Research Article
No access
Published Online: 21 December 2012

Repeated Mild Traumatic Brain Injury: Mechanisms of Cerebral Vulnerability

Publication: Journal of Neurotrauma
Volume 30, Issue Number 1

Abstract

Among the 3.5 million annual new head injury cases is a subpopulation of children and young adults who experience repeated traumatic brain injury (TBI). The duration of vulnerability after a single TBI remains unknown, and biomarkers have yet to be determined. Decreases in glucose metabolism (cerebral metabolic rate of glucose [CMRglc]) are consistently observed after experimental and human TBI. In the current study, it is hypothesized that the duration of vulnerability is related to the duration of decreased CMRglc and that a single mild TBI (mTBI) increases the brain's vulnerability to a second insult for a period, during which a subsequent mTBI will worsen the outcome. Postnatal day 35 rats were given sham, single mTBI, or two mTBI at 24-h or 120-h intervals. 14C-2-deoxy-D-glucose autoradiography was conducted at 1 or 3 days post-injury to calculate CMRglc. At 24 h after a single mTBI, CMRglc is decreased by 19% in both the parietal cortex and hippocampus, but approached sham levels by 3 days post-injury. When a second mTBI is introduced during the CMRglc depression of the first injury, the consequent CMRglc is depressed (36.5%) at 24 h and remains depressed (25%) at 3 days. In contrast, when the second mTBI is introduced after the metabolic recovery of the first injury, the consequent CMRglc depression is similar to that seen with a single injury. Results suggest that the duration of metabolic depression reflects the time-course of vulnerability to second injury in the juvenile brain and could serve as a valuable biomarker in establishing window of vulnerability guidelines.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Otori T.Friedland J.C.Sinson G.McIntosh T.K.Raghupathi R.Welsh F.A.2004. Traumatic brain injury elevates glycogen and induces tolerance to ischemia in rat brainJ. Neurotrauma21707-718. 1. Otori, T., Friedland, J.C., Sinson, G., McIntosh, T.K., Raghupathi, R., and Welsh, F.A. (2004). Traumatic brain injury elevates glycogen and induces tolerance to ischemia in rat brain. J. Neurotrauma 21:707–718.
2.
Jenkins L.W.Moszynski K.Lyeth B.G.Lewelt W.DeWitt D.S.Allen A.Dixon C.E.Povlishock J.T.Majewski T.J.Clifton G.L. et al.1989. Increased vulnerability of the mildly traumatized rat brain to cerebral ischemia: the use of controlled secondary ischemia as a research tool to identify common or different mechanisms contributing to mechanical and ischemic brain injuryBrain Res.477211-224. 2. Jenkins, L.W., Moszynski, K., Lyeth, B.G., Lewelt, W., DeWitt, D.S., Allen, A., Dixon, C.E., Povlishock, J.T., Majewski, T.J., and Clifton, G.L. et al. (1989). Increased vulnerability of the mildly traumatized rat brain to cerebral ischemia: the use of controlled secondary ischemia as a research tool to identify common or different mechanisms contributing to mechanical and ischemic brain injury. Brain Res. 477:211–224.
3.
Mies G.Paschen W.Hossmann K.A.1990. Cerebral blood flow, glucose utilization, regional glucose, and ATP content during the maturation period of delayed ischemic injury in gerbil brainJ. Cereb. Blood Flow Metab.10638-645. 3. Mies, G., Paschen, W., and Hossmann, K.A. (1990). Cerebral blood flow, glucose utilization, regional glucose, and ATP content during the maturation period of delayed ischemic injury in gerbil brain. J. Cereb. Blood Flow Metab. 10:638–645.
4.
Palmer C.Brucklacher R.M.Christensen M.A.Vannucci R.C.1990. Carbohydrate and energy metabolism during the evolution of hypoxic-ischemic brain damage in the immature ratJ. Cereb. Blood Flow Metab.10227-235. 4. Palmer, C., Brucklacher, R.M., Christensen, M.A., and Vannucci, R.C. (1990). Carbohydrate and energy metabolism during the evolution of hypoxic-ischemic brain damage in the immature rat. J. Cereb. Blood Flow Metab. 10:227–235.
5.
Yoshino A.Hovda D.Kawamata T.Katayama Y.Becker D1991. Dynamic changes in local cerebral glucose utilization following cerebral concussive in rats: evidence of a hyper- and subsequent hypometabolic stateBrain Res.561106-119. 5. Yoshino, A., Hovda, D., Kawamata, T., Katayama, Y., and Becker D. (1991). Dynamic changes in local cerebral glucose utilization following cerebral concussive in rats: evidence of a hyper- and subsequent hypometabolic state. Brain Res. 561:106–119.
6.
Kawamata T.Katayama Y.Hovda D.A.Yoshino A.Becker DP1992. Administration of excitatory amino acid antagonists via microdialysis attenuates the increase in glucose utilization seen following concussive brain injuryJ. Cereb. Blood Flow Metab.1212-24. 6. Kawamata, T., Katayama, Y., Hovda, D.A., Yoshino, A., and Becker DP. (1992). Administration of excitatory amino acid antagonists via microdialysis attenuates the increase in glucose utilization seen following concussive brain injury. J. Cereb. Blood Flow Metab. 12:12–24.
7.
Andersen B.Marmarou A.1992. Post-traumatic selective stimulation of glycolysisBrain Res.585184-189. 7. Andersen, B., and Marmarou, A. (1992). Post-traumatic selective stimulation of glycolysis. Brain Res. 585:184–189.
8.
Richards H.K.Simac S.Piechnik S.Pickard JD2001. Uncoupling of cerebral blood flow and metabolism after cerebral contusion in the ratJ. Cereb. Blood Flow Metab.21779-781. 8. Richards, H.K., Simac, S., Piechnik, S., and Pickard JD. (2001). Uncoupling of cerebral blood flow and metabolism after cerebral contusion in the rat. J. Cereb. Blood Flow Metab. 21:779–781.
