sites. In addition, we observed a transient over-expression of PROK2 transcripts, which was detected in cells surrounding the lesion during the very first days post injury, and, a few days later, in broad cell rows extending from cortical regions of the TC toward injury sites. PROK2 over-expression was no longer detected when the regeneration process was close to completion, showing that ectopic PROK2 transcription paralleled neuronal regeneration. Taken together, our results suggest that in adult zebrafish brain, PROK2 may play a role in both constitutive and injury-induced neurogenesis.

Get full access to this article

View all available purchase options and get full access to this article.

References

Adolf B.Chapouton P.Lam C.S.Topp S.Tannhauser B.Strahle U.Gotz M.Bally-Cuif L.2006. Conserved and acquired features of adult neurogenesis in the zebrafish TCDev. Biol.295278-293. Adolf, B., Chapouton, P., Lam, C.S., Topp, S., Tannhauser, B., Strahle, U., Gotz, M., and Bally-Cuif, L. (2006). Conserved and acquired features of adult neurogenesis in the zebrafish TC. Dev. Biol. 295, 278–293.
Altman J.1969. Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulbJ. Comp. Neurol.137433-457. Altman, J. (1969). Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J. Comp. Neurol. 137, 433–457.
Becker C.G.Becker T.2008. Adult zebrafish as a model for successful central nervous system regenerationRestor. Neurol. Neurosci.2671-80. Becker, C.G., and Becker, T. (2008). Adult zebrafish as a model for successful central nervous system regeneration. Restor. Neurol. Neurosci. 26, 71–80.
Birse S.C.Leonard R.B.Coggeshall R.E.1980. Neuronal increase in various areas of the nervous system of the guppy, LebistesJ. Comp. Neurol.194291-301. Birse, S.C., Leonard, R.B., and Coggeshall, R.E. (1980). Neuronal increase in various areas of the nervous system of the guppy, Lebistes. J. Comp. Neurol. 194, 291–301.
Broglio C.Gomez A.Duran E.Ocana F.M.Jimenez-Moya F.Rodrıguez F.Salas C.2005. Hallmarks of a common forebrain vertebrate plan: Specialized pallial areas for spatial, temporal and emotional memory in actinopterygian fishBrain Res. Bull.66277-281. Broglio, C., Gomez, A., Duran, E., Ocana, F.M., Jimenez-Moya, F., Rodrıguez, F., and Salas, C. (2005). Hallmarks of a common forebrain vertebrate plan: Specialized pallial areas for spatial, temporal and emotional memory in actinopterygian fish. Brain Res. Bull. 66, 277–281.
Cheng M.Y.Bullock C.M.Li C.Lee A.G.Bermak J.C.Belluzzi J.Weaver D.R.Leslie F.M.Zhou Q.Y.2002. Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleusNature417405-410. Cheng, M.Y., Bullock, C.M., Li, C., Lee, A.G., Bermak, J.C., Belluzzi, J., Weaver, D.R., Leslie, F.M., and Zhou, Q.Y. (2002). Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature 417, 405–410.
Cheng M.Y.Leslie F.M.Zhou Q.Y.2006. Expression of prokineticins and their receptors in the adult mouse brainJ. Comp. Neurol.498796-809. Cheng, M.Y., Leslie, F.M., and Zhou, Q.Y. (2006). Expression of prokineticins and their receptors in the adult mouse brain. J. Comp. Neurol. 498, 796–809.
Chojnacki A.K.Mak G.K.Weiss S.2009. Identity crisis for adult periventricular neural stem cells: Subventricular zone astrocytes, ependymal cells or both? NatRev. Neurosci.10153-163. Chojnacki, A.K., Mak, G.K., and Weiss, S. (2009). Identity crisis for adult periventricular neural stem cells: Subventricular zone astrocytes, ependymal cells or both? Nat. Rev. Neurosci. 10, 153–163.
Doetsch F.Alvarez-Buylla A.1996. Network of tangential pathways for neuronal migration in adult mammalian brainProc. Natl. Acad. Sci. USA9314895-14900. Doetsch, F., and Alvarez-Buylla, A. (1996). Network of tangential pathways for neuronal migration in adult mammalian brain. Proc. Natl. Acad. Sci. USA 93, 14895–14900.
Ekström P.Johnsson C.M.Ohlin L.M.2001. Ventricular proliferation zones in the brain of an adult teleost fish and their relation to neuromeres and migration (secondary matrix) zonesJ. Comp. Neurol.43692-110. Ekström, P., Johnsson, C.M., and Ohlin, L.M. (2001). Ventricular proliferation zones in the brain of an adult teleost fish and their relation to neuromeres and migration (secondary matrix) zones. J. Comp. Neurol. 436, 92–110.
