Research Article
No access
Published Online: 10 May 2013

Blast Wave Exposure Impairs Memory and Decreases Axon Initial Segment Length

Publication: Journal of Neurotrauma
Volume 30, Issue Number 9

Abstract

Exposure to a blast wave has been proposed to cause mild traumatic brain injury (mTBI), with symptoms including altered cognition, memory, and behavior. This idea, however, remains controversial, and the mechanisms of blast-induced brain injury remain unknown. To begin to resolve these questions, we constructed a simple compressed air shock tube, placed rats inside the tube, and exposed them to a highly reproducible and controlled blast wave. Consistent with the generation of a mild injury, 2 weeks after exposure to the blast, we found that motor performance was unaffected, and a panel of common injury markers showed little or no significant changes in expression in the cortex, corpus callosum, or hippocampus. Similarly, we were unable to detect elevated spectrin breakdown products in brains collected from blast-exposed rats. Using an object recognition task, however, we found that rats exposed to a blast wave spent significantly less time exploring a novel object when compared with control rats. Intriguingly, we also observed a significant shortening of the axon initial segment (AIS) in both the cortex and hippocampus of blast-exposed rats, suggesting altered neuronal excitability after exposure to a blast. A computational model showed that shortening the AIS increased both threshold and the interspike interval of repetitively firing neurons. These results support the conclusion that exposure to a single blast wave can lead to mTBI with accompanying cognitive impairment and subcellular changes in the molecular organization of neurons.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Okie S.2005. Traumatic brain injury in the war zoneN. Engl. J. Med.3522043-2047. 1. Okie, S. (2005) Traumatic brain injury in the war zone. N. Engl. J. Med. 352:2043–2047.
2.
Ling G.S.Ecklund J.M.2011. Traumatic brain injury in modern warCurr. Opin. Anaesthesiol.24124-130. 2. Ling, G.S., and Ecklund, J.M. (2011) Traumatic brain injury in modern war. Curr. Opin. Anaesthesiol. 24:124–130.
3.
Elsayed N.M.1997. Toxicology of blast overpressureToxicology1211-15. 3. Elsayed, N.M. (1997) Toxicology of blast overpressure. Toxicology 121:1–15.
4.
Mayorga M.A.1997. The pathology of primary blast overpressure injuryToxicology12117-28. 4. Mayorga, M.A. (1997) The pathology of primary blast overpressure injury. Toxicology 121:17–28.
5.
Leung L.Y.VandeVord P.J.Dal Cengio A.L.Bir C.Yang K.H.King A.I.2008. Blast related neurotrauma: a review of cellular injuryMol Cell Biomech5155-168. 5. Leung, L.Y., VandeVord, P.J., Dal Cengio, A.L., Bir, C., Yang, K.H., and King, A.I. (2008) Blast related neurotrauma: a review of cellular injury. Mol Cell Biomech 5:155–168.
6.
Ritenour AEBaskin TW2008. Primary blast injury: update on diagnosis, treatmentCrit Care Med36S311-317. 6. Ritenour AE, Baskin TW (2008) Primary blast injury: update on diagnosis and treatment. Crit Care Med 36:S311–317.
7.
Champion H.R.Holcomb J.B.Young L.A.2009. Injuries from explosions: physics, biophysics, pathology, and required research focusJ. Trauma661468-1477. 7. Champion, H.R., Holcomb, J.B., and Young, L.A. (2009) Injuries from explosions: physics, biophysics, pathology, and required research focus. J. Trauma 66:1468–1477.
