Review Article
No access
Published Online: 17 January 2014

Pharmacotherapy of Traumatic Brain Injury: State of the Science and the Road Forward: Report of the Department of Defense Neurotrauma Pharmacology Workgroup

Publication: Journal of Neurotrauma
Volume 31, Issue Number 2

Abstract

Despite substantial investments by government, philanthropic, and commercial sources over the past several decades, traumatic brain injury (TBI) remains an unmet medical need and a major source of disability and mortality in both developed and developing societies. The U.S. Department of Defense neurotrauma research portfolio contains more than 500 research projects funded at more than $700 million and is aimed at developing interventions that mitigate the effects of trauma to the nervous system and lead to improved quality of life outcomes. A key area of this portfolio focuses on the need for effective pharmacological approaches for treating patients with TBI and its associated symptoms. The Neurotrauma Pharmacology Workgroup was established by the U.S. Army Medical Research and Materiel Command (USAMRMC) with the overarching goal of providing a strategic research plan for developing pharmacological treatments that improve clinical outcomes after TBI. To inform this plan, the Workgroup (a) assessed the current state of the science and ongoing research and (b) identified research gaps to inform future development of research priorities for the neurotrauma research portfolio. The Workgroup identified the six most critical research priority areas in the field of pharmacological treatment for persons with TBI. The priority areas represent parallel efforts needed to advance clinical care; each requires independent effort and sufficient investment. These priority areas will help the USAMRMC and other funding agencies strategically guide their research portfolios to ensure the development of effective pharmacological approaches for treating patients with TBI.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Morganti-Kossmann M.C., Yan E., and Bye N. (2010). Animal models of traumatic brain injury: is there an optimal model to reproduce human brain injury in the laboratory? Injury 41, Suppl 1, S10–S13.
2.
O'Connor W.T., Smyth A., and Gilchrist M.D. (2011). Animal models of traumatic brain injury: a critical evaluation. Pharmacol. Ther. 130, 106–113.
3.
Faul M., Xu L., Wald M.M., and Coronado V.G. (2010) Traumatic brain injury in the United States: emergency department visits, hospitalizations, and deaths. Centers for Disease Control and Prevention. National Center for Injury Prevention and Control: Atlanta.
4.
Defense Medical Surveillance System, and Theater Medical Data Store. (2012). DoD Numbers for Traumatic Brain Injury. Available at: www.dvbic.org/dod-worldwide-numbers-tbi. Accessed December 12, 2013.
5.
Food and Drug Administration. (2010). Guidance for Industry: Qualification Process for Drug Development Tools. Available at: www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM230597.pdf. Accessed December 12, 2013.
6.
Chow D.S.L., Teng Y., Toups E.G., Aarabi B., Harrop J.S., Shaffrey C.I., Johnson M.M., Boakye M., Frankowski R.F., Fehlings M.G., and Grossman R.G. (2012). Pharmacology of riluzole in acute spinal cord injury. J. Neurosurg. Spine 17, 129–140.
7.
Lu D., Mahmood A., Qu C., Goussev A., Schallert T., and Chopp M. (2005). Erythropoietin enhances neurogenesis and restores spatial memory in rats after traumatic brain injury. J. Neurotrauma 22, 1011–1017.
8.
Xiong Y., Mahmood A., Zhang Y., Meng Y., Zhang Z.G., Qu C., Sager T.N., and Chopp M. (2011). Effects of posttraumatic carbamylated erythropoietin therapy on reducing lesion volume and hippocampal cell loss, enhancing angiogenesis and neurogenesis, and improving functional outcome in rats following traumatic brain injury. J. Neurosurg. 114, 549–559.
9.
Xiong Y., Mahmood A., Qu C., Kazmi H., Zhang Z.G., Noguchi C.T., Schallert T., and Chopp M. (2010). Erythropoietin improves histological and functional outcomes after traumatic brain injury in mice in the absence of the neural erythropoietin receptor. J. Neurotrauma 27, 205–215.
10.
Atif F., Yousuf S., Sayeed I., Ishrat T., Hua F., and Stein D.G. (2013). Combination treatment with progesterone and vitamin D hormone is more effective than monotherapy in ischemic stroke: The role of BDNF/TrkB/Erk1/2 signaling in neuroprotection. Neuropharmacology 67, 78–87.
11.
Margulies S., and Hicks R. (2009). Combination therapies for traumatic brain injury: prospective considerations. J. Neurotrauma 26, 925–939.
12.
Cardenas D.D., McLean A. Jr, Farrell-Roberts L., Baker L., Brooke M., and Haselkorn J. (1994). Oral physostigmine and impaired memory in adults with brain injury. Brain Inj. 8, 579–587.
13.
McLean A. Jr, Stanton K.M., Cardenas D.D., and Bergerud D.B. (1987). Memory training combined with the use of oral physostigmine. Brain Inj. 1, 145–159.
14.
Ballesteros J., Güemes I., Ibarra N., and Quemada J.I. (2008). The effectiveness of donepezil for cognitive rehabilitation after traumatic brain injury: a systematic review. J. Head Trauma Rehabil. 23, 171–180.
15.
Blount P.J., Nguyen C.D., and McDeavitt J.T. (2002). Clinical use of cholinomimetic agents: a review. J. Head Trauma Rehabil. 17, 314–321.
16.
Bourgeois J.A., Bahadur N., and Minjares S. (2002). Donepezil for cognitive deficits following traumatic brain injury: a case report. J. Neuropsychiatry Clin. Neurosci. 14, 463–464.
17.
Foster M., and Spiegel D.R. (2008). Use of donepezil in the treatment of cognitive impairments of moderate traumatic brain injury. J. Neuropsychiatry Clin. Neurosci. 20, 106.
18.
Fujiki M., Kubo T., Kamida T., Sugita K., Hikawa T., Abe T., Ishii K., and Kobayashi H. (2008). Neuroprotective and antiamnesic effect of donepezil, a nicotinic acetylcholine-receptor activator, on rats with concussive mild traumatic brain injury. J. Clin. Neurosci. 15, 791–796.
19.
Fujiki M., Hikawa T., Abe T., Ishii K., and Kobayashi H. (2006). Reduced short latency afferent inhibition in diffuse axonal injury patients with memory impairment. Neurosci. Lett. 405, 226–230.
20.
Hayashida K., Parker R., and Eisenach J.C. (2007). Oral gabapentin activates spinal cholinergic circuits to reduce hypersensitivity after peripheral nerve injury and interacts synergistically with oral donepezil. Anesthesiology 106, 1213–1219.
21.
Kaye N.S., Townsend J.B. 3rd, and Ivins R. (2003). An open-label trial of donepezil (aricept) in the treatment of persons with mild traumatic brain injury. J. Neuropsychiatry Clin. Neurosci. 15, 383–384.
22.
Khateb A., Ammann J., Annoni J.-M., and Diserens K. (2005). Cognition-enhancing effects of donepezil in traumatic brain injury. Eur. Neurol. 54, 39–45.
23.
Liepert J. (2008). Pharmacotherapy in restorative neurology. Curr. Opin. Neurol. 21, 639–643.
24.
Lombardi F. (2008). Pharmacological treatment of neurobehavioural sequelae of traumatic brain injury. Eur. J. Anaesthesiol. Suppl. 42, 131–136.
25.
Masanic C.A., Bayley M.T., VanReekum R., and Simard M. (2001). Open-label study of donepezil in traumatic brain injury. Arch. Phys. Med. Rehabil. 82, 896–901.
26.
Morey C.E., Cilo M., Berry J., and Cusick C. (2003). The effect of Aricept in persons with persistent memory disorder following traumatic brain injury: a pilot study. Brain Inj. 17, 809–815.
27.
Sugden S.G., Kile S.J., Farrimond D.D., Hilty D.M., and Bourgeois J.A. (2006). Pharmacological intervention for cognitive deficits and aggression in frontal lobe injury. NeuroRehabilitation 21, 3–7.
28.
Taverni J.P., Seliger G., and Lichtman S.W. (1998). Donepezil medicated memory improvement in traumatic brain injury during post acute rehabilitation. Brain Inj. 12, 77–80.
29.
Tenovuo O. (2005). Central acetylcholinesterase inhibitors in the treatment of chronic traumatic brain injury-clinical experience in 111 patients. Prog. Neuropsychopharmacol. Biol. Psychiatry 29, 61–67.
30.
Trovato M., Slomine B., Pidcock F., and Christensen J. (2006). The efficacy of donepezil hydrochloride on memory functioning in three adolescents with severe traumatic brain injury. Brain Inj. 20, 339–343.
31.
Walker W., Seel R., Gibellato M., Lew H., Cornis-Pop M., Jena T., and Silver T. (2004). The effects of Donepezil on traumatic brain injury acute rehabilitation outcomes. Brain Inj. 18, 739–750.
32.
Wheaton P., Mathias J.L., and Vink R. (2011). Impact of pharmacological treatments on cognitive and behavioral outcome in the postacute stages of adult traumatic brain injury: a meta-analysis. J. Clin. Psychopharmacol. 31, 745–757.
33.
Whelan F.J., Walker M.S., and Schultz S.K. (2000). Donepezil in the treatment of cognitive dysfunction associated with traumatic brain injury. Ann. Clin. Psychiatry 12, 131–135.
34.
Whitlock J.A. Jr. (1999). Brain injury, cognitive impairment, and donepezil. J. Head Trauma Rehabil. 14, 424–427.
35.
