Review Article
No access
Published Online: 25 July 2014

Diffusion Tensor Imaging Findings in Semi-Acute Mild Traumatic Brain Injury

Publication: Journal of Neurotrauma
Volume 31, Issue Number 14

Abstract

The past 10 years have seen a rapid increase in the use of diffusion tensor imaging to identify biomarkers of traumatic brain injury (TBI). Although the literature generally indicates decreased anisotropic diffusion at more chronic injury periods and in more severe injuries, considerable debate remains regarding the direction (i.e., increased or decreased) of anisotropic diffusion in the acute to semi-acute phase (here defined as less than 3 months post-injury) of mild TBI (mTBI). A systematic review of the literature was therefore performed to (1) determine the prevalence of different anisotropic diffusion findings (increased, decreased, bidirectional, or null) during the semi-acute injury phase of mTBI and to (2) identify clinical (e.g., age of injury, post-injury scan time, etc.) and experimental factors (e.g., number of unique directions, field strength) that may influence these findings. Results from the literature review indicated 31 articles with independent samples of semi-acute mTBI patients, with 13 studies reporting decreased anisotropic diffusion, 11 reporting increased diffusion, 2 reporting bidirectional findings, and 5 reporting null findings. Chi-squared analyses indicated that the total number of diffusion-weighted (DW) images was significantly associated with findings of either increased (DW≥30) versus decreased (DW≤25) anisotropic diffusion. Other clinical and experimental factors were not statistically significant for direction of anisotropic diffusion, but these results may have been limited by the relatively small number of studies within each domain (e.g., pediatric studies). In summary, current results indicate roughly equivalent number of studies reporting increased versus decreased anisotropic diffusion during semi-acute mTBI, with the number of unique diffusion images being statistically associated with the direction of findings.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Pellman E.J., Powell J.W., Viano D.C., Casson I.R., Tucker A.M., Feuer H., Lovell M., Waeckerle J.F., and Robertson D.W. (2004). Concussion in professional football: Epidemiological features of game injuries and review of the literature—part 3. Neurosurgery 54, 81–96.
2.
Cicerone K.D., and Kalmar K. (1997). Does premorbid depression influence post-concussive symptoms and neuropsychological functioning? Brain Inj. 11, 643–648.
3.
Dikmen S.S., Bombardier C.H., Machamer J.E., Fann J.R., and Temkin N.R. (2004). Natural history of depression in traumatic brain injury. Arch. Phys. Med. Rehabil. 85, 1457–1464.
4.
Hughes D.G., Jackson A., Mason D.L., Berry E., Hollis S., and Yates D.W. (2004). Abnormalities on magnetic resonance imaging seen acutely following mild traumatic brain injury: correlation with neuropsychological tests and delayed recovery. Neuroradiology 46, 550–558.
5.
Iverson G.L., Lovell M.R., Smith S., and Franzen M.D. (2000). Prevalence of abnormal CT-scans following mild head injury. Brain Inj. 14, 1057–1061.
6.
Levin B., and Bhardwaj A. (2014). Chronic traumatic encephalopathy: A critical appraisal. Neurocrit. Care 20, 334–344.
7.
McKee A.C., Stern R.A., Nowinski C.J., Stern T.D., Alvarez V.E., Daneshvar D.H., Lee H.S., Wojtowicz S.M., Hall G., Baugh C.M., Riley D.O., Kubilus C.A., Cormier K.A., Jacobs M.A., Martin B.R., Abraham C.R., Ikezu T., Reichard R.R., Wolozin B.L., Budson A.E., Goldstein L.E., Kowall N.W., and Cantu R.C. (2013). The spectrum of disease in chronic traumatic encephalopathy. Brain 136, 43–64.
8.
Belanger H.G., Vanderploeg R.D., Curtiss G., and Warden D.L. (2007). Recent neuroimaging techniques in mild traumatic brain injury. J. Neuropsychiatry Clin. Neurosci. 19, 5–20.
9.