9.
Chen S.F.Richards H.K.Smielewski P.Johnström P.Salvador R.Pickard J.D.Harris NG2004. Relationship between flow-metabolism uncoupling and evolving axonal injury after experimental traumatic brain injuryJ. Cereb. Blood Flow Metab.241025-1036. 9. Chen, S.F., Richards, H.K., Smielewski, P., Johnström, P., Salvador, R., Pickard, J.D., and Harris NG. (2004). Relationship between flow-metabolism uncoupling and evolving axonal injury after experimental traumatic brain injury. J. Cereb. Blood Flow Metab. 24:1025–1036.
10.
Bergsneider MHovda D.A.Lee S.M.Kelly D.F.McArthur D.L.Vespa P.M.Lee J.H.Huang S.C.Martin N.A.Phelps M.E.Becker D.P.2000. Dissociation of cerebral glucose metabolism and level of consciousness during the period of metabolic depression following human traumatic brain injuryJ. Neurotrauma17389-401. 10. Bergsneider M., Hovda, D.A., Lee, S.M., Kelly, D.F., McArthur, D.L., Vespa, P.M., Lee, J.H., Huang, S.C., Martin, N.A., Phelps, M.E., and Becker, D.P. (2000). Dissociation of cerebral glucose metabolism and level of consciousness during the period of metabolic depression following human traumatic brain injury. J. Neurotrauma 17:389–401.
11.
O'Connell M.T.Seal A.Nortje J.Al-Rawi P.G.Coles J.P.Fryer T.D.Menon D.K.Pickard J.D.Hutchinson P.J.2005. Glucose metabolism in traumatic brain injury: a combined microdialysis and [18F]-2-fluoro-2-deoxy-D-glucose-positron emission tomography (FDG-PET) studyActa Neurochir. Suppl95165-168. 11. O'Connell, M.T., Seal, A., Nortje, J., Al-Rawi, P.G., Coles, J.P., Fryer, T.D., Menon, D.K., Pickard, J.D., and Hutchinson, P.J. (2005). Glucose metabolism in traumatic brain injury: a combined microdialysis and [18F]-2-fluoro-2-deoxy-D-glucose-positron emission tomography (FDG-PET) study. Acta Neurochir. Suppl, 95:165–168.
12.
Hovda D.Le H.Lifshitz J.Berry J.Badie H.Yoshino A.Lee S.1994. Long-term changes in metabolic rates for glucose following mild, moderate and severe concussive head injuries in adult ratsJ. Neurosci.20845. 12. Hovda, D., Le, H., Lifshitz, J., Berry, J., Badie, H., Yoshino, A., and Lee, S. (1994). Long-term changes in metabolic rates for glucose following mild, moderate and severe concussive head injuries in adult rats. J. Neurosci. 20:845.
13.
Moore A.H.Osteen C.L.Chatziioannou A.F.Hovda D.A.Cherry S.R.2000. Quantitative assessment of longitudinal metabolic changes in vivo after traumatic brain injury in the adult rat using FDG-microPETJ. Cereb. Blood Flow Metab.201492-1501. 13. Moore, A.H., Osteen, C.L., Chatziioannou, A.F., Hovda, D.A., and Cherry, S.R. (2000). Quantitative assessment of longitudinal metabolic changes in vivo after traumatic brain injury in the adult rat using FDG-microPET. J. Cereb. Blood Flow Metab. 20:1492–1501.
14.
Hovda D.A.Narayan R.K.Wilberger J.E.Povlishock J.T.1996Metabolic Dysfunction in NeurotraumaMcGraw-HillNew York1459-1478. 14. Hovda, D.A., Narayan, R.K., Wilberger, J.E., and Povlishock, J.T. (1996). Metabolic Dysfunction in Neurotrauma. McGraw-Hill:New York, pps. 1459–1478.
15.
Queen S.A.Chen M.J.Feeney D.M.1997. d-Amphetamine attenuates decreased cerebral glucose utilization after unilateral sensorimotor cortex contusion in ratsBrain Res.77742-50. 15. Queen, S.A., Chen, M.J., and Feeney, D.M. (1997). d-Amphetamine attenuates decreased cerebral glucose utilization after unilateral sensorimotor cortex contusion in rats. Brain Res. 777:42–50.
16.
Sutton R.L.Hovda D.A.Adelson P.D.Benzel E.C.Becker D.P1994. Metabolic changes following cortical contusion: relationship to edema and morphological changesActa Neurochir. Suppl60446-448. 16. Sutton, R.L., Hovda, D.A., Adelson, P.D., Benzel, E.C., and Becker D.P. (1994). Metabolic changes following cortical contusion: relationship to edema and morphological changes. Acta Neurochir. Suppl, 60:446–448.
17.
Prins M.L.Hovda D.A.2009. The effects of age and ketogenic diet on local cerebral metabolic rates of glucose after controlled cortical impact injury in ratsJ. Neurotrauma261083-1093. 17. Prins, M.L., and Hovda, D.A. (2009). The effects of age and ketogenic diet on local cerebral metabolic rates of glucose after controlled cortical impact injury in rats. J. Neurotrauma 26:1083–1093.
18.
Hattori N.Huang S.C.Wu H.M.Yeh E.Glenn T.C.Vespa P.M.McArthur D.Phelps M.E.Hovda D.ABergsneider M.2003. Correlation of regional metabolic rates of glucose with glasgow coma scale after traumatic brain injuryJ. Nucl. Med.441709-1716. 18. Hattori, N., Huang, S.C., Wu, H.M., Yeh, E., Glenn, T.C., Vespa, P.M., McArthur, D., Phelps, M.E., Hovda, D.A, and Bergsneider, M. (2003). Correlation of regional metabolic rates of glucose with glasgow coma scale after traumatic brain injury. J. Nucl. Med. 44:1709–1716.
19.
Humayun M.S.Presty S.K.Lafrance N.D.Holcomb H.H.Loats H.Long D.M.Wagner H.N.Gordon B.1989. Local cerebral glucose abnormalities in mild closed head injured patients with cognitive impairmentsNucl. Med. Comm.10335-344. 19. Humayun, M.S., Presty, S.K., Lafrance, N.D., Holcomb, H.H., Loats, H., Long, D.M., Wagner, H.N., and Gordon, B. (1989). Local cerebral glucose abnormalities in mild closed head injured patients with cognitive impairments. Nucl. Med. Comm. 10:335–344.
20.
Gross H.Kling A.Henry G.Herndon C.Lavretsky H.1996. Local cerebral glucose metabolism in patients with long-term behavioral and cognitive deficits following mild traumatic brain injuryJ. Neuropsychiagtry Clin. Neurosci.8324-334. 20. Gross, H., Kling, A., Henry, G., Herndon, C., and Lavretsky, H. (1996). Local cerebral glucose metabolism in patients with long-term behavioral and cognitive deficits following mild traumatic brain injury. J. Neuropsychiagtry Clin. Neurosci. 8:324–334.