Zhang L., Plotkin R.C., Wang G., Sandel M.E., and Lee S. (2004). Cholinergic augmentation with donepezil enhances recovery in short-term memory and sustained attention after traumatic brain injury. Arch. Phys. Med. Rehabil. 85, 1050–1055.
36.
Chen Y., Shohami E., Constantini S., and Weinstock M. (1998). Rivastigmine, a brain-selective acetylcholinesterase inhibitor, ameliorates cognitive and motor deficits induced by closed-head injury in the mouse. J. Neurotrauma 15, 231–237.
37.
Noble J.M., and Hauser W.A. (2007). Effects of rivastigmine on cognitive function in patients with traumatic brain injury. Neurology 68, 1749.
38.
Silver J., Koumaras B., Chen M., Mirski D., Potkin S.G., Reyes P., Warden D., Harvey P.D., Arciniegas D., Katz D.I., and Gunay I. (2006). Effects of rivastigmine on cognitive function in patients with traumatic brain injury. Neurology 67, 748–755.
39.
Silver J., Koumaras B., Meng X., Potkin S.G., Reyes P.F., Harvey P.D., Katz D.I., Gunay I., and Arciniegas D.B. (2009). Long-term effects of rivastigmine capsules in patients with traumatic brain injury. Brain Inj. 23, 123–132.
40.
Tenovuo O., Alin J., and Helenius H. (2009). A randomized controlled trial of rivastigmine for chronic sequels of traumatic brain injury-what it showed and taught? Brain Inj. 23, 548–558.
41.
Weinstock M., Kirschbaum-Slager N., Lazarovici P., Bejar C., Youdim M.B., and Shoham S. (2001). Neuroprotective effects of novel cholinesterase inhibitors derived from rasagiline as potential anti-Alzheimer drugs. Ann. N. Y. Acad. Sci. 939, 148–161.
42.
Chen Y., Shohami E., Bass R., and Weinstock M. (1998). Cerebro-protective effects of ENA713, a novel acetylcholinesterase inhibitor, in closed head injury in the rat. Brain Res. 784, 18–24.
43.
Zhang H.Y., Yan H., and Tang X.C. (2008). Non-cholinergic effects of huperzine A: beyond inhibition of acetylcholinesterase. Cell. Mol. Neurobiol. 28, 173–183.
44.
Wang Y., Tang X.C., and Zhang H.Y. (2012). Huperzine A alleviates synaptic deficits and modulates amyloidogenic and nonamyloidogenic pathways in APPswe/PS1dE9 transgenic mice. J. Neurosci. Res. 90, 508–517.
45.
Fan Y., Hu J., Li J., Yang Z., Xin X., Wang J., Ding J., and Geng M. (2005). Effect of acidic oligosaccharide sugar chain on scopolamine-induced memory impairment in rats and its related mechanisms. Neurosci. Lett. 374, 222–226.
46.
Wang L.S., Zhou J., Shao X.M., and Tang X.C. (2002). Huperzine A attenuates cognitive deficits and brain injury in neonatal rats after hypoxia-ischemia. Brain Res. 949, 162–170.
47.
Li J., Wu H.M., Zhou R.L., Liu G.J., and Dong B.R. (2008). Huperzine A for Alzheimer's disease. Cochrane Database Syst Rev, CD005592.
48.
Amen D.G., Wu J.C., Taylor D., and Willeumier K. (2011). Reversing brain damage in former NFL players: implications for traumatic brain injury and substance abuse rehabilitation. J. Psychoactive Drugs 43, 1–5.
49.
Bales J.W., Wagner A.K., Kline A.E., and Dixon C.E. (2009). Persistent cognitive dysfunction after traumatic brain injury: A dopamine hypothesis. Neurosci. Biobehav. Rev. 33, 981–1003.
50.
Gianutsos G., Chute S., and Dunn J.P. (1985). Pharmacological changes in dopaminergic systems induced by long-term administration of amantadine. Eur. J. Pharmacol. 110, 357–361.
51.
Stoof J.C., Booij J., and Drukarch B. (1992). Amantadine as N-methyl-D-aspartic acid receptor antagonist: new possibilities for therapeutic applications? Clin. Neurol. Neurosurg. 94.Suppl, S4–S6.
52.
Dixon C.E., Kraus M.F., Kline A.E., Ma X., Yan H.Q., Griffith R.G., Wolfson B.M., and Marion D.W. (1999). Amantadine improves water maze performance without affecting motor behavior following traumatic brain injury in rats. Restor. Neurol. Neurosci. 14, 285–294.
53.
Meythaler J.M., Brunner R.C., Johnson A., and Novack T.A. (2002). Amantadine to improve neurorecovery in traumatic brain injury-associated diffuse axonal injury: a pilot double-blind randomized trial. J. Head Trauma Rehabil. 17, 300–313.
54.
Schneider W.N., Drew-Cates J., Wong T.M., and Dombovy M.L. (1999). Cognitive and behavioural efficacy of amantadine in acute traumatic brain injury: an initial double-blind placebo-controlled study. Brain Inj. 13, 863–872.
55.
Whyte J., Katz D., Long D., DiPasquale M.C., Polansky M., Kalmar K., Giacino J., Childs N., Mercer W., Novak P., Maurer P., and Eifert B. (2005). Predictors of outcome in prolonged posttraumatic disorders of consciousness and assessment of medication effects: A multicenter study. Arch. Phys. Med. Rehabil. 86, 453–462.
56.
Giacino J.T., Whyte J., Bagiella E., Kalmar K., Childs N., Khademi A., Eifert B., Long D., Katz D.I., Cho S., Yablon S.A., Luther M., Hammond F.M., Nordenbo A., Novak P., Mercer W., Maurer-Karattup P., and Sherer M. (2012). Placebo-controlled trial of amantadine for severe traumatic brain injury. N. Engl. J. Med. 366, 819–826.
57.
Brustovetsky N., and Dubinsky J.M. (2000). Limitations of cyclosporin A inhibition of the permeability transition in CNS mitochondria. J. Neurosci. 20, 8229–8237.
58.
Sharov V.G., Todor A., Khanal S., Imai M., and Sabbah H.N. (2007). Cyclosporine A attenuates mitochondrial permeability transition and improves mitochondrial respiratory function in cardiomyocytes isolated from dogs with heart failure. J. Mol. Cell. Cardiol. 42, 150–158.
59.
Alessandri B., Rice A.C., Levasseur J., DeFord M., Hamm R.J., and Bullock M.R. (2002). Cyclosporin A improves brain tissue oxygen consumption and learning/memory performance after lateral fluid percussion injury in rats. J. Neurotrauma 19, 829–841.
60.
Büki A., Okonkwo D.O., and Povlishock J.T. (1999). Postinjury cyclosporin A administration limits axonal damage and disconnection in traumatic brain injury. J. Neurotrauma 16, 511–521.
61.
Colley B.S., Phillips L.L., and Reeves T.M. (2010). The effects of cyclosporin-A on axonal conduction deficits following traumatic brain injury in adult rats. Exp. Neurol. 224, 241–251.
62.
Kilbaugh T.J., Bhandare S., Lorom D.H., Saraswati M., Robertson C.L., and Margulies S.S. (2011). Cyclosporin A preserves mitochondrial function after traumatic brain injury in the immature rat and piglet. J. Neurotrauma 28, 763–774.
63.
Mbye L.H.A.N., Singh I.N., Carrico K.M., Saatman K.E., and Hall E.D. (2009). Comparative neuroprotective effects of cyclosporin A and NIM811, a nonimmunosuppressive cyclosporin A analog, following traumatic brain injury. J. Cereb. Blood Flow Metab. 29, 87–97.
64.
Okonkwo D.O., and Povlishock J.T. (1999). An intrathecal bolus of cyclosporin A before injury preserves mitochondrial integrity and attenuates axonal disruption in traumatic brain injury. J. Cereb. Blood Flow Metab. 19, 443–451.
65.
Okonkwo D.O., Melon D.E., Pellicane A.J., Mutlu L.K., Rubin D.G., Stone J.R., and Helm G.A. (2003). Dose-response of cyclosporin A in attenuating traumatic axonal injury in rat. Neuroreport 14, 463–466.
66.
Scheff S.W., and Sullivan P.G. (1999). Cyclosporin A significantly ameliorates cortical damage following experimental traumatic brain injury in rodents. J. Neurotrauma 16, 783–792.
67.
Setkowicz Z., and Guzik R. (2007). Injections of vehicle, but not cyclosporin A or tacrolimus (FK506), afford neuroprotection following injury in the developing rat brain. Acta Neurobiol. Exp. (Wars) 67, 399–409.
68.
Signoretti S., Marmarou A., Tavazzi B., Dunbar J., Amorini A.M., Lazzarino G., and Vagnozzi R. (2004). The protective effect of cyclosporin A upon N-acetylaspartate and mitochondrial dysfunction following experimental diffuse traumatic brain injury. J. Neurotrauma 21, 1154–1167.
69.
Suehiro E., and Povlishock J.T. (2001). Exacerbation of traumatically induced axonal injury by rapid posthypothermic rewarming and attenuation of axonal change by cyclosporin A. J. Neurosurg. 94, 493–498.
70.
Sullivan P.G., Thompson M.B., and Scheff S.W. (1999). Cyclosporin A attenuates acute mitochondrial dysfunction following traumatic brain injury. Exp. Neurol. 160, 226–234.
71.
Sullivan P.G., Thompson M., and Scheff S.W. (2000). Continuous infusion of cyclosporin A postinjury significantly ameliorates cortical damage following traumatic brain injury. Exp. Neurol. 161, 631–637.
72.
Sullivan P.G., Rabchevsky A.G., Hicks R.R., Gibson T.R., Fletcher-Turner A., and Scheff S.W. (2000). Dose-response curve and optimal dosing regimen of cyclosporin A after traumatic brain injury in rats. Neuroscience 101, 289–295.
73.
Sullivan P.G., Sebastian A.H., and Hall E.D. (2011). Therapeutic window analysis of the neuroprotective effects of cyclosporine A after traumatic brain injury. J. Neurotrauma 28, 311–318.
74.
Turkoglu O.F., Eroglu H., Gurcan O., Bodur E., Sargon M.F., Oner L., and Beskonakli E. (2010). Local administration of chitosan microspheres after traumatic brain injury in rats: a new challenge for cyclosporine–a delivery. Br. J. Neurosurg. 24, 578–583.
75.
Van Den Heuvel C., Donkin J.J., Finnie J.W., Blumbergs P.C., Kuchel T., Koszyca B., Manavis J., Jones N.R., Reilly P.L., and Vink R. (2004). Downregulation of amyloid precursor protein (APP) expression following post-traumatic cyclosporin-A administration. J. Neurotrauma 21, 1562–1572.