Grandel H.Kaslin J.Ganz J.Wenzel I.Brand M.2006. Neural stem cells and neurogenesis in the adult zebrafish brain: Origin, proliferation dynamics, migration and cell fateDev. Biol.295263-277. Grandel, H., Kaslin, J., Ganz, J., Wenzel, I., and Brand, M. (2006). Neural stem cells and neurogenesis in the adult zebrafish brain: Origin, proliferation dynamics, migration and cell fate. Dev. Biol. 295, 263–277.
Hinsch K.Zupanc G.K.2007. Generation and long-term persistence of new neurons in the adult zebrafish brain: A quantitative analysisNeuroscience146679-696. Hinsch, K., and Zupanc, G.K. (2007). Generation and long-term persistence of new neurons in the adult zebrafish brain: A quantitative analysis. Neuroscience 146, 679–696.
Hitchcock P.F.Lindsey M.K.J.Easter S.S. Jr.Mangione-Smith R.Jones D.D.1992. Local regeneration in the retina of the goldfishJ. Neurobiol.23187-203. Hitchcock, P.F., Lindsey, M.K.J., Easter, S.S., Jr., Mangione-Smith, R., and Jones, D.D. (1992). Local regeneration in the retina of the goldfish. J. Neurobiol. 23, 187–203.
Kaplan M.S.Hinds J.W.1977. Neurogenesis in the adult rat: Electron microscopic analysis of light radioautographsScience1971092-1094. Kaplan, M.S., and Hinds, J.W. (1977). Neurogenesis in the adult rat: Electron microscopic analysis of light radioautographs. Science 197, 1092–1094.
Kaser A.Winklmayr M.Lepperdinger G.Kreil G.2003. The AVIT protein family. Secreted cysteine-rich vertebrate proteins with diverse functionsEMBO. Rep.4469-473. Kaser, A., Winklmayr, M., Lepperdinger, G., and Kreil, G. (2003). The AVIT protein family. Secreted cysteine-rich vertebrate proteins with diverse functions. EMBO. Rep. 4, 469–473.
Kirsche W.1965. Regenerative processes in the brain and spinal cordErgeb. Anat. Entwicklungsgesch38143-194. Kirsche, W. (1965). Regenerative processes in the brain and spinal cord. Ergeb. Anat. Entwicklungsgesch 38, 143–194.
Li J.D.Hu W.P.Boehmer L.N.Cheng M.Y.Lee A.G.Jilek A.Siegel J.M.Zhou Q.Y.2006. Attenuated circadian rhythms in mice lacking the prokineticin 2 geneJ. Neurosci.2611615-11623. Li, J.D., Hu, W.P., Boehmer, L.N., Cheng, M.Y., Lee, A.G., Jilek, A., Siegel, J.M., and Zhou, Q.Y. (2006). Attenuated circadian rhythms in mice lacking the prokineticin 2 gene. J. Neurosci. 26, 11615–11623.
Livak K.J.Schmittgen T.D.2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) methodMethods25402-408. Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402–408.
Lois C.Garcia-Verdugo J.M.Alvarez-Buylla A.1996. Chain migration of neuronal precursorsScience271978-981. Lois, C., Garcia-Verdugo, J.M., and Alvarez-Buylla, A. (1996). Chain migration of neuronal precursors. Science 271, 978–981.
Mansur M.A.Cardozo G.P.Santos E.V.Marins M.2008. SNUFER: A software for localization and presentation of single nucleotide polymorphisms using a Clustal multiple sequence alignment output fileBioinformation363-64. Mansur, M.A., Cardozo, G.P., Santos, E.V., and Marins, M. (2008). SNUFER: A software for localization and presentation of single nucleotide polymorphisms using a Clustal multiple sequence alignment output file. Bioinformation 3, 63–64.
Matsumoto S.Yamazaki C.Masumoto K.H.Nagano M.Naito M.Soga T.Hiyama H.Matsumoto M.Takasaki J.Kamohara M.Matsuo A.Ishii H.Kobori M.Katoh M.Matsushime H.Furuichi K.Shigeyoshi Y.2006. Abnormal development of the olfactory bulb and reproductive system in mice lacking prokineticin receptor PKR2Proc. Natl. Acad. Sci. USA1034140-4145. Matsumoto, S., Yamazaki, C., Masumoto, K.H., Nagano, M., Naito, M., Soga, T., Hiyama, H., Matsumoto, M., Takasaki, J., Kamohara, M., Matsuo, A., Ishii, H., Kobori, M., Katoh, M., Matsushime, H., Furuichi, K., and Shigeyoshi, Y. (2006). Abnormal development of the olfactory bulb and reproductive system in mice lacking prokineticin receptor PKR2. Proc. Natl. Acad. Sci. USA 103, 4140–4145.