8.
Ling G.Bandak F.Armonda R.Grant G.Ecklund J.2009. Explosive blast neurotraumaJ. Neurotrauma26815-825. 8. Ling, G., Bandak, F., Armonda, R., Grant, G., and Ecklund, J. (2009) Explosive blast neurotrauma. J. Neurotrauma 26:815–825.
9.
Cernak I.Noble-Haeusslein L.J.2010. Traumatic brain injury: an overview of pathobiology with emphasis on military populationsJ. Cereb. Blood Flow Metab.30255-266. 9. Cernak, I., and Noble-Haeusslein, L.J. (2010) Traumatic brain injury: an overview of pathobiology with emphasis on military populations. J. Cereb. Blood Flow Metab. 30:255–266.
10.
Wilk J.E.Thomas J.L.McGurk D.M.Riviere L.A.Castro C.A.Hoge C.W.2010. Mild traumatic brain injury (concussion) during combat: lack of association of blast mechanism with persistent postconcussive symptomsJ. Head Trauma Rehabil.259-14. 10. Wilk, J.E., Thomas, J.L., McGurk, D.M., Riviere, L.A., Castro, C.A., Hoge, C.W. (2010) Mild traumatic brain injury (concussion) during combat: lack of association of blast mechanism with persistent postconcussive symptoms. J. Head Trauma Rehabil. 25:9–14.
11.
Taber K.H.Warden D.L.Hurley R.A.2006. Blast-related traumatic brain injury: what is known?J. Neuropsychiatry Clin. Neurosci.18141-145. 11. Taber, K.H., Warden, D.L., Hurley, R.A. (2006) Blast-related traumatic brain injury: what is known? J. Neuropsychiatry Clin. Neurosci. 18:141–145.
12.
Warden D.2006. Military TBI during the Iraq and Afghanistan warsJ. Head Trauma Rehabil.21398-402. 12. Warden, D. (2006) Military TBI during the Iraq and Afghanistan wars. J. Head Trauma Rehabil. 21:398–402.
13.
Carroll L.J.Cassidy J.D.Peloso P.M.Borg J.von Holst H.Holm L.Paniak C.Pepin M.2004. Prognosis for mild traumatic brain injury: results of the WHO Collaborating Centre Task Force on Mild Traumatic Brain InjuryJ. Rehabil. Med.Suppl 4384-105. 13. Carroll, L.J., Cassidy, J.D., Peloso, P.M., Borg, J., von Holst, H., Holm, L., Paniak, C., and Pepin, M. (2004) Prognosis for mild traumatic brain injury: results of the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. J. Rehabil. Med. Suppl 43:84–105.
14.
Hoge C.W.McGurk D.Thomas J.L.Cox A.L.Engel C.C.Castro C.A.2008. Mild traumatic brain injury in U.S. Soldiers returning from IraqN. Engl. J. Med.358453-463. 14. Hoge, C.W., McGurk, D., Thomas, J.L., Cox, A.L., Engel, C.C., and Castro, C.A. (2008) Mild traumatic brain injury in U.S. Soldiers returning from Iraq. N. Engl. J. Med. 358:453–463.
15.
Elder G.A.Mitsis E.M.Ahlers S.T.Cristian A.2010. Blast-induced mild traumatic brain injuryPsychiatr. Clin. North Am.33757-781. 15. Elder, G.A., Mitsis, E.M., Ahlers, S.T., and Cristian, A. (2010) Blast-induced mild traumatic brain injury. Psychiatr. Clin. North Am. 33:757–781.
16.
Bradbury E.J.McMahon S.B.2006. Spinal cord repair strategies: why do they work?Nat. Rev. Neurosci.7644-653. 16. Bradbury, E.J., and McMahon, S.B. (2006) Spinal cord repair strategies: why do they work? Nat. Rev. Neurosci. 7:644–653.
17.
Buffington S.A.Rasband M.N.2011. The axon initial segment in nervous system disease and injuryEur. J. Neurosci.341609-1619. 17. Buffington, S.A., and Rasband, M.N. (2011) The axon initial segment in nervous system disease and injury. Eur. J. Neurosci. 34:1609–1619.
18.
Rasband MN2010. The axon initial segment and the maintenance of neuronal polarityNat Rev Neurosci. 18. Rasband MN (2010) The axon initial segment and the maintenance of neuronal polarity. Nat Rev Neurosci.