76.
Singleton R.H., Stone J.R., Okonkwo D.O., Pellicane A.J., and Povlishock J.T. (2001). The immunophilin ligand FK506 attenuates axonal injury in an impact-acceleration model of traumatic brain injury. J. Neurotrauma 18, 607–614.
77.
Campbell J.N., Register D., and Churn S.B. (2012). Traumatic brain injury causes an FK506-sensitive loss and an overgrowth of dendritic spines in rat forebrain. J. Neurotrauma 29, 201–217.
78.
Oda Y., Gao G., Wei E.P., and Povlishock J.T. (2011). Combinational therapy using hypothermia and the immunophilin ligand FK506 to target altered pial arteriolar reactivity, axonal damage, and blood-brain barrier dysfunction after traumatic brain injury in rat. J. Cereb. Blood Flow Metab. 31, 1143–1154.
79.
Piilgaard H., Witgen B.M., Rasmussen P., and Lauritzen M. (2011). Cyclosporine A, FK506, and NIM811 ameliorate prolonged CBF reduction and impaired neurovascular coupling after cortical spreading depression. J. Cereb. Blood Flow Metab. 31, 1588–1598.
80.
Rhodes J.K.J., Sharkey J., and Andrews P.J.D. (2009). The temporal expression, cellular localization, and inhibition of the chemokines MIP-2 and MCP-1 after traumatic brain injury in the rat. J. Neurotrauma 26, 507–525.
81.
Saganová K., Gálik J., Blaško J., Korimová A., Račeková E., and Vanický I. (2012). Immunosuppressant FK506: focusing on neuroprotective effects following brain and spinal cord injury. Life Sci. 91, 77–82.
82.
Abdel Baki S.G., Schwab B., Haber M., Fenton A.A., and Bergold P.J. (2010). Minocycline synergizes with N-acetylcysteine and improves cognition and memory following traumatic brain injury in rats. PLoS ONE 5, e12490.
83.
Gijtenbeek J.M., van den Bent M.J., and Vecht C.J. (1999). Cyclosporine neurotoxicity: a review. J. Neurol. 246, 339–346.
84.
Grimbert P., Azema C., Pastural M., Dhamane D., Remy P., Salomon L., Schortgen F., Baron C., and Lang P. (1999). Tacrolimus (FK506)-induced severe and late encephalopathy in a renal transplant recipient. Nephrol. Dial. Transplant. 14, 2489–2491.
85.
Wijdicks E.F., Plevak D.J., Wiesner R.H., and Steers J.L. (1996). Causes and outcome of seizures in liver transplant recipients. Neurology 47, 1523–1525.
86.
Empey P.E., McNamara P.J., Young B., Rosbolt M.B., and Hatton J. (2006). Cyclosporin A disposition following acute traumatic brain injury. J. Neurotrauma 23, 109–116.
87.
Mazzeo A.T., Kunene N.K., Gilman C.B., Hamm R.J., Hafez N., and Bullock M.R. (2006). Severe human traumatic brain injury, but not cyclosporin a treatment, depresses activated T lymphocytes early after injury. J. Neurotrauma 23, 962–975.
88.
Mazzeo A.T., Alves O.L., Gilman C.B., Hayes R.L., Tolias C., Niki Kunene K., and Ross Bullock M. (2008). Brain metabolic and hemodynamic effects of cyclosporin A after human severe traumatic brain injury: a microdialysis study. Acta Neurochir. (Wien) 150, 1019–1031.
89.
Hatton J., Rosbolt B., Empey P., Kryscio R., and Young B. (2008). Dosing and safety of cyclosporine in patients with severe brain injury. J. Neurosurg. 109, 699–707.
90.
Mazzeo A.T., Brophy G.M., Gilman C.B., Alves O.L., Robles J.R., Hayes R.L., Povlishock J.T., and Bullock M.R. (2009). Safety and tolerability of cyclosporin a in severe traumatic brain injury patients: results from a prospective randomized trial. J. Neurotrauma 26, 2195–2206.
91.
Akdemir Ozisik P., Oruckaptan H., Ozdemir Geyik P., Misirlioglu M., Sargon M.F., Kilinc K., and Ozgen T. (2007). Effect of erythropoietin on brain tissue after experimental head trauma in rats. Surg Neurol 68, 547–555.
92.
Bian X., Yuan X., and Qi C. (2010). Effect of recombinant human erythropoietin on serum S100B protein and interleukin-6 levels after traumatic brain injury in the rat. Neurol. Med. Chir. (Tokyo) 50, 361–366.
93.
Chauhan N.B., and Gatto R. (2010). Synergistic benefits of erythropoietin and simvastatin after traumatic brain injury. Brain Res. 1360, 177–192.
94.
Chen G., Shi J.X., Hang C.H., Xie W., Liu J., and Liu X. (2007). Inhibitory effect on cerebral inflammatory agents that accompany traumatic brain injury in a rat model: a potential neuroprotective mechanism of recombinant human erythropoietin (rhEPO). Neurosci. Lett. 425, 177–182.
95.
Cherian L., Goodman J.C., and Robertson C. (2007). Neuroprotection with erythropoietin administration following controlled cortical impact injury in rats. J. Pharmacol. Exp. Ther. 322, 789–794.
96.
Cherian L., Goodman J.C., and Robertson C. (2011). Improved cerebrovascular function and reduced histological damage with darbepoietin alfa administration after cortical impact injury in rats. J. Pharmacol. Exp. Ther. 337, 451–456.
97.
Hartley C.E., Varma M., Fischer J.P., Riccardi R., Strauss J.A., Shah S., Zhang S., and Yang Z.-J. (2008). Neuroprotective effects of erythropoietin on acute metabolic and pathological changes in experimentally induced neurotrauma. J. Neurosurg. 109, 708–714.
98.
Jin W., Kong J., Lu T., Wang H., Ni H., Wu J., Dai Y., Jiang J., and Liang W. (2011). Erythropoietin prevents secondary brain injury induced by cortical lesion in mice: possible involvement of Nrf2 signaling pathway. Ann. Clin. Lab. Sci. 41, 25–32.
99.
Liao Z.B., Jiang G.Y., Tang Z.H., Zhi X.G., Sun X.C., Tang W.Y., and Wu M.J. (2009). Erythropoietin can promote survival of cerebral cells by downregulating Bax gene after traumatic brain injury in rats. Neurol. India 57, 722–728.
100.
Lieutaud T., Andrews P.J.D., Rhodes J.K.J., and Williamson R. (2008). Characterization of the pharmacokinetics of human recombinant erythropoietin in blood and brain when administered immediately after lateral fluid percussion brain injury and its pharmacodynamic effects on IL-1beta and MIP-2 in rats. J. Neurotrauma 25, 1179–1185.
101.
Oztürk E., Demirbilek S., Köroğlu A., But A., Begeç Z.O., Gülec M., Akyol O., and Ersoy M.O. (2008). Propofol and erythropoietin antioxidant properties in rat brain injured tissue. Prog. Neuropsychopharmacol. Biol. Psychiatry 32, 81–86.
102.
Valable S., Francony G., Bouzat P., Fevre M.-C., Mahious N., Bouet V., Farion R., Barbier E., Lahrech H., Remy C., Petit E., Segebarth C., Bernaudin M., and Payen J.-F. (2010). The impact of erythropoietin on short-term changes in phosphorylation of brain protein kinases in a rat model of traumatic brain injury. J. Cereb. Blood Flow Metab. 30, 361–369.
103.
Verdonck O., Lahrech H., Francony G., Carle O., Farion R., Van de Looij Y., Remy C., Segebarth C., and Payen J.-F. (2007). Erythropoietin protects from post-traumatic edema in the rat brain. J. Cereb. Blood Flow Metab. 27, 1369–1376.
104.
Xiong Y., Chopp M., and Lee C.-P. (2009). Erythropoietin improves brain mitochondrial function in rats after traumatic brain injury. Neurol. Res. 31, 496–502.
105.
Xiong Y., Lu D., Qu C., Goussev A., Schallert T., Mahmood A., and Chopp M. (2008). Effects of erythropoietin on reducing brain damage and improving functional outcome after traumatic brain injury in mice. J. Neurosurg. 109, 510–521.
106.
Xiong Y., Mahmood A., Lu D., Qu C., Kazmi H., Goussev A., Zhang Z.G., Noguchi C.T., Schallert T., and Chopp M. (2008). Histological and functional outcomes after traumatic brain injury in mice null for the erythropoietin receptor in the central nervous system. Brain Res. 1230, 247–257.
107.
Xiong Y., Mahmood A., Meng Y., Zhang Y., Qu C., Schallert T., and Chopp M. (2010). Delayed administration of erythropoietin reducing hippocampal cell loss, enhancing angiogenesis and neurogenesis, and improving functional outcome following traumatic brain injury in rats: comparison of treatment with single and triple dose. J. Neurosurg. 113, 598–608.
108.
Yatsiv I., Grigoriadis N., Simeonidou C., Stahel P.F., Schmidt O.I., Alexandrovitch A.G., Tsenter J., and Shohami E. (2005). Erythropoietin is neuroprotective, improves functional recovery, and reduces neuronal apoptosis and inflammation in a rodent model of experimental closed head injury. FASEB J. 19, 1701–1703.
109.
Zhang Y., Xiong Y., Mahmood A., Meng Y., Qu C., Schallert T., and Chopp M. (2009). Therapeutic effects of erythropoietin on histological and functional outcomes following traumatic brain injury in rats are independent of hematocrit. Brain Res. 1294, 153–164.
110.
Zhang Y., Xiong Y., Mahmood A., Meng Y., Liu Z., Qu C., and Chopp M. (2010). Sprouting of corticospinal tract axons from the contralateral hemisphere into the denervated side of the spinal cord is associated with functional recovery in adult rat after traumatic brain injury and erythropoietin treatment. Brain Res. 1353, 249–257.
111.
Gonzalez F.F., McQuillen P., Mu D., Chang Y., Wendland M., Vexler Z., and Ferriero D.M. (2007). Erythropoietin enhances long-term neuroprotection and neurogenesis in neonatal stroke. Dev. Neurosci. 29, 321–330.
112.