21.
Umile E.M.Sandel M.E.Alavi A.Terry C.M.Plotkin RC.2002. Dynamic imaging in mild traumatic brain injury: support for the theory of medial temporal vulnerabilityArch. Phys. Med. Rehabil.831506-1513. 21. Umile, E.M., Sandel, M.E., Alavi, A., Terry, C.M., and Plotkin, RC. (2002). Dynamic imaging in mild traumatic brain injury: support for the theory of medial temporal vulnerability. Arch. Phys. Med. Rehabil. 83:1506–1513.
22.
Thomas S.Prins M.L.Samii M.Hovda D.A.2000. Cerebral metabolic response to traumatic brain injury sustained early in development: a 2-deoxy-D-glucose autoradiogaphic studyJ. Neurotrauma17649-665. 22. Thomas, S., Prins, M.L., Samii, M., and Hovda, D.A. (2000). Cerebral metabolic response to traumatic brain injury sustained early in development: a 2-deoxy-D-glucose autoradiogaphic study. J. Neurotrauma 17:649–665.
23.
Prins M.L.Hovda D.A.1998. Traumatic brain injury in the developing rat: effects of maturation on Morris water maze acquisitionJ. Neurotrauma15799-811. 23. Prins, M.L., and Hovda, D.A. (1998). Traumatic brain injury in the developing rat: effects of maturation on Morris water maze acquisition. J. Neurotrauma 15:799–811.
24.
Vagnozzi R.Tavazzi B.Signoretti S.Amorini A.M.Belli A.Cimatti M.Delfini R.Di Pietro V.Finocchiaro A.Lazzarino G.2007. Temporal window of metabolic brain vulnerability to concussions: mitochondrial-related impairment—part INeurosurgery61379-389. 24. Vagnozzi, R., Tavazzi, B., Signoretti, S., Amorini, A.M., Belli, A., Cimatti, M., Delfini, R., Di Pietro, V., Finocchiaro, A., and Lazzarino, G. (2007). Temporal window of metabolic brain vulnerability to concussions: mitochondrial-related impairment—part I. Neurosurgery 61:379–389.
25.
Henry L.C.Tremblay S.Boulanger Y.Ellemberg D.Lassonde M.2010. Neurometabolic changes in the acute phase after sports concussions correlate with symptom severityJ. Neurotrauma2765-76. 25. Henry, L.C., Tremblay, S., Boulanger, Y., Ellemberg, D., and Lassonde, M. (2010). Neurometabolic changes in the acute phase after sports concussions correlate with symptom severity. J. Neurotrauma 27:65–76.
26.
Vagnozzi R.Signoretti S.Tavazzi B.Floris R.Ludovici A.Marziali S.Tarascio G.Amorini A.M.Di Pietro V.Delfini R.Lazzarino G.2008. Temporal window of metabolic brain vulnerability to concussion: a pilot 1H-magnetic resonance spectroscopic study in concussed athletes—part IIINeurosurgery621286-1296. 26. Vagnozzi, R., Signoretti, S., Tavazzi, B., Floris, R., Ludovici, A., Marziali, S., Tarascio, G., Amorini, A.M., Di Pietro, V., Delfini, R., and Lazzarino, G. (2008). Temporal window of metabolic brain vulnerability to concussion: a pilot 1H-magnetic resonance spectroscopic study in concussed athletes—part III. Neurosurgery 62:1286–1296.
27.
Romijn H.J.Hofman M.A.Gramsbergen A.1991. At what age is the developing cerebral cortex of the rat comparable to that of the full-term newborn baby?Early Hum. Dev.2661-67. 27. Romijn, H.J., Hofman, M.A., and Gramsbergen, A. (1991) At what age is the developing cerebral cortex of the rat comparable to that of the full-term newborn baby? Early Hum. Dev. 26:61–67.
28.
Nehlig A.Pereira de Vasconcelos A.Dumont I.Boyet S.1990. Effects of caffeine, L-phenylisopropyladenosine and their combination on local cerebral blood flow in the ratEur. J. Pharmacol.179271-280. 28. Nehlig, A., Pereira de Vasconcelos, A., Dumont, I., and Boyet, S. (1990). Effects of caffeine, L-phenylisopropyladenosine and their combination on local cerebral blood flow in the rat. Eur. J. Pharmacol. 179:271–280.
29.
Counotte D.S.Li K.W.Wortel J.Gouwenberg Y.Van Der Schors R.C.Smit A.B.Spijker S.2010. Changes in molecular composition of rat medial prefrontal cortex synapses during adolescent developmentEur. J. Neurosci.321452-1460. 29. Counotte, D.S., Li, K.W., Wortel, J., Gouwenberg, Y., Van Der Schors, R.C., Smit, A.B., Spijker, S. (2010) Changes in molecular composition of rat medial prefrontal cortex synapses during adolescent development. Eur. J. Neurosci. 32:1452–1460.
30.
Giedd J.N.2009. Linking adolescent sleep, brain maturation and behaviorJ. Adolesc. Health45319-320. 30. Giedd, J.N. (2009). Linking adolescent sleep, brain maturation and behavior. J. Adolesc. Health 45:319–320.
31.
Spear L.P.2004. Adolescent brain development and animal modelsAnn. N.Y. Acad. Sci.102123-26. 31. Spear, L.P. (2004). Adolescent brain development and animal models. Ann. N.Y. Acad. Sci. 1021:23–26.
32.
Spear L.P.2000. The adolescent brain and age-related behavioral manifestationsNeurosci Biobehav. Rev.24417-463. 32. Spear, L.P. (2000). The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav. Rev. 24:417–463.
33.
Prins M.L.Hales A.Reger M.Giza C.C.Hovda D.A.2010. Repeat traumatic brain injury in the juvenile rat is associated with increased axonal injury and cognitive impairmentsDev. Neurosci.32510-518. 33. Prins, M.L., Hales, A., Reger, M., Giza, C.C., and Hovda, D.A. (2010). Repeat traumatic brain injury in the juvenile rat is associated with increased axonal injury and cognitive impairments. Dev. Neurosci. 32:510–518.
34.
Sokoloff L.Reivich M.Kennedy C.Des Rosiers M.H.Patlak C.S.Pettigrew K.D.Sakurada O.Shinohara M.1977. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino ratJ. Neurochem.28897-916. 34. Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M.H., Patlak, C.S., Pettigrew, K.D. Sakurada, O., and Shinohara, M. (1977). The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28:897–916.