19.
Schafer DPJha SLiu FAkella TMcCullough LDRasband MN2009. Disruption of the axon initial segment cytoskeleton is a new mechanism for neuronal injuryJ Neurosci2913242-13254. 19. Schafer DP, Jha S, Liu F, Akella T, McCullough LD, Rasband MN (2009) Disruption of the axon initial segment cytoskeleton is a new mechanism for neuronal injury. J Neurosci 29:13242–13254.
20.
Grubb M.S.Burrone J.2010. Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitabilityNature4651070-1074. 20. Grubb, M.S., and Burrone, J. (2010) Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability. Nature. 465:1070–1074.
21.
Kuba H.Oichi Y.Ohmori H.2010. Presynaptic activity regulates Na(+) channel distribution at the axon initial segmentNature4651075-1078. 21. Kuba, H., Oichi, Y., and Ohmori, H. (2010) Presynaptic activity regulates Na(+) channel distribution at the axon initial segment. Nature. 465:1075–1078.
22.
Wimmer V.C.Reid C.A.So E.Y.Berkovic S.F.Petrou S.2010. Axon initial segment dysfunction in epilepsyJ. Physiol.5881829-1840. 22. Wimmer, V.C., Reid, C.A., So, E.Y., Berkovic, S.F., Petrou, S. (2010) Axon initial segment dysfunction in epilepsy. J. Physiol. 588:1829–1840.
23.
Kaphzan H.Buffington S.A.Jung J.I.Rasband M.N.Klann E.2011. Alterations in intrinsic membrane properties and the axon initial segment in a mouse model of angelman syndromeJ. Neurosci.3117637-17648. 23. Kaphzan, H., Buffington, S.A., Jung, J.I., Rasband, M.N., and Klann, E. (2011) Alterations in intrinsic membrane properties and the axon initial segment in a mouse model of angelman syndrome. J. Neurosci. 31:17637–17648.
24.
Li X.Kumar Y.Zempel H.Mandelkow E.M.Biernat J.Mandelkow E.2011. Novel diffusion barrier for axonal retention of Tau in neurons and its failure in neurodegenerationEmbo. J.304825-4837. 24. Li, X., Kumar, Y., Zempel, H., Mandelkow, E.M., Biernat, J., and Mandelkow, E. (2011) Novel diffusion barrier for axonal retention of Tau in neurons and its failure in neurodegeneration. Embo. J. 30:4825–4837.
25.
Grubb M.S.Shu Y.Kuba H.Rasband M.N.Wimmer V.C.Bender K.J.2011. Short- and long-term plasticity at the axon initial segmentJ. Neurosci.3116049-16055. 25. Grubb, M.S., Shu, Y., Kuba, H., Rasband, M.N., Wimmer, V.C., and Bender, K.J. (2011) Short- and long-term plasticity at the axon initial segment. J. Neurosci. 31:16049–16055.
26.
Kole M.H.Ilschner S.U.Kampa B.M.Williams S.R.Ruben P.C.Stuart G.J.2008. Action potential generation requires a high sodium channel density in the axon initial segmentNat. Neurosci.11178-186. 26. Kole, M.H., Ilschner, S.U., Kampa, B.M., Williams, S.R., Ruben, P.C., and Stuart, G.J. (2008) Action potential generation requires a high sodium channel density in the axon initial segment. Nat. Neurosci. 11:178–186.
27.
Bevins R.A.Besheer J.2006. Object recognition in rats and mice: a one-trial non-matching-to-sample learning task to study ‘recognition memory.’Nat. Protoc.11306-1311. 27. Bevins, R.A., and Besheer, J. (2006) Object recognition in rats and mice: a one-trial non-matching-to-sample learning task to study ‘recognition memory.’ Nat. Protoc. 1:1306–1311.
28.