Bigler E.D., and Maxwell W.L. (2012). Neuropathology of mild traumatic brain injury: relationship to neuroimaging findings. Brain Imaging Behav. 6, 108–136.
10.
Mondello S., Muller U., Jeromin A., Streeter J., Hayes R.L., and Wang K.K. (2011). Blood-based diagnostics of traumatic brain injuries. Expert Rev. Mol. Diagn. 11, 65–78.
11.
Yuh E.L., Mukherjee P., Lingsma H.F., Yue J.K., Ferguson A.R., Gordon W.A., Valadka A.B., Schnyer D.M., Okonkwo D.O., Maas A.I., and Manley G.T. (2013). Magnetic resonance imaging improves 3-month outcome prediction in mild traumatic brain injury. Ann. Neurol. 73, 224–235.
12.
Budde M.D., Janes L., Gold E., Turtzo L.C., and Frank J.A. (2011). The contribution of gliosis to diffusion tensor anisotropy and tractography following traumatic brain injury: validation in the rat using Fourier analysis of stained tissue sections. Brain 134, 2248–2260.
13.
Spain A., Daumas S., Lifshitz J., Rhodes J., Andrews P.J., Horsburgh K., and Fowler J.H. (2010). Mild fluid percussion injury in mice produces evolving selective axonal pathology and cognitive deficits relevant to human brain injury. J. Neurotrauma 27, 1429–1438.
14.
Hulkower M.B., Poliak D.B., Rosenbaum S.B., Zimmerman M.E., and Lipton M.L. (2013). A decade of DTI in traumatic brain injury: 10 years and 100 articles later. AJNR Am. J. Neuroradiol. 34, 2064–2074.
15.
Niogi S.N., and Mukherjee P. (2010). Diffusion tensor imaging of mild traumatic brain injury. J. Head Trauma Rehabil. 25, 241–255.
16.
Shenton M.E., Hamoda H.M., Schneiderman J.S., Bouix S., Pasternak O., Rathi Y., Vu M.A., Purohit M.P., Helmer K., Koerte I., Lin A.P., Westin C.F., Kikinis R., Kubicki M., Stern R.A., and Zafonte R. (2012). A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging Behav. 6, 137–192.
17.
Mac Donald C.L., Dikranian K., Song S.K., Bayly P.V., Holtzman D.M., and Brody D.L. (2007). Detection of traumatic axonal injury with diffusion tensor imaging in a mouse model of traumatic brain injury. Exp. Neurol. 205, 116–131.
18.
Dikranian K., Cohen R., Mac Donald C., Pan Y., Brakefield D., Bayly P., and Parsadanian A. (2008). Mild traumatic brain injury to the infant mouse causes robust white matter axonal degeneration which precedes apoptotic death of cortical and thalamic neurons. Exp. Neurol. 211, 551–560.
19.
Mac Donald C.L., Dikranian K., Bayly P., Holtzman D., and Brody D. (2007). Diffusion tensor imaging reliably detects experimental traumatic axonal injury and indicates approximate time of injury. J. Neurosci. 27, 11869–11876.
20.
Barkhoudarian G., Hovda D.A., and Giza C.C. (2011). The molecular pathophysiology of concussive brain injury. Clin. Sports Med. 30, 33–48.
21.
Povlishock J.T., and Katz D.I. (2005). Update of neuropathology and neurological recovery after traumatic brain injury. J. Head Trauma Rehabil. 20, 76–94.
22.
Beaulieu C. (2002). The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed. 15, 435–455.
23.
Horsfield M.A., and Jones D.K. (2002). Applications of diffusion-weighted and diffusion tensor MRI to white matter diseases—a review. NMR Biomed. 15, 570–577.
24.
Peled S. (2007). New perspectives on the sources of white matter DTI signal. IEEE Trans. Med. Imaging 26, 1448–1455.
25.
Fitzgerald D.B., and Crosson B.A. (2011). Diffusion weighted imaging and neuropsychological correlates in adults with mild traumatic brain injury. Int. J. Psychophysiol. 82, 79–85.
26.