Melchiorri D.Bruno V.Besong G.Ngomba R.T.Cuomo L.De Biasi A.Copani A.Moschella C.Storto M.Nicoletti F.Lepperdinger G.Passarelli F.2001. The mammalian homologue of the new peptide Bv8 is expressed in the central nervous system and supports neuronal survival by activating the MAP kinase/PI-3-kinase pathwaysEur. J. Neurosci.131694-1702. Melchiorri, D., Bruno, V., Besong, G., Ngomba, R.T., Cuomo, L., De Biasi, A., Copani, A., Moschella, C., Storto, M., Nicoletti, F., Lepperdinger, G., and Passarelli, F. (2001). The mammalian homologue of the new peptide Bv8 is expressed in the central nervous system and supports neuronal survival by activating the MAP kinase/PI-3-kinase pathways. Eur. J. Neurosci. 13, 1694–1702.
Mueller T.Wullimann M.F.2002. BrdU-, neuroD (nrd)- and Hu-studies reveal unusual non-ventricular neurogenesis in the postembryonic zebrafish forebrainMech. Dev.117123-135. Mueller, T., and Wullimann, M.F. (2002). BrdU-, neuroD (nrd)- and Hu-studies reveal unusual non-ventricular neurogenesis in the postembryonic zebrafish forebrain. Mech. Dev. 117, 123–135.
Negri L.Lattanzi R.Giannini E.Melchiorri P.2007. Bv8/Prokineticin proteins and their receptorsLife Sci.811103-1116. Negri, L., Lattanzi, R., Giannini, E., and Melchiorri, P. (2007). Bv8/Prokineticin proteins and their receptors. Life Sci. 81, 1103–1116.
Ng K.L.Li J.D.Cheng M.Y.Leslie F.M.Lee A.G.Zhou Q.Y.2005. Dependence of olfactory bulb neurogenesis on prokineticin 2 signalingScience3081923-1927. Ng, K.L., Li, J.D., Cheng, M.Y., Leslie, F.M., Lee, A.G., and Zhou, Q.Y. (2005). Dependence of olfactory bulb neurogenesis on prokineticin 2 signaling. Science 308, 1923–1927.
Nielsen A.L.Jorgensen A.L.2003. Structural and functional characterization of the zebrafish gene for glial fibrillary acidic protein, GFAPGene310123-132. Nielsen, A.L., and Jorgensen, A.L. (2003). Structural and functional characterization of the zebrafish gene for glial fibrillary acidic protein, GFAP. Gene 310, 123–132.
Nieto M.Schuurmans C.Britz O.Guillemot F.2001. Neural bHLH genes control the neuronal versus glial fate decision in cortical progenitorsNeuron29401-413. Nieto, M., Schuurmans, C., Britz, O., and Guillemot, F. (2001). Neural bHLH genes control the neuronal versus glial fate decision in cortical progenitors. Neuron 29, 401–413.
Prosser M.H.Bradley A.Maeve A.Caldwell A.M.2007. Olfactory bulb hypoplasia in Prokr2 null mice stems from defective neuronal progenitor migration and differentiationEur. J. Neurosci.263339-3344. Prosser, M.H., Bradley, A., Maeve, A., and Caldwell, A.M. (2007). Olfactory bulb hypoplasia in Prokr2 null mice stems from defective neuronal progenitor migration and differentiation. Eur. J. Neurosci. 26, 3339–3344.
Puverel S.Nakatani H.Parras C.Soussi-Yanicostas N.2009. Prokineticin receptor 2 expression identifies migrating neuroblasts and their subventricular zone transient-amplifying progenitors in adult miceJ. Comp. Neurol.512232-242. Puverel, S., Nakatani, H., Parras, C., and Soussi-Yanicostas, N. (2009). Prokineticin receptor 2 expression identifies migrating neuroblasts and their subventricular zone transient-amplifying progenitors in adult mice. J. Comp. Neurol. 512, 232–242.
Smith A.Zhang J.Guay D.Quint E.Johnson A.Akimenko M.A.2008. Gene expression analysis on sections of zebrafish regenerating fins reveals limitations in the whole-mount in situ hybridization methodDev. Dyn.237417-425. Smith, A., Zhang, J., Guay, D., Quint, E., Johnson, A., and Akimenko, M.A. (2008). Gene expression analysis on sections of zebrafish regenerating fins reveals limitations in the whole-mount in situ hybridization method. Dev. Dyn. 237, 417–425.
Sun D.Colello R. J.Daugherty W.P.Kwon T.H.McGinn M.J.Harvey H.B.Bullock M.R.2005. Cell proliferation and neuronal differentiation in the dentate gyrus in juvenile and adult rats following traumatic brain injuryJ. Neurotrauma2295-105. Sun, D., Colello, R. J., Daugherty, W.P., Kwon, T.H., McGinn, M.J., Harvey, H.B., and Bullock, M.R. (2005). Cell proliferation and neuronal differentiation in the dentate gyrus in juvenile and adult rats following traumatic brain injury. J. Neurotrauma 22, 95–105.
Sun Y.Nadal-Vicens M.Misono S.Lin M.Z.Zubiaga A.Hua X.Fan G.Greenberg M.E.2001. Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanismsCell104365-376. Sun, Y., Nadal-Vicens, M., Misono, S., Lin, M.Z., Zubiaga, A., Hua, X., Fan, G., and Greenberg, M.E. (2001). Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell 104, 365–376.