35.
el Hamdi G.de Vasconcelos A.P.Vert P.Nehlig A.1992. An experimental model of generalized seizures for the measurement of local cerebral glucose utilization in the immature rat. I. Behavioral characterization and determination of lumped constantBrain Res. Dev. Brain Res.69233-242. 35. el Hamdi, G., de Vasconcelos, A.P., Vert, P., and Nehlig, A. (1992). An experimental model of generalized seizures for the measurement of local cerebral glucose utilization in the immature rat. I. Behavioral characterization and determination of lumped constant. Brain Res. Dev. Brain Res. 69:233–242.
36.
Ennaceur A.Delacour J.1988. A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral dataBehav. Brain Res.3147-59. 36. Ennaceur, A., and Delacour, J. (1988). A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav. Brain Res. 31:47–59.
37.
Reger M.L.Hovda D.A.Giza C.C.2009. Ontogeny of Rat Recognition Memory measured by the novel object recognition taskDev. Psychobiol.51672-678. 37. Reger, M.L., Hovda, D.A., and Giza, C.C. (2009). Ontogeny of Rat Recognition Memory measured by the novel object recognition task. Dev. Psychobiol. 51:672–678.
38.
Colle L.M.Holmes L.J.Pappius H.M.1986. Correlation between behavioral status and cerebral glucose utilization in rats following freezing lesionBrain Res.39727-36. 38. Colle, L.M., Holmes, L.J., and Pappius, H.M. (1986). Correlation between behavioral status and cerebral glucose utilization in rats following freezing lesion. Brain Res. 397:27–36.
39.
Liu Y.Mituska S.Hashizume K.Hosaka T.Nukui H.1996. The time course of glucose metabolism in rat cerebral ischemia with middle cerebral artery occlusion-reperfusion model and the effect of MK-801Neurol. Res.18505-508. 39. Liu, Y., Mituska, S., Hashizume, K., Hosaka, T., and Nukui, H. (1996). The time course of glucose metabolism in rat cerebral ischemia with middle cerebral artery occlusion-reperfusion model and the effect of MK-801. Neurol. Res. 18:505–508.
40.
Hayes R.L.Katayama Y.Jenkins L.W.Lyeth B.G.Clifton G.L.Gunter J.Povlishock J.T.Young H.F.1988. Regional rates of glucose utilization in the cat following concussive head injuryJ. Neurotrauma5121-137. 40. Hayes, R.L., Katayama, Y., Jenkins, L.W., Lyeth, B.G., Clifton, G.L., Gunter, J., Povlishock, J.T., and Young, H.F. (1988). Regional rates of glucose utilization in the cat following concussive head injury. J. Neurotrauma 5:121–137.
41.
Dietrich W.D.Alonso O.Busto R.Ginsberg M.D.1994. Widespread metabolic depression and reduced somatosensory circuit activation following traumatic brain injury in ratsJ. Neurotrauma11629-640. 41. Dietrich, W.D., Alonso, O., Busto, R., and Ginsberg, M.D. (1994). Widespread metabolic depression and reduced somatosensory circuit activation following traumatic brain injury in rats. J. Neurotrauma 11:629–640.
42.
Jiang X.B.Ohno K.Qian L.Tominaga B.Kuroiwa T.Nariai T.Hirakawa K.2000. Changes in local cerebral blood flow, glucose utilization, and mitochondrial function following traumatic brain injury in ratsNeurol. Med. Chir (Tokyo)4016-29. 42. Jiang, X.B., Ohno, K., Qian, L., Tominaga, B., Kuroiwa, T., Nariai, T., and Hirakawa, K. (2000). Changes in local cerebral blood flow, glucose utilization, and mitochondrial function following traumatic brain injury in rats. Neurol. Med. Chir (Tokyo) 40:16–29.
43.
Bergsneider M.Hovda D.A.McArthur D.L.Etchepare M.Huang S.C.Sehati N.Satz P.Phelps M.E.Becker D.P.2001. Metabolic recovery following human traumatic brain injury based on FDG-PET: Time course and relationship to neurological disabilityJ. Head Trauma Rehabil.16135-148. 43. Bergsneider, M., Hovda, D.A., McArthur, D.L., Etchepare, M., Huang, S.C., Sehati, N., Satz, P., Phelps, M.E., and Becker. D.P. (2001). Metabolic recovery following human traumatic brain injury based on FDG-PET: Time course and relationship to neurological disability. J. Head Trauma Rehabil. 16:135–148.
44.
Roberts M.A.Manshadi F.F.Bushnell D.L.Hines ME.1995. Neurobehavioural dysfunction following mild traumatic brain injury in childhood: a case report with positive findings on positron emission tomography (PET)Brain Inj.9427-436. 44. Roberts, M.A., Manshadi, F.F., Bushnell, D.L., and Hines, ME. (1995). Neurobehavioural dysfunction following mild traumatic brain injury in childhood: a case report with positive findings on positron emission tomography (PET). Brain Inj. 9:427–436.
45.
Garcia-Panach J.Lull N.Lull J.J.Ferri J.Martinez C.Sopena P.Robles M.Chirivella J.Noé E.2011. A voxel-based analysis of FDG-PET in traumatic brain injury: regional metabolism and relationship between the thalamus and cortical areasJ. Neurotrauma281707-1717. 45. Garcia-Panach, J., Lull, N., Lull, J.J., Ferri, J., Martinez, C., Sopena, P., Robles, M., Chirivella, J., Noé, E. (2011). A voxel-based analysis of FDG-PET in traumatic brain injury: regional metabolism and relationship between the thalamus and cortical areas. J. Neurotrauma 28:1707–1717.
46.
Lull N.Noé E.Lull J.J.Garcia-Panach J.Chirivella J.Ferri J.Lopez-Aznar D.Sopena P.Robles M.2010. Voxel-based statistical analysis of thalamic glucose metabolism in traumatic brain injury: relationship with consciousness and cognitionBrain Inj241098-1107. 46. Lull, N., Noé, E., Lull, J.J., Garcia-Panach, J., Chirivella, J., Ferri, J., Lopez-Aznar, D., Sopena, P., and Robles, M. (2010). Voxel-based statistical analysis of thalamic glucose metabolism in traumatic brain injury: relationship with consciousness and cognition. Brain Inj 24:1098–1107.