Song S.K., Sun S.W., Ju W.K., Lin S.J., Cross A.H., and Neufeld A.H. (2003). Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage 20, 1714–1722.
27.
Wheeler-Kingshott C.A., and Cercignani M. (2009). About “axial” and “radial” diffusivities. Magn. Reson. Med. 61, 1255–1260.
28.
Ling J., Merideth F., Caprihan A., Pena A., Teshiba T., and Mayer A.R. (2012). Head injury or head motion? Assessment and quantification of motion artifacts in diffusion tensor imaging studies. Hum. Brain Mapp. 33, 50–62.
29.
Zhuo J., Xu S., Proctor J.L., Mullins R.J., Simon J.Z., Fiskum G., and Gullapalli R.P. (2012). Diffusion kurtosis as an in vivo imaging marker for reactive astrogliosis in traumatic brain injury. Neuroimage 59, 467–477.
30.
Marmarou A. (2007). A review of progress in understanding the pathophysiology and treatment of brain edema. Neurosurg. Focus. 22, E1.
31.
Li J., Li X.Y., Feng D.F., and Gu L. (2011). Quantitative evaluation of microscopic injury with diffusion tensor imaging in a rat model of diffuse axonal injury. Eur. J. Neurosci. 33, 933–945.
32.
Chen Z., Leung L.Y., Mountney A., Liao Z., Yang W., Lu X.C., Dave J., Deng-Bryant Y., Wei G., Schmid K., Shear D.A., and Tortella F.C. (2012). A novel animal model of closed-head concussive-induced mild traumatic brain injury: development, implementation, and characterization. J. Neurotrauma 29, 268–280.
33.
Xiong Y., Mahmood A., and Chopp M. (2013). Animal models of traumatic brain injury. Nat. Rev. Neurosci. 14, 128–142.
34.
Angoa-Pérez M., Kane M.J., Briggs D.I., Herrera-Mundo N., Viano D.C., and Kuhn D.M. (2014). Animal models of sports-related head injury: bridging the gap between pre-clinical research and clinical reality. J. Neurochem. 129, 916–931.
35.
Aoki Y., Inokuchi R., Gunshin M., Yahagi N., and Suwa H. (2012). Diffusion tensor imaging studies of mild traumatic brain injury: A meta-analysis. J. Neurol. Neurosurg. Psychiatry 83, 870–876.
36.
Sidaros A., Engberg A.W., Sidaros K., Liptrot M.G., Herning M., Petersen P., Paulson O.B., Jernigan T.L., and Rostrup E. (2008). Diffusion tensor imaging during recovery from severe traumatic brain injury and relation to clinical outcome: A longitudinal study. Brain 131, 559–572.
37.
Lo C., Shifteh K., Gold T., Bello J.A., and Lipton M.L. (2009). Diffusion tensor imaging abnormalities in patients with mild traumatic brain injury and neurocognitive impairment. J. Comput. Assist. Tomogr. 33, 293–297.
38.
Bendlin B.B., Ries M.L., Lazar M., Alexander A.L., Dempsey R.J., Rowley H.A., Sherman J.E., and Johnson S.C. (2008). Longitudinal changes in patients with traumatic brain injury assessed with diffusion-tensor and volumetric imaging. Neuroimage 42, 503–514.
39.
Rubovitch V., Ten-Bosch M., Zohar O., Harrison C.R., Tempel-Brami C., Stein E., Hoffer B.J., Balaban C.D., Schreiber S., Chiu W.T., and Pick C.G. (2011). A mouse model of blast-induced mild traumatic brain injury. Exp. Neurol. 232, 280–289.
40.
Xu S., Zhuo J., Racz J., Shi D., Roys S., Fiskum G., and Gullapalli R. (2011). Early microstructural and metabolic changes following controlled cortical impact injury in rat: A magnetic resonance imaging and spectroscopy study. J. Neurotrauma 28, 2091–2102.
41.
Van Putten H.P., Bouwhuis M.G., Muizelaar J.P., Lyeth B.G., and Berman R.F. (2005). Diffusion-weighted imaging of edema following traumatic brain injury in rats: Effects of secondary hypoxia. J. Neurotrauma 22, 857–872.