Wilson S.W.Ross L.S.Parrett T.Easter S.S. Jr.1990. The development of a simple scaffold of axon tracts in the brain of the embryonic zebrafish, Brachydanio rerioDevelopment108121-145. Wilson, S.W., Ross, L.S., Parrett, T., and Easter, S.S., Jr. (1990). The development of a simple scaffold of axon tracts in the brain of the embryonic zebrafish, Brachydanio rerio. Development 108, 121–145.
Wullimann M.F.Mueller T.2004. Teleostean and mammalian forebrains contrasted: Evidence from genes to behaviorJ. Comp. Neurol.475143-162. Wullimann, M.F., and Mueller, T. (2004). Teleostean and mammalian forebrains contrasted: Evidence from genes to behavior. J. Comp. Neurol. 475, 143–162.
Wullimann M.F.Rupp B.Reichert H.1996. Neuroanatomy of the Zebrafish BrainA Topological Atlas. BirkhäuserVerlagBasel1-144. Wullimann, M.F., Rupp, B., and Reichert, H. (1996). Neuroanatomy of the Zebrafish Brain. A Topological Atlas. Birkhäuser Verlag: Basel, pps. 1–144.
Yanicostas C.Ernest S.Dayraud C.Petit C.Soussi-Yanicostas N.2008. Essential requirement for zebrafish anosmin-1a in the migration of the posterior lateral line primordiumDev. Biol.320469-479. Yanicostas, C., Ernest, S., Dayraud, C., Petit, C., and Soussi-Yanicostas, N. (2008). Essential requirement for zebrafish anosmin-1a in the migration of the posterior lateral line primordium. Dev. Biol. 320, 469–479.
Yurco P.Cameron D.A.2005. Responses of Muller glia to retinal injury in adult zebrafishVision Res.45991-1002. Yurco, P., and Cameron, D.A. (2005). Responses of Muller glia to retinal injury in adult zebrafish. Vision Res. 45, 991–1002.
Zhang C.Ng K.L.Li J.D.He F.Anderson D.J.Sun Y.E.Zhou Q.Y.2007. Prokineticin 2 is a target gene of proneural basic helix-loop-helix factors for olfactory bulb neurogenesisJ. Biol. Chem.2826917-6921. Zhang, C., Ng, K.L., Li, J.D., He, F., Anderson, D.J., Sun, Y.E., and Zhou, Q.Y. (2007). Prokineticin 2 is a target gene of proneural basic helix-loop-helix factors for olfactory bulb neurogenesis. J. Biol. Chem. 282, 6917–6921.
Zhou Q.Y.2006. The prokineticins: A new pair of regulatory peptidesMol. Interv.6330-338. Zhou, Q.Y. (2006). The prokineticins: A new pair of regulatory peptides. Mol. Interv. 6, 330–338.
Zhou Q.Y.Meidan R.2008. Biological function of prokineticinsResults Probl. Cell Differ.46181-195. Zhou, Q.Y., and Meidan, R. (2008). Biological function of prokineticins. Results Probl. Cell Differ. 46, 181–195.
Zikopoulos B.Kentouri M.Dermon C.R.2000. Proliferation zones in the adult brain of a sequential hermaphrodite teleost species (Sparus aurata)Brain Behav. Evol.56310-322. Zikopoulos, B., Kentouri, M., and Dermon, C.R. (2000). Proliferation zones in the adult brain of a sequential hermaphrodite teleost species (Sparus aurata). Brain Behav. Evol. 56, 310–322.
Zupanc G.K.Horschke I.1995. Proliferation zones in the brain of adult gymnotiform fish: A quantitative mapping studyJ. Comp. Neurol.353213-233. Zupanc, G.K., and Horschke, I. (1995). Proliferation zones in the brain of adult gymnotiform fish: A quantitative mapping study. J. Comp. Neurol. 353, 213–233.
Zupanc G.K.Ott R.1999. Cell proliferation after lesions in the cerebellum of adult teleost fish: Time course, origin, and type of new cells producedExp. Neurol.16078-87. Zupanc, G.K., and Ott, R. (1999). Cell proliferation after lesions in the cerebellum of adult teleost fish: Time course, origin, and type of new cells produced. Exp. Neurol. 160, 78–87.
Zupanc G.K.Hinsch K.Gage F.H.2005. Proliferation, migration, neuronal differentiation, and long-term survival of new cells in the adult zebrafish brainJ. Comp. Neurol.488290-319. Zupanc, G.K., Hinsch, K., and Gage, F.H. (2005). Proliferation, migration, neuronal differentiation, and long-term survival of new cells in the adult zebrafish brain. J. Comp. Neurol. 488, 290–319.
Zupanc G.K.Kompass K.S.Horschke I.Ott R.Schwarz H.1998. Apoptosis after injuries in the cerebellum of adult teleost fishExp. Neurol.152221-230. Zupanc, G.K., Kompass, K.S., Horschke, I., Ott, R., and Schwarz, H. (1998). Apoptosis after injuries in the cerebellum of adult teleost fish. Exp. Neurol. 152, 221–230.