47.
Feeney D.M.Boyeson M.G.Linn R.T.Murray H.M.Dail WG.1981. Responses to cortical injury, I: Methodology and local effects of contusions in the ratBrain Res.21167-77. 47. Feeney, D.M., Boyeson, M.G., Linn, R.T., Murray, H.M., and Dail, WG. (1981). Responses to cortical injury, I: Methodology and local effects of contusions in the rat. Brain Res. 211:67–77.
48.
Prins M.L.Hovda D.A.2001. Mapping cerebral glucose metabolism during spatial learning: interactions of development and traumatic brain injuryJ, Neurotrauma1831-46. 48. Prins, M.L., and Hovda, D.A. (2001). Mapping cerebral glucose metabolism during spatial learning: interactions of development and traumatic brain injury. J, Neurotrauma 18:31–46.
49.
Lyeth B.G.Jenkins L.W.Hamm R.J.Dixon C.E.Phillips L.L.Clifton G.L.Young H.F.Hayes R.L.1990. Prolonged memory impairment in the absence of hippocampal cell death following traumatic brain injury in the ratBrain Res.526249-258. 49. Lyeth, B.G., Jenkins, L.W., Hamm, R.J., Dixon, C.E., Phillips, L.L., Clifton, G.L., Young, H.F., and Hayes, R.L. (1990). Prolonged memory impairment in the absence of hippocampal cell death following traumatic brain injury in the rat. Brain Res. 526:249–258.
50.
Vespa P.Boonyaputthikul R.McArthur D.L.Miller C.Etchepare M.Bergsneider M.Glenn T.Martin N.Hovda D.2006. Intensive insulin therapy reduces microdialysis glucose values without altering glucose utilization or improving the lactate/pyruvate ratio after traumatic brain injuryCrit. Care Med.34850-856. 50. Vespa, P., Boonyaputthikul, R., McArthur, D.L., Miller, C., Etchepare, M., Bergsneider, M., Glenn, T., Martin, N., and Hovda, D. (2006). Intensive insulin therapy reduces microdialysis glucose values without altering glucose utilization or improving the lactate/pyruvate ratio after traumatic brain injury. Crit. Care Med. 34:850–856.
51.
Vannucci S.J.Seaman L.B.Vannucci R.C.1996. Effects of hypoxia-ischemia on GLUT1 and GLUT3 glucose transporters in immature rat brainJ. Cereb. Blood Flow Metab.1677-81. 51. Vannucci, S.J., Seaman, L.B., Vannucci, R.C. (1996)Effects of hypoxia-ischemia on GLUT1 and GLUT3 glucose transporters in immature rat brain. J. Cereb. Blood Flow Metab. 16:77–81.
52.
Bruckner B.A.Ammini C.V.Otal M.P.Raizada M.K.Stacpoole P.W.1999. Regulation of brain glucose transporters by glucose and oxygen deprivationMetabolism48422-431. 52. Bruckner, B.A., Ammini, C.V., Otal, M.P., Raizada, M.K., and Stacpoole, P.W. (1999). Regulation of brain glucose transporters by glucose and oxygen deprivation. Metabolism 48:422–431.
53.
Balabanov R.Goldman H.Murphy S.Pellizon G.Owen C.Rafols J.Dore-Duffy P.2001. Endothelial cell activation following moderate traumatic brain injuryNeurol. Res.23175-182. 53. Balabanov, R., Goldman, H., Murphy, S., Pellizon, G., Owen, C., Rafols, J., and Dore-Duffy, P. (2001). Endothelial cell activation following moderate traumatic brain injury. Neurol. Res. 23:175–182.
54.
Cornford E.M.Cornford M.E.1986. Nutrient transport and the blood-brain barrier in developing animalsFed. Proc.452065-2072. 54. Cornford, E.M., and Cornford, M.E. (1986). Nutrient transport and the blood-brain barrier in developing animals. Fed. Proc. 45:2065–2072.
55.
Pappius H.M.1995. Cortical hypometabolism in injured brain: new correlations with the noradrenergic and serotonergic systems and with behavioral deficitsNeurochem. Res.201311-1321. 55. Pappius, H.M. (1995). Cortical hypometabolism in injured brain: new correlations with the noradrenergic and serotonergic systems and with behavioral deficits. Neurochem. Res. 20:1311–1321.
56.
Nilsson P.Hillered L.Ponten U.Ungerstedt U.1990. Changes in cortical extracellular levels of energy-related metabolites and amino acids following concussive brain injury in ratsJ. Cereb. Blood Flow Metab.10631-637. 56. Nilsson, P., Hillered, L., Ponten, U., and Ungerstedt, U. (1990). Changes in cortical extracellular levels of energy-related metabolites and amino acids following concussive brain injury in rats. J. Cereb. Blood Flow Metab. 10:631–637.
57.
Kmieciak-Kolada K.Felinska W.Stachura Z.Majchrzak H.Herman Z.S.1987. Concentration of biogenic amines and their metabolites in different parts of brain after experimental cerebral concussionPol. J. Pharmacol. Pharm.3947-53. 57. Kmieciak-Kolada, K., Felinska, W., Stachura, Z., Majchrzak, H., and Herman, Z.S. (1987). Concentration of biogenic amines and their metabolites in different parts of brain after experimental cerebral concussion. Pol. J. Pharmacol. Pharm. 39:47–53.
58.
Tsuiki K.Takada A.Nagahiro S.Grdisa M.Diksic M.Pappius H.M.1995. Synthesis of serotonin in traumatized rat brainJ. Neurochem.641319-1325. 58. Tsuiki, K., Takada, A., Nagahiro, S., Grdisa, M., Diksic, M., and Pappius, H.M. (1995). Synthesis of serotonin in traumatized rat brain. J. Neurochem. 64:1319–1325.
59.
Bell M.J.Kochanek P.M.Carcillo J.A.Mi Z.Schiding J.K.Wisniewski S.R.Clark R.S.Dixon C.E.Marion D.W.Jackson E.1998. Interstitial adenosine, inosine, and hypoxanthine are increased after experimental traumatic brain injury in the ratJ. Neurotrauma15163-170. 59. Bell, M.J., Kochanek, P.M., Carcillo, J.A., Mi, Z., Schiding, J.K., Wisniewski, S.R., Clark, R.S., Dixon, C.E., Marion, D.W., and Jackson, E. (1998). Interstitial adenosine, inosine, and hypoxanthine are increased after experimental traumatic brain injury in the rat. J. Neurotrauma 15:163–170.