42.
Bouix S., Pasternak O., Rathi Y., Pelavin P.E., Zafonte R., and Shenton M.E. (2013). Increased gray matter diffusion anisotropy in patients with persistent post-concussive symptoms following mild traumatic brain injury. PLoS One 8, e66205.
43.
Ling J.M., Klimaj S., Toulouse T., and Mayer A.R. (2013). A prospective study of gray matter abnormalities in mild traumatic brain injury. Neurology 81, 2121–2127.
44.
Newcombe V.F., Williams G.B., Outtrim J.G., Chatfield D., Gulia Abate M., Geeraerts T., Manktelow A., Room H., Mariappen L., Hutchinson P.J., Coles J.P., and Menon D.K. (2013). Microstructural basis of contusion expansion in traumatic brain injury: insights from diffusion tensor imaging. J. Cereb. Blood Flow Metab 33, 855–862.
45.
Rosenbaum S.B., and Lipton M.L. (2012). Embracing chaos: The scope and importance of clinical and pathological heterogeneity in mTBI. Brain Imaging Behav. 6, 255–282.
46.
Ruff R.M., Iverson G.L., Barth J.T., Bush S.S., and Broshek D.K. (2009). Recommendations for diagnosing a mild traumatic brain injury: a National Academy of Neuropsychology education paper. Arch. Clin. Neuropsychol. 24, 3–10.
47.
West T.A., and Marion D.W. (2014). Current recommendations for the diagnosis and treatment of concussion in sport: a comparison of three new guidelines. J. Neurotrauma 31, 159–168.
48.
Kashluba S., Hanks R.A., Casey J.E., and Millis S.R. (2008). Neuropsychologic and functional outcome after complicated mild traumatic brain injury. Arch. Phys. Med. Rehabil. 89, 904–911.
49.
Harmon K.G., Drezner J.A., Gammons M., Guskiewicz K.M., Halstead M., Herring S.A., Kutcher J.S., Pana A., Putukian M., and Roberts W. (2013). American Medical Society for Sports Medicine position statement: concussion in sport. Br. J. Sports Med. 47, 15–26.
50.
Guskiewicz K.M., McCrea M., Marshall S.W., Cantu R.C., Randolph C., Barr W., Onate J.A., and Kelly J.P. (2003). Cumulative effects associated with recurrent concussion in collegiate football players: the NCAA Concussion Study. JAMA 290, 2549–2555.
51.
Lehman E.J., Hein M.J., Baron S.L., and Gersic C.M. (2012). Neurodegenerative causes of death among retired National Football League players. Neurology 79, 1970–1974.
52.
Belanger H.G., and Vanderploeg R.D. (2005). The neuropsychological impact of sports-related concussion: A meta-analysis. J. Int. Neuropsychol. Soc. 11, 345–357.
53.
Belanger H.G., Curtiss G., Demery J.A., Lebowitz B.K., and Vanderploeg R.D. (2005). Factors moderating neuropsychological outcomes following mild traumatic brain injury: a meta-analysis. J. Int. Neuropsychol. Soc. 11, 215–227.
54.
Frencham K.A., Fox A.M., and Maybery M.T. (2005). Neuropsychological studies of mild traumatic brain injury: A meta-analytic review of research since 1995. J. Clin. Exp. Neuropsychol. 27, 334–351.
55.
McCrea M., Guskiewicz K.M., Marshall S.W., Barr W., Randolph C., Cantu R.C., Onate J.A., Yang J., and Kelly J.P. (2003). Acute effects and recovery time following concussion in collegiate football players: The NCAA Concussion Study. JAMA 290, 2556–2563.
56.
McCrea M., Guskiewicz K., Randolph C., Barr W.B., Hammeke T.A., Marshall S.W., Powell M.R., Woo Ahn K., Wang Y., and Kelly J.P. (2013). Incidence, clinical course, and predictors of prolonged recovery time following sport-related concussion in high school and college athletes. J. Int. Neuropsychol. Soc. 19, 22–33.