Ehrenreich H., Weissenborn K., Prange H., Schneider D., Weimar C., Wartenberg K., Schellinger P.D., Bohn M., Becker H., Wegrzyn M., Jähnig P., Herrmann M., Knauth M., Bähr M., Heide W., Wagner A., Schwab S., Reichmann H., Schwendemann G., Dengler R., Kastrup A., and Bartels C. (2009). Recombinant human erythropoietin in the treatment of acute ischemic stroke. Stroke 40, e647–656.
113.
Tseng M.-Y., Hutchinson P.J., Richards H.K., Czosnyka M., Pickard J.D., Erber W.N., Brown S., and Kirkpatrick P.J. (2009). Acute systemic erythropoietin therapy to reduce delayed ischemic deficits following aneurysmal subarachnoid hemorrhage: a Phase II randomized, double-blind, placebo-controlled trial. Clinical article. J. Neurosurg. 111, 171–180.
114.
Heeschen C., Aicher A., Lehmann R., Fichtlscherer S., Vasa M., Urbich C., Mildner-Rihm C., Martin H., Zeiher A.M., and Dimmeler S. (2003). Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood 102, 1340–1346.
115.
Miskowiak K.W., Vinberg M., Harmer C.J., Ehrenreich H., Knudsen G.M., Macoveanu J., Hansen A.R., Paulson O.B., Siebner H.R., and Kessing L.V. (2010). Effects of erythropoietin on depressive symptoms and neurocognitive deficits in depression and bipolar disorder. Trials 11, 97.
116.
Wüstenberg T., Begemann M., Bartels C., Gefeller O., Stawicki S., Hinze-Selch D., Mohr A., Falkai P., Aldenhoff J.B., Knauth M., Nave K.-A., and Ehrenreich H. (2011). Recombinant human erythropoietin delays loss of gray matter in chronic schizophrenia. Mol. Psychiatry 16, 26–36, 1.
117.
Simard J.M., Woo S.K., Schwartzbauer G.T., and Gerzanich V. (2012). Sulfonylurea receptor 1 in central nervous system injury: a focused review. J. Cereb. Blood Flow Metab. 32, 1699–1717.
118.
Simard J.M., Kilbourne M., Tsymbalyuk O., Tosun C., Caridi J., Ivanova S., Keledjian K., Bochicchio G., and Gerzanich V. (2009). Key role of sulfonylurea receptor 1 in progressive secondary hemorrhage after brain contusion. J. Neurotrauma 26, 2257–2267.
119.
Patel A.D., Gerzanich V., Geng Z., and Simard J.M. (2010). Glibenclamide reduces hippocampal injury and preserves rapid spatial learning in a model of traumatic brain injury. J. Neuropathol. Exp. Neurol. 69, 1177–1190.
120.
Ortega F.J., Gimeno-Bayon J., Espinosa-Parrilla J.F., Carrasco J.L., Batlle M., Pugliese M., Mahy N., and Rodríguez M.J. (2012). ATP-dependent potassium channel blockade strengthens microglial neuroprotection after hypoxia-ischemia in rats. Exp. Neurol. 235, 282–296.
121.
Kunte H., Schmidt S., Eliasziw M., del Zoppo G.J., Simard J.M., Masuhr F., Weih M., and Dirnagl U. (2007). Sulfonylureas improve outcome in patients with type 2 diabetes and acute ischemic stroke. Stroke 38, 2526–2530.
122.
Benvenga S., Campenní A., Ruggeri R.M., and Trimarchi F. (2000). Clinical review 113: Hypopituitarism secondary to head trauma. J. Clin. Endocrinol. Metab. 85, 1353–1361.
123.
Berg C., Oeffner A., Schumm-Draeger P.-M., Badorrek F., Brabant G., Gerbert B., Bornstein S., Zimmermann A., Weber M., Broecker-Preuss M., Mann K., and Herrmann B.L. (2010). Prevalence of anterior pituitary dysfunction in patients following traumatic brain injury in a German multi-centre screening program. Exp. Clin. Endocrinol. Diabetes 118, 139–144.
124.
Kelly D.F., Gonzalo I.T., Cohan P., Berman N., Swerdloff R., and Wang C. (2000). Hypopituitarism following traumatic brain injury and aneurysmal subarachnoid hemorrhage: a preliminary report. J. Neurosurg. 93, 743–752.
125.
Lieberman S.A., Oberoi A.L., Gilkison C.R., Masel B.E., and Urban R.J. (2001). Prevalence of neuroendocrine dysfunction in patients recovering from traumatic brain injury. J. Clin. Endocrinol. Metab. 86, 2752–2756.
126.
Urban R.J. (2006). Hypopituitarism after acute brain injury. Growth Horm. IGF Res. 16, Suppl A, S25–S29.
127.
Wilkinson C.W., Pagulayan K.F., Petrie E.C., Mayer C.L., Colasurdo E.A., Shofer J.B., Hart K.L., Hoff D., Tarabochia M.A., and Peskind E.R. (2012). High prevalence of chronic pituitary and target-organ hormone abnormalities after blast-related mild traumatic brain injury. Front. Neurol. 3, 11.
128.
Giordano G., Aimaretti G., and Ghigo E. (2005). Variations of pituitary function over time after brain injuries: the lesson from a prospective study. Pituitary 8, 227–231.
129.
Saatman K.E., Contreras P.C., Smith D.H., Raghupathi R., McDermott K.L., Fernandez S.C., Sanderson K.L., Voddi M., and McIntosh T.K. (1997). Insulin-like growth factor-1 (IGF-1) improves both neurological motor and cognitive outcome following experimental brain injury. Exp. Neurol. 147, 418–427.
130.
Doulah A.H., Rohani A.H., Khaksari Haddad M., Motamedi F., Farbood Y., Badavi M., Malek M., and Sarkaki A. (2009). The effect of peripheral administration of growth hormone on AD-like cognitive deficiency in NBM-lesioned rats. Neurosci. Lett. 466, 47–51.
131.
Svensson J., Diez M., Engel J., Wass C., Tivesten A., Jansson J.-O., Isaksson O., Archer T., Hökfelt T., and Ohlsson C. (2006). Endocrine, liver-derived IGF-I is of importance for spatial learning and memory in old mice. J. Endocrinol. 189, 617–627.
132.
Thum T., Hoeber S., Froese S., Klink I., Stichtenoth D.O., Galuppo P., Jakob M., Tsikas D., Anker S.D., Poole-Wilson P.A., Borlak J., Ertl G., and Bauersachs J. (2007). Age-dependent impairment of endothelial progenitor cells is corrected by growth-hormone-mediated increase of insulin-like growth-factor-1. Circ. Res. 100, 434–443.
133.
Creyghton W.M., van Dam P.S., and Koppeschaar H.P.F. (2004). The role of the somatotropic system in cognition and other cerebral functions. Semin. Vasc. Med. 4, 167–172.
134.
Ling F.A., Hui D.Z., and Ji S.M. (2007). Protective effect of recombinant human somatotropin on amyloid beta-peptide induced learning and memory deficits in mice. Growth Horm. IGF Res. 17, 336–341.
135.
Barlind A., Karlsson N., Åberg N.D., Björk-Eriksson T., Blomgren K., and Isgaard J. (2010). The growth hormone secretagogue hexarelin increases cell proliferation in neurogenic regions of the mouse hippocampus. Growth Horm. IGF Res. 20, 49–54.
136.
Sanders E.J., Lin W.-Y., Parker E., and Harvey S. (2010). Growth hormone expression and neuroprotective activity in a quail neural retina cell line. Gen. Comp. Endocrinol. 165, 111–119.
137.
Sanders E.J., Parker E., and Harvey S. (2008). Growth hormone-mediated survival of embryonic retinal ganglion cells: signaling mechanisms. Gen. Comp. Endocrinol. 156, 613–621.
138.
Demling R.H. (2005). The role of anabolic hormones for wound healing in catabolic states. J. Burns Wounds 4,e2.
139.
Herndon D.N., Barrow R.E., Kunkel K.R., Broemeling L., and Rutan R.L. (1990). Effects of recombinant human growth hormone on donor-site healing in severely burned children. Ann. Surg. 212, 424–431.
140.
Luo X., Cen Y., Yu R., and Zhao J. (2000). Effectiveness of recombinant human growth hormone treatment for severe burn injury. Hua Xi Yi Ke Da Xue Xue Bao 31, 399–401.
141.
Devesa J., Reimunde P., Devesa P., Barberá M., and Arce V. (2013). Growth hormone (GH) and brain trauma. Horm. Behav. 63, 331–344.
142.
High W.M. Jr, Briones-Galang M., Clark J.A., Gilkison C., Mossberg K.A., Zgaljardic D.J., Masel B.E., and Urban R.J. (2010). Effect of growth hormone replacement therapy on cognition after traumatic brain injury. J. Neurotrauma 27, 1565–1575.
143.
Reimunde P., Quintana A., Castañón B., Casteleiro N., Vilarnovo Z., Otero A., Devesa A., Otero-Cepeda X.L., and Devesa J. (2011). Effects of growth hormone (GH) replacement and cognitive rehabilitation in patients with cognitive disorders after traumatic brain injury. Brain Inj. 25, 65–73.
144.
Demling R. (1999). Growth hormone therapy in critically ill patients. N. Engl. J. Med. 341, 837–839.
145.
Takala J., Ruokonen E., Webster N.R., Nielsen M.S., Zandstra D.F., Vundelinckx G., and Hinds C.J. (1999). Increased mortality associated with growth hormone treatment in critically ill adults. N. Engl. J. Med. 341, 785–792.
146.
Shapira M., Licht A., Milman A., Pick C.G., Shohami E., and Eldar-Finkelman H. (2007). Role of glycogen synthase kinase-3beta in early depressive behavior induced by mild traumatic brain injury. Mol. Cell. Neurosci. 34, 571–577.
147.
Yu F., Zhang Y., and Chuang D.-M. (2012). Lithium reduces BACE1 overexpression, beta amyloid accumulation, and spatial learning deficits in mice with traumatic brain injury. J. Neurotrauma 29, 2342–2351.
148.
Yu F., Wang Z., Tchantchou F., Chiu C.-T., Zhang Y., and Chuang D.-M. (2012). Lithium ameliorates neurodegeneration, suppresses neuroinflammation, and improves behavioral performance in a mouse model of traumatic brain injury. J. Neurotrauma 29, 362–374.
149.
Zhu Z.-F., Wang Q.-G., Han B.-J., and William C.P. (2010). Neuroprotective effect and cognitive outcome of chronic lithium on traumatic brain injury in mice. Brain Res. Bull. 83, 272–277.
150.
Dash P.K., Johnson D., Clark J., Orsi S.A., Zhang M., Zhao J., Grill R.J., Moore A.N., and Pati S. (2011). Involvement of the glycogen synthase kinase-3 signaling pathway in TBI pathology and neurocognitive outcome. PLoS ONE 6,e24648.
151.