60.
Clark R.S.Carcillo J.A.Kochanek P.M.Obrist W.D.Jackson E.K.Mi S.Wisneiwski S.R.Bell M.J.Marion D.W.1997. Cerebrospinal fluid adenosine concentration and uncoupling of cerebral blood flow and oxidative metabolism after severe head injury in humansNeurosurgery411284-1293. 60. Clark, R.S., Carcillo, J.A., Kochanek, P.M., Obrist, W.D., Jackson, E.K., Mi, S., Wisneiwski, S.R., Bell, M.J., Marion, D.W. (1997) Cerebrospinal fluid adenosine concentration and uncoupling of cerebral blood flow and oxidative metabolism after severe head injury in humans. Neurosurgery 41:1284–1293.
61.
Povlishock J.T.1993. Pathobiology of traumatically induced axonal injury in animals and manAnn. Emerg. Med.22980-986. 61. Povlishock, J.T. (1993). Pathobiology of traumatically induced axonal injury in animals and man. Ann. Emerg. Med. 22:980–986.
62.
Mac Donald C.L.Dikranian K.Bayly P.Holtzman D.Brody D.2007. Diffusion tensor imaging reliably detects experimental traumatic axonal injury and indicates approximate time of injuryJ. Neurosci.2711869-11876. 62. Mac Donald, C.L., Dikranian, K., Bayly, P., Holtzman, D., and Brody, D. (2007). Diffusion tensor imaging reliably detects experimental traumatic axonal injury and indicates approximate time of injury. J. Neurosci. 27:11869–11876.
63.
Okumura A.Yasokawa Y.Nakayama N.Miwa K.Shinoda J.Iwama T.2005. [The clinical utility of MR diffusion tensor imaging and spatially normalized PET to evaluate traumatic brain injury patients with memory and cognitive impairments](Jap) No to Shinkei57115-122. 63. Okumura, A., Yasokawa, Y., Nakayama, N., Miwa, K., Shinoda, J., and Iwama, T. (2005). [The clinical utility of MR diffusion tensor imaging and spatially normalized PET to evaluate traumatic brain injury patients with memory and cognitive impairments]. (Jap) No to Shinkei 57:115–122.
64.
Reeves T.M.Phillips L.L.Povlishock J.T.2005. Myelinated and unmyelinated axons of the corpus callosum differ in vulnerability and functional recovery following traumatic brain injuryExp. Neurol.196126-137. 64. Reeves, T.M., Phillips, L.L., and Povlishock, J.T. (2005). Myelinated and unmyelinated axons of the corpus callosum differ in vulnerability and functional recovery following traumatic brain injury. Exp. Neurol. 196:126–137.
65.
Derache N.Marie R.M.Constans J.M.Defer G.L.2006. Reduced thalamic and cerebellar rest metabolism in relapsing-remitting multiple sclerosis, a positron emission tomography study: correlations to lesion loadJ. Neurol. Sci.245103-109. 65. Derache, N., Marie, R.M., Constans, J.M., and Defer, G.L. (2006). Reduced thalamic and cerebellar rest metabolism in relapsing-remitting multiple sclerosis, a positron emission tomography study: correlations to lesion load. J. Neurol. Sci. 245:103–109.
66.
Yakushev I.Gerhard A.Müller M.J.Lorscheider M.Buchholz H.G.Schermuly I.Weibrich C.Hammers A.Stoeter P.Schreckenberger M.Fellgiebel A.2011. Relationships between hippocampal microstructure, metabolism, and function in early Alzheimer's diseaseBrain Struct. Funct.216219-226. 66. Yakushev, I., Gerhard, A., Müller, M.J., Lorscheider, M., Buchholz, H.G., Schermuly, I., Weibrich, C., Hammers, A., Stoeter, P., Schreckenberger, M., and Fellgiebel, A. (2011). Relationships between hippocampal microstructure, metabolism, and function in early Alzheimer's disease. Brain Struct. Funct. 216:219–226.
67.
Browne S.E.Lin L.Mattsson A.Georgievska B.Isacson O.2001. Selective antibody-induced cholinergic cell and synapse loss produce sustained hippocampal and cortical hypometabolism with correlated cognitive deficitsExp. Neurol.17036-47. 67. Browne, S.E., Lin, L., Mattsson, A., Georgievska, B., and Isacson, O. (2001). Selective antibody-induced cholinergic cell and synapse loss produce sustained hippocampal and cortical hypometabolism with correlated cognitive deficits. Exp. Neurol. 170:36–47.
68.
Lee S.M.Wong M.D.Samii A.Hovda D.A.1999. Evidence for energy failure following irreversible traumatic brain injuryAnn. N.Y. Acad. Sci.893337-340. 68. Lee, S.M., Wong, M.D., Samii, A., and Hovda, D.A. (1999). Evidence for energy failure following irreversible traumatic brain injury. Ann. N.Y. Acad. Sci. 893:337–340.
69.
Bartnik B.L.Sutton R.L.Fukushima M.Harris N.G.Hovda D.A.Lee S.M.2005. Upregulation of pentose phosphate pathway and preservation of tricarboxylic acid cycle flux after experimental brain injuryJ. Neurotrauma221052-1065. 69. Bartnik, B.L., Sutton, R.L., Fukushima, M., Harris, N.G., Hovda, D.A., and Lee, S.M. (2005). Upregulation of pentose phosphate pathway and preservation of tricarboxylic acid cycle flux after experimental brain injury. J. Neurotrauma 22:1052–1065.
70.
Hall E.D.Andrus P.K.Yonkers P.A.1993. Brain hydroxyl radical generation in acute experimental head injuryJ. Neurochem.60588-594. 70. Hall, E.D., Andrus, P.K., and Yonkers, P.A. (1993). Brain hydroxyl radical generation in acute experimental head injury. J. Neurochem. 60:588–594.
71.
Marklund N.Clausen F.Lewander T.Hillered L.2001. Monitoring of reactive oxygen species production after traumatic brain injury in rats with microdialysis and the 4-hydroxybenzoic acid trapping methodJ. Neurotrauma181217-1227. 71. Marklund, N., Clausen, F., Lewander, T., and Hillered, L. (2001). Monitoring of reactive oxygen species production after traumatic brain injury in rats with microdialysis and the 4-hydroxybenzoic acid trapping method. J. Neurotrauma 18:1217–1227.
72.