57.
McMahon P., Hricik A., Yue J.K., Puccio A.M., Inoue T., Lingsma H.F., Beers S.R., Gordon W.A., Valadka A.B., Manley G.T., Okonkwo D.O., Casey S.S., Cooper S.R., Dams-O'Connor K., Menon D.K., Sorani M.D., Yuh E.L., Mukherjee P., Schnyer D.M., and Vassar M.J. (2014). Symptomatology and functional outcome in mild traumatic brain injury: results from the prospective TRACK-TBI study. J. Neurotrauma 31, 26–33.
58.
Landman B.A., Farrell J.A., Jones C.K., Smith S.A., Prince J.L., and Mori S. (2007). Effects of diffusion weighting schemes on the reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T. Neuroimage 36, 1123–1138.
59.
Jones D.K. (2004). The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study. Magn. Reson. Med. 51, 807–815.
60.
Bazarian J.J., Zhu T., Blyth B., Borrino A., and Zhong J. (2012). Subject-specific changes in brain white matter on diffusion tensor imaging after sports-related concussion. Magn. Reson. Imaging 30, 171–180.
61.
Gajawelli N., Lao Y., Apuzzo M.L., Romano R., Liu C., Tsao S., Hwang D., Wilkins B., Lepore N., and Law M. (2013). Neuroimaging changes in the brain in contact versus noncontact sport athletes using diffusion tensor imaging. World Neurosurg. 80, 824–828.
62.
Grossman E.J., Ge Y., Jensen J.H., Babb J.S., Miles L., Reaume J., Silver J.M., Grossman R.I., and Inglese M. (2012). Thalamus and cognitive impairment in mild traumatic brain injury: a diffusional kurtosis imaging study. J. Neurotrauma 29, 2318–2327.
63.
Kurki T.J., Laalo J.P., and Oksaranta O.M. (2013). Diffusion tensor tractography of the uncinate fasciculus: Pitfalls in quantitative analysis due to traumatic volume changes. J. Magn. Reson. Imaging 38, 46–53.
64.
Matsushita M., Hosoda K., Naitoh Y., Yamashita H., and Kohmura E. (2011). Utility of diffusion tensor imaging in the acute stage of mild to moderate traumatic brain injury for detecting white matter lesions and predicting long-term cognitive function in adults. J. Neurosurg. 115, 130–139.
65.
Rutgers D.R., Fillard P., Paradot G., Tadie M., Lasjaunias P., and Ducreux D. (2008). Diffusion tensor imaging characteristics of the corpus callosum in mild, moderate, and severe traumatic brain injury. AJNR Am. J. Neuroradiol. 29, 1730–1735.
66.
Inglese M., Makani S., Johnson G., Cohen B.A., Silver J.A., Gonen O., and Grossman R.I. (2005). Diffuse axonal injury in mild traumatic brain injury: A diffusion tensor imaging study. J. Neurosurg. 103, 298–303.
67.
Miles L., Grossman R.I., Johnson G., Babb J.S., Diller L., and Inglese M. (2008). Short-term DTI predictors of cognitive dysfunction in mild traumatic brain injury. Brain Inj. 22, 115–122.
68.
Mayer A.R., Ling J., Mannell M.V., Gasparovic C., Phillips J.P., Doezema D., Reichard R., and Yeo R.A. (2010). A prospective diffusion tensor imaging study in mild traumatic brain injury. Neurology 74, 643–650.
69.
Mayer A.R., Mannell M.V., Ling J., Gasparovic C., and Yeo R.A. (2011). Functional connectivity in mild traumatic brain injury. Hum. Brain Mapp. 32, 1825–1835.
70.
Chu Z., Wilde E.A., Hunter J.V., McCauley S.R., Bigler E.D., Troyanskaya M., Yallampalli R., Chia J.M., and Levin H.S. (2010). Voxel-based analysis of diffusion tensor imaging in mild traumatic brain injury in adolescents. AJNR Am. J. Neuroradiol. 31, 340–346.