Douglas R.M.Alam N.M.Silver B.D.McGill T.J.Tschetter W.W.Prusky G.T.2005. Independent visual threshold measurements in the two eyes of freely moving rats and mice using a virtual-reality optokinetic systemVis. Neurosci.22677-684. 28. Douglas, R.M., Alam, N.M., Silver, B.D., McGill, T.J., Tschetter, W.W., and Prusky, G.T. (2005) Independent visual threshold measurements in the two eyes of freely moving rats and mice using a virtual-reality optokinetic system. Vis. Neurosci. 22:677–684.
29.
Ogawa Y.Schafer D.P.Horresh I.Bar V.Hales K.Yang Y.Susuki K.Peles E.Stankewich M.C.Rasband M.N.2006. Spectrins and ankyrinB constitute a specialized paranodal cytoskeletonJ. Neurosci.265230-5239. 29. Ogawa, Y., Schafer, D.P., Horresh, I., Bar, V., Hales, K., Yang, Y., Susuki, K., Peles, E., Stankewich, M.C., and Rasband, M.N. (2006) Spectrins and ankyrinB constitute a specialized paranodal cytoskeleton. J. Neurosci. 26:5230–5239.
30.
Schafer DPBansal RHedstrom KLPfeiffer SERasband MN2004. Does paranode formation and maintenance require partitioning of neurofascin 155 into lipid rafts?J Neurosci243176-3185. 30. Schafer DP, Bansal R, Hedstrom KL, Pfeiffer SE, Rasband MN (2004) Does paranode formation and maintenance require partitioning of neurofascin 155 into lipid rafts? J Neurosci 24:3176–3185.
31.
Jeong H.K.Ji K.M.Kim B.Kim J.Jou I.Joe E.H.2011. Inflammatory responses are not sufficient to cause delayed neuronal death in ATP-induced acute brain injuryPLoS One5e13756. 31. Jeong, H.K., Ji, K.M., Kim, B., Kim, J., Jou, I., and Joe, E.H. (2011) Inflammatory responses are not sufficient to cause delayed neuronal death in ATP-induced acute brain injury. PLoS One 5:e13756.
32.
Svetlov S.I.Prima V.Kirk D.R.Gutierrez H.Curley K.C.Hayes R.L.Wang K.K.2010. Morphologic and biochemical characterization of brain injury in a model of controlled blast overpressure exposureJ. Trauma69795-804. 32. Svetlov, S.I., Prima, V., Kirk, D.R., Gutierrez, H., Curley, K.C., Hayes, R.L., Wang, K.K. (2010) Morphologic and biochemical characterization of brain injury in a model of controlled blast overpressure exposure. J. Trauma 69:795–804.
33.
Burggraf D.Trinkl A.Burk J.Martens H.K.Dichgans M.Hamann G.F.2008. Vascular integrin immunoreactivity is selectively lost on capillaries during rat focal cerebral ischemia and reperfusionBrain Res.1189189-197. 33. Burggraf, D., Trinkl, A., Burk, J., Martens, H.K., Dichgans, M., and Hamann, G.F. (2008) Vascular integrin immunoreactivity is selectively lost on capillaries during rat focal cerebral ischemia and reperfusion. Brain Res. 1189:189–197.
34.
Siman RBaudry MLynch G1984. Brain fodrin: substrate for calpain I, an endogenous calcium-activated proteaseProc Natl Acad Sci U S A813572-3576. 34. Siman R, Baudry M, Lynch G (1984) Brain fodrin: substrate for calpain I, an endogenous calcium-activated protease. Proc Natl Acad Sci U S A 81:3572–3576.
35.
Mondello S.Robicsek S.A.Gabrielli A.Brophy G.M.Papa L.Tepas J.Robertson C.Buki A.Scharf D.Jixiang M.Akinyi L.Muller U.Wang K.K.Hayes R.L.2010. alphaII-spectrin breakdown products (SBDPs): diagnosis and outcome in severe traumatic brain injury patientsJ Neurotrauma271203-1213. 35. Mondello, S., Robicsek, S.A., Gabrielli, A., Brophy, G.M., Papa, L., Tepas, J., Robertson, C., Buki, A., Scharf, D., Jixiang, M., Akinyi, L., Muller, U., Wang, K.K., and Hayes, R.L. (2010) alphaII-spectrin breakdown products (SBDPs): diagnosis and outcome in severe traumatic brain injury patients. J Neurotrauma 27:1203–1213.
36.
Barker G.R.Warburton E.C.2011. When is the hippocampus involved in recognition memory?J. Neurosci.3110721-10731. 36. Barker, G.R., and Warburton, E.C. (2011) When is the hippocampus involved in recognition memory? J. Neurosci. 31:10721–10731.