Bellus S.B., Stewart D., Vergo J.G., Kost P.P., Grace J., and Barkstrom S.R. (1996). The use of lithium in the treatment of aggressive behaviours with two brain-injured individuals in a state psychiatric hospital. Brain Inj. 10, 849–860.
152.
Glenn M.B., Wroblewski B., Parziale J., Levine L., Whyte J., and Rosenthal M. (1989). Lithium carbonate for aggressive behavior or affective instability in ten brain-injured patients. Am. J. Phys. Med. Rehabil. 68, 221–226.
153.
Haas J.F., and Cope D.N. (1985). Neuropharmacologic management of behavior sequelae in head injury: a case report. Arch. Phys. Med. Rehabil. 66, 472–474.
154.
Hale M.S., and Donaldson J.O. (1982). Lithium carbonate in the treatment of organic brain syndrome. J. Nerv. Ment. Dis. 170, 362–365.
155.
Parmelee D.X., and O'Shanick G.J. (1988). Carbamazepine-lithium toxicity in brain-damaged adolescents. Brain Inj. 2, 305–308.
156.
Schiff H.B., Sabin T.D., Geller A., Alexander L., and Mark V. (1982). Lithium in aggressive behavior. Am. J. Psychiatry. 139, 1346–1348.
157.
Moeller S.J., Honorio J., Tomasi D., Parvaz M.A., Woicik P.A., Volkow N.D., and Goldstein R.Z. (2012). Methylphenidate enhances executive function and optimizes prefrontal function in both health and cocaine addiction. Cereb. Cortex Epub ahead of print.
158.
Volkow N.D., Wang G.J., Fowler J.S., Gatley S.J., Logan J., Ding Y.S., Hitzemann R., and Pappas N. (1998). Dopamine transporter occupancies in the human brain induced by therapeutic doses of oral methylphenidate. Am. J. Psychiatry 155, 1325–1331.
159.
Volkow N.D., Wang G., Fowler J.S., Logan J., Gerasimov M., Maynard L., Ding Y., Gatley S.J., Gifford A., and Franceschi D. (2001). Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain. J. Neurosci. 21,RC121.
160.
Volkow N.D., Fowler J.S., Wang G., Ding Y., and Gatley S.J. (2002). Mechanism of action of methylphenidate: insights from PET imaging studies. J. Atten. Disord. 6, Suppl 1, S31–S43.
161.
Volkow N.D., Wang G.-J., Fowler J.S., Logan J., Franceschi D., Maynard L., Ding Y.-S., Gatley S.J., Gifford A., Zhu W., and Swanson J.M. (2002). Relationship between blockade of dopamine transporters by oral methylphenidate and the increases in extracellular dopamine: therapeutic implications. Synapse 43, 181–187.
162.
Volkow N.D., Wang G.-J., Tomasi D., Kollins S.H., Wigal T.L., Newcorn J.H., Telang F.W., Fowler J.S., Logan J., Wong C.T., and Swanson J.M. (2012). Methylphenidate-elicited dopamine increases in ventral striatum are associated with long-term symptom improvement in adults with attention deficit hyperactivity disorder. J. Neurosci. 32, 841–849.
163.
Koda K., Ago Y., Cong Y., Kita Y., Takuma K., and Matsuda T. (2010). Effects of acute and chronic administration of atomoxetine and methylphenidate on extracellular levels of noradrenaline, dopamine and serotonin in the prefrontal cortex and striatum of mice. J. Neurochem. 114, 259–270.
164.
Marsteller D.A., Gerasimov M.R., Schiffer W.K., Geiger J.M., Barnett C.R., Schaich Borg J., Scott S., Ceccarelli J., Volkow N.D., Molina P.E., Alexoff D.L., and Dewey S.L. (2002). Acute handling stress modulates methylphenidate-induced catecholamine overflow in the medial prefrontal cortex. Neuropsychopharmacology 27, 163–170.
165.
Swanson C.J., Perry K.W., Koch-Krueger S., Katner J., Svensson K.A., and Bymaster F.P. (2006). Effect of the attention deficit/hyperactivity disorder drug atomoxetine on extracellular concentrations of norepinephrine and dopamine in several brain regions of the rat. Neuropharmacology 50, 755–760.
166.
Bymaster F.P., Katner J.S., Nelson D.L., Hemrick-Luecke S.K., Threlkeld P.G., Heiligenstein J.H., Morin S.M., Gehlert D.R., and Perry K.W. (2002). Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 27, 699–711.
167.
Wagner A.K., Drewencki L.L., Chen X., Santos F.R., Khan A.S., Harun R., Torres G.E., Michael A.C., and Dixon C.E. (2009). Chronic methylphenidate treatment enhances striatal dopamine neurotransmission after experimental traumatic brain injury. J. Neurochem. 108, 986–997.
168.
Wagner A.K., Sokoloski J.E., Chen X., Harun R., Clossin D.P., Khan A.S., Andes-Koback M., Michael A.C., and Dixon C.E. (2009). Controlled cortical impact injury influences methylphenidate-induced changes in striatal dopamine neurotransmission. J. Neurochem. 110, 801–810.
169.
Wagner A.K., Kline A.E., Ren D., Willard L.A., Wenger M.K., Zafonte R.D., and Dixon C.E. (2007). Gender associations with chronic methylphenidate treatment and behavioral performance following experimental traumatic brain injury. Behav. Brain Res. 181, 200–209.
170.
Kline A.E., Yan H.Q., Bao J., Marion D.W., and Dixon C.E. (2000). Chronic methylphenidate treatment enhances water maze performance following traumatic brain injury in rats. Neurosci. Lett. 280, 163–166.
171.
Reid W.M., and Hamm R.J. (2008). Post-injury atomoxetine treatment improves cognition following experimental traumatic brain injury. J. Neurotrauma 25, 248–256.
172.
Alban J.P., Hopson M.M., Ly V., and Whyte J. (2004). Effect of methylphenidate on vital signs and adverse effects in adults with traumatic brain injury. Am. J. Phys. Med. Rehabil. 83, 131–137.
173.
Willmott C., and Ponsford J. (2009). Efficacy of methylphenidate in the rehabilitation of attention following traumatic brain injury: a randomised, crossover, double blind, placebo controlled inpatient trial. J. Neurol. Neurosurg. Psychiatr. 80, 552–557.
174.
Kim J., Whyte J., Patel S., Europa E., Wang J., Coslett H.B., and Detre J.A. (2012). Methylphenidate modulates sustained attention and cortical activation in survivors of traumatic brain injury: a perfusion fMRI study. Psychopharmacology (Berl.) 222, 47–57.
175.
Whyte J., Hart T., Schuster K., Fleming M., Polansky M., and Coslett H.B. (1997). Effects of methylphenidate on attentional function after traumatic brain injury. A randomized, placebo-controlled trial. Am. J. Phys. Med. Rehabil. 76, 440–450.
176.
Whyte J., Hart T., Vaccaro M., Grieb-Neff P., Risser A., Polansky M., and Coslett H.B. (2004). Effects of methylphenidate on attention deficits after traumatic brain injury: a multidimensional, randomized, controlled trial. Am. J. Phys. Med. Rehabil. 83, 401–420.
177.
Plenger P.M., Dixon C.E., Castillo R.M., Frankowski R.F., Yablon S.A., and Levin H.S. (1996). Subacute methylphenidate treatment for moderate to moderately severe traumatic brain injury: a preliminary double-blind placebo-controlled study. Arch. Phys. Med. Rehabil. 77, 536–540.
178.
Speech T.J., Rao S.M., Osmon D.C., and Sperry L.T. (1993). A double-blind controlled study of methylphenidate treatment in closed head injury. Brain Inj. 7, 333–338.
179.
Kim Y.-H., Ko M.-H., Na S.-Y., Park S.-H., and Kim K.-W. (2006). Effects of single-dose methylphenidate on cognitive performance in patients with traumatic brain injury: a double-blind placebo-controlled study. Clin. Rehabil. 20, 24–30.
180.
Mahalick D.M., Carmel P.W., Greenberg J.P., Molofsky W., Brown J.A., Heary R.F., Marks D., Zampella E., Hodosh R., and von der Schmidt E. 3rd., (1998). Psychopharmacologic treatment of acquired attention disorders in children with brain injury. Pediatr. Neurosurg. 29, 121–126.
181.
Lee H., Kim S.-W., Kim J.-M., Shin I.-S., Yang S.-J., and Yoon J.-S. (2005). Comparing effects of methylphenidate, sertraline and placebo on neuropsychiatric sequelae in patients with traumatic brain injury. Hum. Psychopharmacol. 20, 97–104.
182.
Mooney G.F., and Haas L.J. (1993). Effect of methylphenidate on brain injury-related anger. Arch. Phys. Med. Rehabil. 74, 153–160.
183.
Williams S.E., Ris M.D., Ayyangar R., Schefft B.K., and Berch D. (1998). Recovery in pediatric brain injury: is psychostimulant medication beneficial? J. Head Trauma Rehabil. 13, 73–81.
184.
Gualtieri C.T., and Evans R.W. (1988). Stimulant treatment for the neurobehavioural sequelae of traumatic brain injury. Brain Inj. 2, 273–290.
185.
Moein H., Khalili H.A., and Keramatian K. (2006). Effect of methylphenidate on ICU and hospital length of stay in patients with severe and moderate traumatic brain injury. Clin. Neurol. Neurosurg. 108, 539–542.
186.
Kim H.-S., and Suh Y.-H. (2009). Minocycline and neurodegenerative diseases. Behav. Brain Res. 196, 168–179.
187.
Bye N., Habgood M.D., Callaway J.K., Malakooti N., Potter A., Kossmann T., and Morganti-Kossmann M.C. (2007). Transient neuroprotection by minocycline following traumatic brain injury is associated with attenuated microglial activation but no changes in cell apoptosis or neutrophil infiltration. Exp. Neurol. 204, 220–233.
188.
Homsi S., Piaggio T., Croci N., Noble F., Plotkine M., Marchand-Leroux C., and Jafarian-Tehrani M. (2010). Blockade of acute microglial activation by minocycline promotes neuroprotection and reduces locomotor hyperactivity after closed head injury in mice: a twelve-week follow-up study. J. Neurotrauma 27, 911–921.
189.
Sanchez Mejia R.O., Ona V.O., Li M., and Friedlander R.M. (2001). Minocycline reduces traumatic brain injury-mediated caspase-1 activation, tissue damage, and neurological dysfunction. Neurosurgery 48, 1393–1401.