Sheline C.T.Behrens M.M.Choi D.W.2000. Zinc-induced cortical neuronal death: contribution of energy failure attributable to loss of NAD+ and inhibition of glycolysisJ. Neurosci.203139-3146. 72. Sheline, C.T., Behrens, M.M., and Choi, D.W. (2000). Zinc-induced cortical neuronal death: contribution of energy failure attributable to loss of NAD+ and inhibition of glycolysis. J. Neurosci. 20:3139–3146.
73.
Cosi C.Marien M.1998. Decreases in mouse brain NAD+ and ATP induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): prevention by the poly(ADP-ribose) polymerase inhibitor, benzamideBrain Res.80958-67. 73. Cosi, C., and Marien, M. (1998). Decreases in mouse brain NAD+ and ATP induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): prevention by the poly(ADP-ribose) polymerase inhibitor, benzamide. Brain Res. 809:58–67.
74.
Ying W.Gernier P.Swanson R.2003. NAD+ repletion prevents PARP-1-induced glycolytic blockade and cell death in cultured mouse astrocytesBiochem. Biophys. Res. Commun.308809-813. 74. Ying, W., Gernier, P., and Swanson, R. (2003). NAD+ repletion prevents PARP-1-induced glycolytic blockade and cell death in cultured mouse astrocytes. Biochem. Biophys. Res. Commun. 308:809–813.
75.
Vavilala M.S.Muangman S.Tontisirin N.Fisk D.Roscigno C.Mitchell P.Kirkness C.Zimmerman J.J.Chesnut R.Lam A.M.2006. Impaired cerebral autoregulation and 6-month outcome in children with severe traumatic brain injury: preliminary findingsDev. Neurosci.28348-353. 75. Vavilala, M.S., Muangman, S., Tontisirin, N., Fisk, D., Roscigno, C., Mitchell, P., Kirkness, C., Zimmerman, J.J., Chesnut, R., Lam, A.M. (2006). Impaired cerebral autoregulation and 6-month outcome in children with severe traumatic brain injury: preliminary findings. Dev. Neurosci. 28:348–353.
76.
Golding E.M.Steenberg M.L.Contant C.F. Jr.Krishnappa I.Robertson C.S.Bryan R.M. Jr1999. Cerebrovascular reactivity to CO2 and hypotension after mild cortical impact injuryAm. J. Physiol.277H1457-H1466. 76. Golding, E.M., Steenberg, M.L., Contant, C.F. Jr., Krishnappa, I., Robertson, C.S., Bryan, R.M. Jr. (1999) Cerebrovascular reactivity to CO2 and hypotension after mild cortical impact injury. Am. J. Physiol. 277: H1457– H1466.
77.
Bonne O.Gilboa A.Louzoun Y.Kempf-Sherf O.Katz M.Fishman Y.Ben-Nahum Z.Krausz Y.Bocher M.Lester H.Chisin R.Lerer B.2003. Cerebral blood flow in chronic symptomatic mild traumatic brain injuryPsychiatry Res.124141-152. 77. Bonne, O., Gilboa, A., Louzoun, Y., Kempf-Sherf, O., Katz, M., Fishman, Y., Ben-Nahum, Z., Krausz, Y., Bocher, M., Lester, H., Chisin, R., Lerer, B. (2003). Cerebral blood flow in chronic symptomatic mild traumatic brain injury. Psychiatry Res. 124:141–152.
78.
Junger E.C.Newell D.W.Grant G.A.Avellino A.M.Ghatan S.Douville C.M.Lam A.M.Aaslid R.Winn H.R.1997. Cerebral autoregulation following minor head injuryJ. Neurosurg.86425-432. 78. Junger, E.C., Newell, D.W., Grant, G.A., Avellino, A.M., Ghatan, S., Douville, C.M., Lam, A.M., Aaslid, R., Winn, H.R. (1997). Cerebral autoregulation following minor head injury. J. Neurosurg. 86:425–432.
79.
Schneider G.Fries P.Wagner-Jochem D.Thome D.Laurer H.Kramann B.Mautes A.Hagen T.2002. Pathophysiological changes after traumatic brain injury: comparison of two experimental animal models by means of MRIMAGMA14233-241. 79. Schneider, G., Fries, P., Wagner-Jochem, D., Thome, D., Laurer, H., Kramann, B., Mautes, A., Hagen, T. (2002). Pathophysiological changes after traumatic brain injury: comparison of two experimental animal models by means of MRI. MAGMA 14:233–241.
80.
Yamakami I.McIntosh T.K.1989. Effects of traumatic brain injury on regional cerebral blood flow in rats as measured with radiolabeled microspheresJ. Cereb. Blood Flow Metab.9117-124. 80. Yamakami, I., McIntosh, T.K. (1989). Effects of traumatic brain injury on regional cerebral blood flow in rats as measured with radiolabeled microspheres. J. Cereb. Blood Flow Metab. 9:117–124.
81.
Becelewski J.Pierzchala K.2003. [Cerebrovascular reactivity in patients with mild head injury.](Pol) Neurol. Neurochir. Pol.37339-350. 81. Becelewski, J., Pierzchala, K. (2003). [Cerebrovascular reactivity in patients with mild head injury.] (Pol) Neurol. Neurochir. Pol. 37: 339–350.
82.
Maugans T.A.Farley C.Altaye M.Leach J.Cecil K.M.2012. Pediatric sports-related concussion produces cerebral blood flow alterationsPediatrics12928-37. 82. Maugans, T.A., Farley, C., Altaye, M., Leach, J., Cecil, K.M. (2012). Pediatric sports-related concussion produces cerebral blood flow alterations. Pediatrics 129:28–37.
83.
Biagas K.V.Grundl P.D.Kochanek P.M.Schinding J.K.Nemoto E.M.1996. Posttraumatic hyperemia in immature, mature and aged rats: autoradiographic determination of cerebral blood flowJ. Neurotrauma13189-200. 83. Biagas, K.V., Grundl, P.D., Kochanek, P.M., Schinding, J.K., Nemoto, E.M. (1996). Posttraumatic hyperemia in immature, mature and aged rats: autoradiographic determination of cerebral blood flow. J. Neurotrauma 13:189–200.
84.
Tavazzi B.Vagnozzi R.Signoretti S.Amorini A.M.Belli A.Cimatti M.Delfini R.Di Pietro V.Finocchiaro A.Lazzarino G.2007. Temporal window of metabolic brain vulnerability to concussions: oxidative and nitrosative stresses—part IINeurosurgery61390-396. 84. Tavazzi, B., Vagnozzi, R., Signoretti, S., Amorini, A.M., Belli, A., Cimatti, M., Delfini, R., Di Pietro, V., Finocchiaro, A., and Lazzarino, G. (2007). Temporal window of metabolic brain vulnerability to concussions: oxidative and nitrosative stresses—part II. Neurosurgery 61:390–396.