71.
Wilde E.A., McCauley S.R., Hunter J.V., Bigler E.D., Chu Z., Wang Z.J., Hanten G.R., Troyanskaya M., Yallampalli R., Li X., Chia J., and Levin H.S. (2008). Diffusion tensor imaging of acute mild traumatic brain injury in adolescents. Neurology 70, 948–955.
72.
Wu T.C., Wilde E.A., Bigler E.D., Yallampalli R., McCauley S.R., Troyanskaya M., Chu Z., Li X., Hanten G., Hunter J.V., and Levin H.S. (2010). Evaluating the relationship between memory functioning and cingulum bundles in acute mild traumatic brain injury using diffusion tensor imaging. J. Neurotrauma 27, 303–307.
73.
Yallampalli R., Wilde E.A., Bigler E.D., McCauley S.R., Hanten G., Troyanskaya M., Hunter J.V., Chu Z., Li X., and Levin H.S. (2013). Acute white matter differences in the fornix following mild traumatic brain injury using diffusion tensor imaging. J. Neuroimaging 23, 224–227.
74.
Borich M., Makan N., Boyd L., and Virji-Babul N. (2013). Combining whole-brain voxel-wise analysis with in vivo tractography of diffusion behavior after sports-related concussion in adolescents: A preliminary report. J. Neurotrauma 30, 1243–1249.
75.
Virji-Babul N., Borich M.R., Makan N., Moore T., Frew K., Emery C.A., and Boyd L.A. (2013). Diffusion tensor imaging of sports-related concussion in adolescents. Pediatr. Neurol. 48, 24–29.
76.
Ling J.M., Pena A., Yeo R.A., Merideth F.L., Klimaj S., Gasparovic C., and Mayer A.R. (2012). Biomarkers of increased diffusion anisotropy in semi-acute mild traumatic brain injury: A longitudinal perspective. Brain 135, 1281–1292.
77.
Arfanakis K., Haughton V.M., Carew J.D., Rogers B.P., Dempsey R.J., and Meyerand M.E. (2002). Diffusion tensor MR imaging in diffuse axonal injury. AJNR Am. J. Neuroradiol. 23, 794–802.
78.
Kumar R., Gupta R.K., Husain M., Chaudhry C., Srivastava A., Saksena S., and Rathore R.K. (2009). Comparative evaluation of corpus callosum DTI metrics in acute mild and moderate traumatic brain injury: Its correlation with neuropsychometric tests. Brain Inj. 23, 675–685.
79.
Lipton M.L., Gulko E., Zimmerman M.E., Friedman B.W., Kim M., Gellella E., Gold T., Shifteh K., Ardekani B.A., and Branch C.A. (2009). Diffusion-tensor imaging implicates prefrontal axonal injury in executive function impairment following very mild traumatic brain injury. Radiology 252, 816–824.
80.
Singh M., Jeong J., Hwang D., Sungkarat W., and Gruen P. (2010). Novel diffusion tensor imaging methodology to detect and quantify injured regions and affected brain pathways in traumatic brain injury. Magn. Reson. Imaging 28, 22–40.
81.
Mac Donald C.L., Johnson A.M., Cooper D., Nelson E.C., Werner N.J., Shimony J.S., Snyder A.Z., Raichle M.E., Witherow J.R., Fang R., Flaherty S.F., and Brody D.L. (2011). Detection of blast-related traumatic brain injury in U.S. military personnel. N. Engl. J. Med. 364, 2091–2100.
82.
Smits M., Houston G.C., Dippel D.W., Wielopolski P.A., Vernooij M.W., Koudstaal P.J., Hunink M.G., and van der Lugt A. (2011). Microstructural brain injury in post-concussion syndrome after minor head injury. Neuroradiology 53, 553–563.
83.
Messe A., Caplain S., Pelegrini-Issac M., Blancho S., Montreuil M., Levy R., Lehericy S., and Benali H. (2012). Structural integrity and postconcussion syndrome in mild traumatic brain injury patients. Brain Imaging Behav. 6, 283–292.