190.
Kovesdi E., Kamnaksh A., Wingo D., Ahmed F., Grunberg N.E., Long J.B., Kasper C.E., and Agoston D.V. (2012). Acute minocycline treatment mitigates the symptoms of mild blast-induced traumatic brain injury. Front. Neurol. 3, 111.
191.
Casha S., Zygun D., McGowan M.D., Bains I., Yong V.W., and Hurlbert R.J. (2012). Results of a phase II placebo-controlled randomized trial of minocycline in acute spinal cord injury. Brain 135, 1224–1236.
192.
Racette B. (2008). A pilot clinical trial of creatine and minocycline in early Parkinson disease: 18-month results. Clin. Neuropharmacol. 31, 141–150.
193.
Sacktor N., Miyahara S., Deng L., Evans S., Schifitto G., Cohen B.A., Paul R., Robertson K., Jarocki B., Scarsi K., Coombs R.W., Zink M.C., Nath A., Smith E., Ellis R.J., Singer E., Weihe J., McCarthy S., Hosey L., and Clifford D.B. (2011). Minocycline treatment for HIV-associated cognitive impairment: results from a randomized trial. Neurology 77, 1135–1142.
194.
Atkuri K.R., Mantovani J.J., Herzenberg L.A., and Herzenberg L.A. (2007). N-Acetylcysteine–a safe antidote for cysteine/glutathione deficiency. Curr. Opin. Pharmacol. 7, 355–359.
195.
Dodd S., Dean O., Copolov D.L., Malhi G.S., and Berk M. (2008). N-acetylcysteine for antioxidant therapy: pharmacology and clinical utility. Expert Opin. Biol. Ther. 8, 1955–1962.
196.
Olive M.F., Cleva R.M., Kalivas P.W., and Malcolm R.J. (2012). Glutamatergic medications for the treatment of drug and behavioral addictions. Pharmacol. Biochem. Behav. 100, 801–810.
197.
Hicdonmez T., Kanter M., Tiryaki M., Parsak T., and Cobanoglu S. (2006). Neuroprotective effects of N-acetylcysteine on experimental closed head trauma in rats. Neurochem. Res. 31, 473–481.
198.
Chen G., Shi J., Hu Z., and Hang C. (2008). Inhibitory effect on cerebral inflammatory response following traumatic brain injury in rats: a potential neuroprotective mechanism of N-acetylcysteine. Mediators Inflamm. 2008, 716458.
199.
Yi J.-H., and Hazell A.S. (2005). N-acetylcysteine attenuates early induction of heme oxygenase-1 following traumatic brain injury. Brain Res. 1033, 13–19.
200.
Hanci V., Kerimoğlu A., Koca K., Başkesen A., Kiliç K., and Taştekin D. (2010). The biochemical effectiveness of N-acetylcysteine in experimental spinal cord injury in rats. Ulus. Travma. Acil. Cerrahi. Derg. 16, 15–21.
201.
Thomale U.-W., Griebenow M., Kroppenstedt S.-N., Unterberg A.W., and Stover J.F. (2006). The effect of N-acetylcysteine on posttraumatic changes after controlled cortical impact in rats. Intensive Care Med. 32, 149–155.
202.
Hoffer M.E., Balaban C., Slade M.D., Tsao J.W., and Hoffer B. (2013). Amelioration of acute sequelae of blast induced mild traumatic brain injury by N-acetyl cysteine: a double-blind, placebo controlled study. PLoS ONE 8,e54163.
203.
Hammond G.L., Hirvonen J., and Vihko R. (1983). Progesterone, androstenedione, testosterone, 5 alpha-dihydrotestosterone and androsterone concentrations in specific regions of the human brain. J. Steroid Biochem. 18, 185–189.
204.
Lacroix C., Fiet J., Benais J.P., Gueux B., Bonete R., Villette J.M., Gourmel B., and Dreux C. (1987). Simultaneous radioimmunoassay of progesterone, androst-4-enedione, pregnenolone, dehydroepiandrosterone and 17-hydroxyprogesterone in specific regions of human brain. J. Steroid Biochem. 28, 317–325.
205.
Lanthier A., and Patwardhan V.V. (1986). Sex steroids and 5-en-3 beta-hydroxysteroids in specific regions of the human brain and cranial nerves. J. Steroid Biochem. 25, 445–449.
206.
Weill-Engerer S., David J.-P., Sazdovitch V., Liere P., Eychenne B., Pianos A., Schumacher M., Delacourte A., Baulieu E.-E., and Akwa Y. (2002). Neurosteroid quantification in human brain regions: comparison between Alzheimer's and nondemented patients. J. Clin. Endocrinol. Metab. 87, 5138–5143.
207.
Koenig H.L., Schumacher M., Ferzaz B., Thi A.N., Ressouches A., Guennoun R., Jung-Testas I., Robel P., Akwa Y., and Baulieu E.E. (1995). Progesterone synthesis and myelin formation by Schwann cells. Science 268, 1500–1503.
208.
Liu L., Wang J., Zhao L., Nilsen J., McClure K., Wong K., and Brinton R.D. (2009). Progesterone increases rat neural progenitor cell cycle gene expression and proliferation via extracellularly regulated kinase and progesterone receptor membrane components 1 and 2. Endocrinology 150, 3186–3196.
209.
Porcu P., O'Buckley T.K., Alward S.E., Marx C.E., Shampine L.J., Girdler S.S., and Morrow A.L. (2009). Simultaneous quantification of GABAergic 3alpha,5alpha/3alpha,5beta neuroactive steroids in human and rat serum. Steroids 74, 463–473.
210.
Sayeed I., Guo Q., Hoffman S.W., and Stein D.G. (2006). Allopregnanolone, a progesterone metabolite, is more effective than progesterone in reducing cortical infarct volume after transient middle cerebral artery occlusion. Ann. Emerg. Med. 47, 381–389.
211.
Sayeed I., Parvez S., Wali B., Siemen D., and Stein D.G. (2009). Direct inhibition of the mitochondrial permeability transition pore: a possible mechanism for better neuroprotective effects of allopregnanolone over progesterone. Brain Res. 1263, 165–173.
212.
Hua F., Reiss J.I., Tang H., Wang J., Fowler X., Sayeed I., and Stein D.G. (2012). Progesterone and low-dose vitamin D hormone treatment enhances sparing of memory following traumatic brain injury. Horm. Behav. 61, 642–651.
213.
Cutler S.M., Cekic M., Miller D.M., Wali B., VanLandingham J.W., and Stein D.G. (2007). Progesterone improves acute recovery after traumatic brain injury in the aged rat. J. Neurotrauma 24, 1475–1486.
214.
Cutler S.M., VanLandingham J.W., Murphy A.Z., and Stein D.G. (2006). Slow-release and injected progesterone treatments enhance acute recovery after traumatic brain injury. Pharmacol. Biochem. Behav. 84, 420–428.
215.
Galani R., Hoffman S.W., and Stein D.G. (2001). Effects of the duration of progesterone treatment on the resolution of cerebral edema induced by cortical contusions in rats. Restor. Neurol. Neurosci. 18, 161–166.
216.
Grossman K.J., Goss C.W., and Stein D.G. (2004). Effects of progesterone on the inflammatory response to brain injury in the rat. Brain Res. 1008, 29–39.
217.
Shahrokhi N., Khaksari M., Soltani Z., Mahmoodi M., and Nakhaee N. (2010). Effect of sex steroid hormones on brain edema, intracranial pressure, and neurologic outcomes after traumatic brain injury. Can. J. Physiol. Pharmacol. 88, 414–421.
218.
Kasturi B.S., and Stein D.G. (2009). Progesterone decreases cortical and sub-cortical edema in young and aged ovariectomized rats with brain injury. Restor. Neurol. Neurosci. 27, 265–275.
219.
Pan D.-S., Liu W.-G., Yang X.-F., and Cao F. (2007). Inhibitory effect of progesterone on inflammatory factors after experimental traumatic brain injury. Biomed. Environ. Sci. 20, 432–438.
220.
Guo Q., Sayeed I., Baronne L.M., Hoffman S.W., Guennoun R., and Stein D.G. (2006). Progesterone administration modulates AQP4 expression and edema after traumatic brain injury in male rats. Exp. Neurol. 198, 469–478.
221.
Robertson C.L., Puskar A., Hoffman G.E., Murphy A.Z., Saraswati M., and Fiskum G. (2006). Physiologic progesterone reduces mitochondrial dysfunction and hippocampal cell loss after traumatic brain injury in female rats. Exp. Neurol. 197, 235–243.
222.
Roof R.L., Duvdevani R., Heyburn J.W., and Stein D.G. (1996). Progesterone rapidly decreases brain edema: treatment delayed up to 24 hours is still effective. Exp. Neurol. 138, 246–251.
223.
Roof R.L., Duvdevani R., and Stein D.G. (1992). Progesterone treatment attenuates brain edema following contusion injury in male and female rats. Restor. Neurol. Neurosci. 4, 425–427.
224.
Cekic M., Johnson S.J., Bhatt V.H., and Stein D.G. (2012). Progesterone treatment alters neurotrophin/proneurotrophin balance and receptor expression in rats with traumatic brain injury. Restor. Neurol. Neurosci. 30, 115–126.
225.
Chen G., Shi J.-X., Qi M., Wang H.-X., and Hang C.-H. (2008). Effects of progesterone on intestinal inflammatory response, mucosa structure alterations, and apoptosis following traumatic brain injury in male rats. J. Surg. Res. 147, 92–98.
226.
O'Connor C.A., Cernak I., Johnson F., and Vink R. (2007). Effects of progesterone on neurologic and morphologic outcome following diffuse traumatic brain injury in rats. Exp. Neurol. 205, 145–153.
227.
Yao X.-L., Liu J., Lee E., Ling G.S.F., and McCabe J.T. (2005). Progesterone differentially regulates pro- and anti-apoptotic gene expression in cerebral cortex following traumatic brain injury in rats. J. Neurotrauma 22, 656–668.
228.
Djebaili M., Hoffman S.W., and Stein D.G. (2004). Allopregnanolone and progesterone decrease cell death and cognitive deficits after a contusion of the rat pre-frontal cortex. Neuroscience 123, 349–359.
229.
Chen G., Shi J., Ding Y., Yin H., and Hang C. (2007). Progesterone prevents traumatic brain injury-induced intestinal nuclear factor kappa B activation and proinflammatory cytokines expression in male rats. Mediators Inflamm. 2007, 93431.