Information & Authors

Information

Published In

cover image Journal of Neurotrauma
Journal of Neurotrauma
Volume 27Issue Number 5May 2010
Pages: 959 - 972
PubMed: 20102264

History

Published online: 20 May 2010
Published in print: May 2010
Published ahead of print: 6 April 2010
Published ahead of production: 26 January 2010

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Besma Ayari
Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (C.R.I.C.M.), 75651 Paris Cedex, France.
CNRS UMR7225, 75651 Paris Cedex, France.
Inserm UMR-S975, 75651 Paris Cedex, France.
UPMC, 75651 Paris Cedex, France.
Khalid H. El Hachimi
Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (C.R.I.C.M.), 75651 Paris Cedex, France.
Ecole Pratique des Hautes Etudes, Paris, France.
Constantin Yanicostas
Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (C.R.I.C.M.), 75651 Paris Cedex, France.
CNRS UMR7225, 75651 Paris Cedex, France.
Inserm UMR-S975, 75651 Paris Cedex, France.
UPMC, 75651 Paris Cedex, France.
Ahmed Landoulsi
Faculté des Sciences de Bizerte, Tunisia.
Nadia Soussi-Yanicostas
Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (C.R.I.C.M.), 75651 Paris Cedex, France.
CNRS UMR7225, 75651 Paris Cedex, France.
Inserm UMR-S975, 75651 Paris Cedex, France.
UPMC, 75651 Paris Cedex, France.

Notes

Address correspondence to:Nadia Soussi-Yanicostas, CRICMCHU Pitié-Salpêtrière47, boulevard de l'HôpitalPavillon de l'Enfant et de l'Adolescent75651 Paris cedex 13E-mail: [email protected]

Author Disclosure Statement

No competing financial interests exist.

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top