84.
Stevens M.C., Lovejoy D., Kim J., Oakes H., Kureshi I., and Witt S.T. (2012). Multiple resting state network functional connectivity abnormalities in mild traumatic brain injury. Brain Imaging Behav. 6, 293–318.
85.
Grossman E.J., Jensen J.H., Babb J.S., Chen Q., Tabesh A., Fieremans E., Xia D., Inglese M., and Grossman R.I. (2013). Cognitive impairment in mild traumatic brain injury: A longitudinal diffusional kurtosis and perfusion imaging study. AJNR Am. J. Neuroradiol. 34, 951–953.
86.
Toth A., Kovacs N., Perlaki G., Orsi G., Aradi M., Komaromy H., Ezer E., Bukovics P., Farkas O., Janszky J., Doczi T., Buki A., and Schwarcz A. (2013). Multi-modal magnetic resonance imaging in the acute and sub-acute phase of mild traumatic brain injury: Can we see the difference? J. Neurotrauma 30, 2–10.
87.
Bazarian J.J., Zhong J., Blyth B., Zhu T., Kavcic V., and Peterson D. (2007). Diffusion tensor imaging detects clinically important axonal damage after mild traumatic brain injury: A pilot study. J. Neurotrauma 24, 1447–1459.
88.
Holli K.K., Harrison L., Dastidar P., Waljas M., Liimatainen S., Luukkaala T., Ohman J., Soimakallio S., and Eskola H. (2010). Texture analysis of MR images of patients with mild traumatic brain injury. BMC. Med. Imaging 10, 8.
89.
Holli K.K., Waljas M., Harrison L., Liimatainen S., Luukkaala T., Ryymin P., Eskola H., Soimakallio S., Ohman J., and Dastidar P. (2010). Mild traumatic brain injury: tissue texture analysis correlated to neuropsychological and DTI findings. Acad. Radiol. 17, 1096–1102.
90.
Hartikainen K.M., Waljas M., Isoviita T., Dastidar P., Liimatainen S., Solbakk A.K., Ogawa K.H., Soimakallio S., Ylinen A., and Ohman J. (2010). Persistent symptoms in mild to moderate traumatic brain injury associated with executive dysfunction. J. Clin. Exp. Neuropsychol. 32, 767–774.
91.
Henry L.C., Tremblay J., Tremblay S., Lee A., Brun C., Lepore N., Theoret H., Ellemberg D., and Lassonde M. (2011). Acute and chronic changes in diffusivity measures after sports concussion. J. Neurotrauma 28, 2049–2059.
92.
Wilde E.A., McCauley S.R., Barnes A., Wu T.C., Chu Z., Hunter J.V., and Bigler E.D. (2012). Serial measurement of memory and diffusion tensor imaging changes within the first week following uncomplicated mild traumatic brain injury. Brain Imaging Behav. 6, 319–328.
93.
Mayer A.R., Ling J.M., Yang Z., Pena A., Yeo R.A., and Klimaj S. (2012). Diffusion abnormalities in pediatric mild traumatic brain injury. J. Neurosci. 32, 17961–17969.
94.
Waljas M., Lange R., Hakulinen U., Huhtala H., Dastidar P., Hartikainen K., Ohman J., and Iverson G. (2014). Biopsychosocial outcome after uncomplicated mild traumatic brain injury. J. Neurotrauma 31, 108–124.
95.
Lipton M.L., Kim N., Park Y.K., Hulkower M.B., Gardin T.M., Shifteh K., Kim M., Zimmerman M.E., Lipton R.B., and Branch C.A. (2012). Robust detection of traumatic axonal injury in individual mild traumatic brain injury patients: intersubject variation, change over time and bidirectional changes in anisotropy. Brain Imaging Behav. 6, 329–342.
96.
McAllister T.W., Ford J.C., Ji S., Beckwith J.G., Flashman L.A., Paulsen K., and Greenwald R.M. (2012). Maximum principal strain and strain rate associated with concussion diagnosis correlates with changes in corpus callosum white matter indices. Ann. Biomed. Eng. 40, 127–140.