230.
He J., Evans C.-O., Hoffman S.W., Oyesiku N.M., and Stein D.G. (2004). Progesterone and allopregnanolone reduce inflammatory cytokines after traumatic brain injury. Exp. Neurol. 189, 404–412.
231.
Sarkaki A.R., Khaksari Haddad M., Soltani Z., Shahrokhi N., and Mahmoodi M. (2013). Time- and dose-dependent neuroprotective effects of sex steroid hormones on inflammatory cytokines after a traumatic brain injury. J. Neurotrauma 30, 47–54.
232.
VanLandingham J.W., Cekic M., Cutler S., Hoffman S.W., and Stein D.G. (2007). Neurosteroids reduce inflammation after TBI through CD55 induction. Neurosci. Lett. 425, 94–98.
233.
Grossman K.J., Goss C.W., and Stein D.G. (2011). Sickness behaviors following medial frontal cortical contusions in male rats. Behav. Brain Res. 217, 202–208.
234.
Jones N.C., Constantin D., Prior M.J.W., Morris P.G., Marsden C.A., and Murphy S. (2005). The neuroprotective effect of progesterone after traumatic brain injury in male mice is independent of both the inflammatory response and growth factor expression. Eur. J. Neurosci. 21, 1547–1554.
235.
Peterson T.C., Anderson G.D., Kantor E.D., and Hoane M.R. (2012). A comparison of the effects of nicotinamide and progesterone on functional recovery of cognitive behavior following cortical contusion injury in the rat. J. Neurotrauma 29, 2823–2830.
236.
Roof R.L., Hoffman S.W., and Stein D.G. (1997). Progesterone protects against lipid peroxidation following traumatic brain injury in rats. Mol. Chem. Neuropathol. 31, 1–11.
237.
Shahrokhi N., Haddad M.K., Joukar S., Shabani M., Keshavarzi Z., and Shahozehi B. (2012). Neuroprotective antioxidant effect of sex steroid hormones in traumatic brain injury. Pak. J. Pharm. Sci. 25, 219–225.
238.
Luoma J.I., Stern C.M., and Mermelstein P.G. (2012). Progesterone inhibition of neuronal calcium signaling underlies aspects of progesterone-mediated neuroprotection. J. Steroid Biochem. Mol. Biol. 131, 30–36.
239.
Luoma J.I., Kelley B.G., and Mermelstein P.G. (2011). Progesterone inhibition of voltage-gated calcium channels is a potential neuroprotective mechanism against excitotoxicity. Steroids 76, 845–855.
240.
Roof R.L., Duvdevani R., Braswell L., and Stein D.G. (1994). Progesterone facilitates cognitive recovery and reduces secondary neuronal loss caused by cortical contusion injury in male rats. Exp. Neurol. 129, 64–69.
241.
Guo Q., Sayeed I., Baronne L.M., Hoffman S.W., Guennoun R., and Stein D.G. (2006). Progesterone administration modulates AQP4 expression and edema after traumatic brain injury in male rats. Exp. Neurol. 198, 469–478.
242.
Garcia-Estrada J., Del Rio J.A., Luquin S., Soriano E., and Garcia-Segura L.M. (1993). Gonadal hormones down-regulate reactive gliosis and astrocyte proliferation after a penetrating brain injury. Brain Res. 628, 271–278.
243.
García-Estrada J., Luquín S., Fernández A.M., and Garcia-Segura L.M. (1999). Dehydroepiandrosterone, pregnenolone and sex steroids down-regulate reactive astroglia in the male rat brain after a penetrating brain injury. Int. J. Dev. Neurosci. 17, 145–151.
244.
Pettus E.H., Wright D.W., Stein D.G., and Hoffman S.W. (2005). Progesterone treatment inhibits the inflammatory agents that accompany traumatic brain injury. Brain Res. 1049, 112–119.
245.
Chen G., Shi J., Jin W., Wang L., Xie W., Sun J., and Hang C. (2008). Progesterone administration modulates TLRs/NF-kappaB signaling pathway in rat brain after cortical contusion. Ann. Clin. Lab. Sci. 38, 65–74.
246.
Hua F., Wang J., Ishrat T., Wei W., Atif F., Sayeed I., and Stein D.G. (2011). Genomic profile of Toll-like receptor pathways in traumatically brain-injured mice: effect of exogenous progesterone. J Neuroinflammation 8, 42.
247.
Barha C.K., Ishrat T., Epp J.R., Galea L.A.M., and Stein D.G. (2011). Progesterone treatment normalizes the levels of cell proliferation and cell death in the dentate gyrus of the hippocampus after traumatic brain injury. Exp. Neurol. 231, 72–81.
248.
Anderson G.D., Farin F.M., Bammler T.K., Beyer R.P., Swan A.A., Wilkerson H.-W., Kantor E.D., and Hoane M.R. (2011). The effect of progesterone dose on gene expression after traumatic brain injury. J. Neurotrauma 28, 1827–1843.
249.
Djebaili M., Guo Q., Pettus E.H., Hoffman S.W., and Stein D.G. (2005). The neurosteroids progesterone and allopregnanolone reduce cell death, gliosis, and functional deficits after traumatic brain injury in rats. J. Neurotrauma 22, 106–118.
250.
Wali B., Sayeed I., and Stein D.G. (2011). Improved behavioral outcomes after progesterone administration in aged male rats with traumatic brain injury. Restor. Neurol. Neurosci. 29, 61–71.
251.
Gilmer L.K., Roberts K.N., and Scheff S.W. (2008). Efficacy of progesterone following a moderate unilateral cortical contusion injury. J. Neurotrauma 25, 593–602.
252.
Wright D.W., Kellermann A.L., Hertzberg V.S., Clark P.L., Frankel M., Goldstein F.C., Salomone J.P., Dent L.L., Harris O.A., Ander D.S., Lowery D.W., Patel M.M., Denson D.D., Gordon A.B., Wald M.M., Gupta S., Hoffman S.W., and Stein D.G. (2007). ProTECT: a randomized clinical trial of progesterone for acute traumatic brain injury. Ann. Emerg. Med. 49, 391–402, 402.e1–2.
253.
Xiao G., Wei J., Yan W., Wang W., and Lu Z. (2008). Improved outcomes from the administration of progesterone for patients with acute severe traumatic brain injury: a randomized controlled trial. Crit. Care 12,R61.
254.
Abrahamson E.E., Ikonomovic M.D., Dixon C.E., and DeKosky S.T. (2009). Simvastatin therapy prevents brain trauma-induced increases in beta-amyloid peptide levels. Ann. Neurol. 66, 407–414.
255.
Béziaud T., Ru Chen X., El Shafey N., Fréchou M., Teng F., Palmier B., Beray-Berthat V., Soustrat M., Margaill I., Plotkine M., Marchand-Leroux C., and Besson V.C. (2011). Simvastatin in traumatic brain injury: effect on brain edema mechanisms. Crit. Care Med. 39, 2300–2307.
256.
Chen G., Zhang S., Shi J., Ai J., Qi M., and Hang C. (2009). Simvastatin reduces secondary brain injury caused by cortical contusion in rats: possible involvement of TLR4/NF-kappaB pathway. Exp. Neurol. 216, 398–406.
257.
Chen X.R., Besson V.C., Beziaud T., Plotkine M., and Marchand-Leroux C. (2008). Combination therapy with fenofibrate, a peroxisome proliferator-activated receptor alpha agonist, and simvastatin, a 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor, on experimental traumatic brain injury. J. Pharmacol. Exp. Ther. 326, 966–974.
258.
Indraswari F., Wang H., Lei B., James M.L., Kernagis D., Warner D.S., Dawson H.N., and Laskowitz D.T. (2012). Statins improve outcome in murine models of intracranial hemorrhage and traumatic brain injury: a translational approach. J. Neurotrauma 29, 1388–1400.
259.
Li B., Mahmood A., Lu D., Wu H., Xiong Y., Qu C., and Chopp M. (2009). Simvastatin attenuates microglial cells and astrocyte activation and decreases interleukin-1beta level after traumatic brain injury. Neurosurgery 65, 179–185; discussion 185–186.
260.
Lu D., Goussev A., Chen J., Pannu P., Li Y., Mahmood A., and Chopp M. (2004). Atorvastatin reduces neurological deficit and increases synaptogenesis, angiogenesis, and neuronal survival in rats subjected to traumatic brain injury. J. Neurotrauma 21, 21–32.
261.
Lu D., Mahmood A., Goussev A., Schallert T., Qu C., Zhang Z.G., Li Y., Lu M., and Chopp M. (2004). Atorvastatin reduction of intravascular thrombosis, increase in cerebral microvascular patency and integrity, and enhancement of spatial learning in rats subjected to traumatic brain injury. J. Neurosurg. 101, 813–821.
262.
Lu D., Mahmood A., Qu C., Goussev A., Lu M., and Chopp M. (2004). Atorvastatin reduction of intracranial hematoma volume in rats subjected to controlled cortical impact. J. Neurosurg. 101, 822–825.
263.
Wang H., Lynch J.R., Song P., Yang H.-J., Yates R.B., Mace B., Warner D.S., Guyton J.R., and Laskowitz D.T. (2007). Simvastatin and atorvastatin improve behavioral outcome, reduce hippocampal degeneration, and improve cerebral blood flow after experimental traumatic brain injury. Exp. Neurol. 206, 59–69.
264.
Lu D., Qu C., Goussev A., Jiang H., Lu C., Schallert T., Mahmood A., Chen J., Li Y., and Chopp M. (2007). Statins increase neurogenesis in the dentate gyrus, reduce delayed neuronal death in the hippocampal CA3 region, and improve spatial learning in rat after traumatic brain injury. J. Neurotrauma 24, 1132–1146.
265.
Sierra S., Ramos M.C., Molina P., Esteo C., Vázquez J.A., and Burgos J.S. (2011). Statins as neuroprotectants: a comparative in vitro study of lipophilicity, blood-brain-barrier penetration, lowering of brain cholesterol, and decrease of neuron cell death. J. Alzheimers Dis. 23, 307–318.
266.
Boimel M., Grigoriadis N., Lourbopoulos A., Touloumi O., Rosenmann D., Abramsky O., and Rosenmann H. (2009). Statins reduce the neurofibrillary tangle burden in a mouse model of tauopathy. J. Neuropathol. Exp. Neurol. 68, 314–325.