37.
Yang Y.Ogawa Y.Hedstrom K.L.Rasband M.N.2007. {beta}IV spectrin is recruited to axon initial segments and nodes of Ranvier by ankyrinGJ. Cell Biol.176509-519. 37. Yang, Y., Ogawa, Y., Hedstrom, K.L., Rasband, M.N. (2007) {beta}IV spectrin is recruited to axon initial segments and nodes of Ranvier by ankyrinG. J. Cell Biol. 176:509–519.
38.
Galiano M.R.Jha S.Ho T.S.Zhang C.Ogawa Y.Chang K.J.Stankewich M.C.Mohler P.J.Rasband M.N.2012. A distal axonal cytoskeleton forms an intra-axonal boundary that controls axon initial segment assemblyCell1491125-1139. 38. Galiano, M.R., Jha, S., Ho, T.S., Zhang, C., Ogawa, Y., Chang, K.J., Stankewich, M.C., Mohler, P.J., and Rasband, M.N. (2012) A distal axonal cytoskeleton forms an intra-axonal boundary that controls axon initial segment assembly. Cell 149:1125–1139.
39.
Gerstner W.Kreiter A.K.Markram H.Herz A.V.1997. Neural codes: firing rates and beyondProc. Natl. Acad. Sci. U. S. A.9412740-12741. 39. Gerstner, W., Kreiter, A.K., Markram, H., and Herz, A.V. (1997) Neural codes: firing rates and beyond. Proc. Natl. Acad. Sci. U. S. A. 94:12740–12741.
40.
Rathbun DLAlitto HJWeyand TGUsrey WM2007. Interspike interval analysis of retinal ganglion cell receptive fieldsJ Neurophysiol98911-919. 40. Rathbun DL, Alitto HJ, Weyand TG, Usrey WM (2007) Interspike interval analysis of retinal ganglion cell receptive fields. J Neurophysiol 98:911–919.
41.
Delcour M.Russier M.Amin M.Baud O.Paban V.Barbe M.F.Coq J.O.2012. Impact of prenatal ischemia on behavior, cognitive abilities and neuroanatomy in adult rats with white matter damageBehav. Brain Res.232233-244. 41. Delcour, M., Russier, M., Amin, M., Baud, O., Paban, V., Barbe, M.F., and Coq, J.O. (2012) Impact of prenatal ischemia on behavior, cognitive abilities and neuroanatomy in adult rats with white matter damage. Behav. Brain Res. 232:233–244.
42.
Cernak I.Wang Z.Jiang J.Bian X.Savic J.2001. Cognitive deficits following blast injury-induced neurotrauma: possible involvement of nitric oxideBrain Inj.15593-612. 42. Cernak, I., Wang, Z., Jiang, J., Bian, X., and Savic, J. (2001) Cognitive deficits following blast injury-induced neurotrauma: possible involvement of nitric oxide. Brain Inj. 15:593–612.
43.
Moochhala S.M.Md S.Lu J.Teng C.H.Greengrass C2004. Neuroprotective role of aminoguanidine in behavioral changes after blast injuryJ. Trauma56393-403. 43. Moochhala, S.M., Md, S., Lu, J., Teng, C.H., and Greengrass C. (2004) Neuroprotective role of aminoguanidine in behavioral changes after blast injury. J. Trauma 56:393–403.
44.
Long J.B.Bentley T.L.Wessner K.A.Cerone C.Sweeney S.Bauman R.A.2009. Blast overpressure in rats: recreating a battlefield injury in the laboratoryJ. Neurotrauma26827-840. 44. Long, J.B., Bentley, T.L., Wessner, K.A., Cerone, C., Sweeney, S., and Bauman, R.A. (2009) Blast overpressure in rats: recreating a battlefield injury in the laboratory. J. Neurotrauma 26:827–840.
45.
Svetlov S.I.Prima V.Glushakova O.Svetlov A.Kirk D.R.Gutierrez H.Serebruany V.L.Curley K.C.Wang K.K.Hayes R.L.2012. Neuro-glial and systemic mechanisms of pathological responses in rat models of primary blast overpressure compared to “composite” blastFront Neurol.315. 45. Svetlov, S.I., Prima, V., Glushakova, O., Svetlov, A., Kirk, D.R., Gutierrez, H., Serebruany, V.L., Curley, K.C., Wang, K.K., Hayes, R.L. (2012) Neuro-glial and systemic mechanisms of pathological responses in rat models of primary blast overpressure compared to “composite” blast. Front Neurol. 3:15.