Information & Authors

Information

Published In

cover image Journal of Neurotrauma
Journal of Neurotrauma
Volume 30Issue Number 1January 1, 2013
Pages: 30 - 38
PubMed: 23025820

History

Published in print: January 1, 2013
Published online: 21 December 2012
Published ahead of production: 1 October 2012

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Mayumi L. Prins
Department of Neurosurgery, University of California, Los Angeles, School of Medicine, Los Angeles, California.
The Interdepartmental Program for Neuroscience, University of California, Los Angeles, School of Medicine, Los Angeles, California.
The UCLA Brain Injury Research Center, University of California, Los Angeles, School of Medicine, Los Angeles, California.
Daya Alexander
The Interdepartmental Program for Neuroscience, University of California, Los Angeles, School of Medicine, Los Angeles, California.
The UCLA Brain Injury Research Center, University of California, Los Angeles, School of Medicine, Los Angeles, California.
Christopher C. Giza
Department of Neurosurgery, University of California, Los Angeles, School of Medicine, Los Angeles, California.
Department of Neurology, University of California, Los Angeles, School of Medicine, Los Angeles, California.
David A. Hovda
Department of Neurosurgery, University of California, Los Angeles, School of Medicine, Los Angeles, California.
Department of Molecular and Medical Pharmacology, University of California, Los Angeles, School of Medicine, Los Angeles, California.
The Interdepartmental Program for Neuroscience, University of California, Los Angeles, School of Medicine, Los Angeles, California.
The UCLA Brain Injury Research Center, University of California, Los Angeles, School of Medicine, Los Angeles, California.

Notes

Address correspondence to:Mayumi L. Prins, PhDUCLA Department of NeurosurgeryUCLS School of MedicineNPI 18-228Los Angeles, CA 90095E-mail: [email protected]

Author Disclosure Statement

No competing financial interests exist.

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top