Information & Authors

Information

Published In

cover image Journal of Neurotrauma
Journal of Neurotrauma
Volume 31Issue Number 2January 15, 2014
Pages: 135 - 158
PubMed: 23968241

History

Published online: 17 January 2014
Published in print: January 15, 2014
Published ahead of production: 22 August 2013

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Ramon Diaz-Arrastia
Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, Maryland.
Patrick M. Kochanek
Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
Peter Bergold
Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York.
Kimbra Kenney
Department of Neurology, Uniformed Services University of the Health Sciences, Rockville, Maryland.
Christine E. Marx
Department of Psychiatry and Behavioral Sciences, Duke University Medical Center and Durham VA Medical Center, Durham, North Carolina.
Col. Jamie B. Grimes
Defense and Veterans Brain Injury Center, Silver Spring, Maryland.
LTC Yince Loh
Department of Neurology, Madigan Army Medical Center, Tacoma, Washington.
LTC Gina E. Adam
U.S. Army Medical Research and Materiel Command, Ft. Detrick, Maryland.
Devon Oskvig
Government contractor.
Kenneth C. Curley
U.S. Army Medical Research and Materiel Command, Ft. Detrick, Maryland.
Col. Wanda Salzer
U.S. Army Medical Research and Materiel Command, Ft. Detrick, Maryland.

Notes

Address correspondence to:Ramon Diaz-Arrastia, MD, PhDDepartment of NeurologyUniformed Services University of the Health Sciences4310 Jones Bridge RoadBethesda, MD 20814E-mail: [email protected]

Author Disclosure Statement

Dr. Kochanek holds three co-provisional patents: (1) Method of Inducing EPR Following Cardiopulmonary Arrest; (2) Validation of a Multiplex Biomarker Panel for Detection of Abusive Head Trauma in Well-Appearing Children; (3) Small Molecule Inhibitors of RNA Binding MOTIF Proteins for the Treatment of Acute Cellular Injury. Dr. Marx is a co-applicant or applicant on pending patent applications focusing on neurosteroids and derivatives in CNS disorders and for lowering cholesterol (no patents issued, no licensing in place). Dr. Marx is an unpaid scientific consultant for Sage Therapeutics. For the remaining authors, no competing financial interest exist.

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/EPUB

Full Text

View Full Text

Figures

Tables

Media

Share

Share

Copy the content Link

Share on social media

Back to Top