46.
Iwata A.Stys P.K.Wolf J.A.Chen X.H.Taylor A.G.Meaney D.F.Smith D.H.2004. Traumatic axonal injury induces proteolytic cleavage of the voltage-gated sodium channels modulated by tetrodotoxin and protease inhibitorsJ. Neurosci.244605-4613. 46. Iwata, A., Stys, P.K., Wolf, J.A., Chen, X.H., Taylor, A.G., Meaney, D.F., and Smith, D.H. (2004) Traumatic axonal injury induces proteolytic cleavage of the voltage-gated sodium channels modulated by tetrodotoxin and protease inhibitors. J. Neurosci. 24:4605–4613.
47.
Singleton RHPovlishock JT2004. Identification, characterization of heterogeneous neuronal injury, death in regions of diffuse brain injury: evidence for multiple independent injury phenotypesJ Neurosci243543-3553. 47. Singleton RH, Povlishock JT (2004) Identification and characterization of heterogeneous neuronal injury and death in regions of diffuse brain injury: evidence for multiple independent injury phenotypes. J Neurosci 24:3543–3553.
48.
Hinzman J.Thomas T.C.Quintero J.Gerhardt G.Lifshitz J.2012. Disruptions in the regulation of extracellular glutamate by neurons and glia in the rat striatum two days after diffuse brain injuryJ. Neurotrauma.291197-1208. 48. Hinzman, J., Thomas, T.C., Quintero, J., Gerhardt, G., and Lifshitz, J. (2012) Disruptions in the regulation of extracellular glutamate by neurons and glia in the rat striatum two days after diffuse brain injury. J. Neurotrauma. 29:1197–1208.
49.
Wolf J.A.Stys P.K.Lusardi T.Meaney D.Smith D.H.2001. Traumatic axonal injury induces calcium influx modulated by tetrodotoxin-sensitive sodium channelsJ Neurosci.211923-1930. 49. Wolf, J.A., Stys, P.K., Lusardi, T., Meaney, D., Smith, D.H. (2001) Traumatic axonal injury induces calcium influx modulated by tetrodotoxin-sensitive sodium channels. J Neurosci. 21:1923–1930.
50.
Hedstrom K.L.Ogawa Y.Rasband M.N.2008. AnkyrinG is required for maintenance of the axon initial segment and neu ronal polarityJ. Cell Biol.183635-640. 50. Hedstrom, K.L., Ogawa, Y., and Rasband, M.N. (2008) AnkyrinG is required for maintenance of the axon initial segment and neu ronal polarity. J. Cell Biol. 183:635–640.

Information & Authors

Information

Published In

cover image Journal of Neurotrauma
Journal of Neurotrauma
Volume 30Issue Number 9May 1, 2013
Pages: 741 - 751
PubMed: 23025758

History

Published online: 10 May 2013
Published in print: May 1, 2013
Published ahead of print: 6 February 2013
Published ahead of production: 1 October 2012

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Kelli L. Baalman
Department of Neuroscience, Baylor College of Medicine, Houston, Texas.
R. James Cotton
Department of Neuroscience, Baylor College of Medicine, Houston, Texas.
S. Neil Rasband
Department of Physics and Astronomy, Brigham Young University, Provo, Utah.
Matthew N. Rasband
Department of Neuroscience, Baylor College of Medicine, Houston, Texas.

Notes

Address correspondence to:Matthew N. Rasband, PhDDepartment of NeuroscienceBaylor College of MedicineOne Baylor PlazaHouston, TX 77030E-mail: [email protected]

Author Disclosure Statement

No competing financial interests exist.

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top