97.
Zhang K., Johnson B., Pennell D., Ray W., Sebastianelli W., and Slobounov S. (2010). Are functional deficits in concussed individuals consistent with white matter structural alterations: combined FMRI & DTI study. Exp. Brain Res. 204, 57–70.
98.
Maugans T.A., Farley C., Altaye M., Leach J., and Cecil K.M. (2012). Pediatric sports-related concussion produces cerebral blood flow alterations. Pediatrics 129, 28–37.
99.
Messe A., Caplain S., Paradot G., Garrigue D., Mineo J.F., Soto Ares G., Ducreux D., Vignaud F., Rozec G., Desal H., Pelegrini-Issac M., Montreuil M., Benali H., and Lehericy S. (2011). Diffusion tensor imaging and white matter lesions at the subacute stage in mild traumatic brain injury with persistent neurobehavioral impairment. Hum. Brain Mapp. 32, 999–1011.
100.
Lange R.T., Iverson G.L., Brubacher J.R., Madler B., and Heran M.K. (2012). Diffusion tensor imaging findings are not strongly associated with postconcussional disorder 2 months following mild traumatic brain injury. J. Head Trauma Rehabil. 27, 188–198.
101.
Tijssen R.H., Jansen J.F., and Backes W.H. (2009). Assessing and minimizing the effects of noise and motion in clinical DTI at 3 T. Hum. Brain Mapp. 30, 2641–2655.
102.
Rae C.L., Correia M.M., Altena E., Hughes L.E., Barker R.A., and Rowe J.B. (2012). White matter pathology in Parkinson's disease: the effect of imaging protocol differences and relevance to executive function. Neuroimage 62, 1675–1684.
103.
Giedd J.N., Blumenthal J., Jeffries N.O., Castellanos F.X., Liu H., Zijdenbos A., Paus T., Evans A.C., and Rapoport J.L. (1999). Brain development during childhood and adolescence: a longitudinal MRI study. Nat. Neurosci. 2, 861–863.
104.
Giza C.C., Mink R.B., and Madikians A. (2007). Pediatric traumatic brain injury: not just little adults. Curr. Opin. Crit. Care 13, 143–152.
105.
Sowell E.R., Trauner D.A., Gamst A., and Jernigan T.L. (2002). Development of cortical and subcortical brain structures in childhood and adolescence: a structural MRI study. Dev. Med. Child Neurol. 44, 4–16.
106.
Iverson G.L. (2006). Complicated vs uncomplicated mild traumatic brain injury: acute neuropsychological outcome. Brain Inj. 20, 1335–1344.
107.
Lange R.T., Iverson G.L., and Franzen M.D. (2009). Neuropsychological functioning following complicated vs. uncomplicated mild traumatic brain injury. Brain Inj. 23, 83–91.
108.
Benson R.R., Gattu R., Sewick B., Kou Z., Zakariah N., Cavanaugh J.M., and Haacke E.M. (2012). Detection of hemorrhagic and axonal pathology in mild traumatic brain injury using advanced MRI: implications for neurorehabilitation. NeuroRehabilitation. 31, 261–279.
109.
Sharp D.J., and Ham T.E. (2011). Investigating white matter injury after mild traumatic brain injury. Curr. Opin. Neurol. 24, 558–563.
110.
Matthews S.C., Strigo I.A., Simmons A.N., O'Connell R.M., Reinhardt L.E., and Moseley S.A. (2011). A multimodal imaging study in U.S. veterans of Operations Iraqi and Enduring Freedom with and without major depression after blast-related concussion. Neuroimage 54, Suppl 1, S69–S75.
111.
Kim N., Branch C.A., Kim M., and Lipton M.L. (2013). Whole brain approaches for identification of microstructural abnormalities in individual patients: comparison of techniques applied to mild traumatic brain injury. PLoS. One 8, e59382.
112.
Wu E.X., and Cheung M.M. (2010). MR diffusion kurtosis imaging for neural tissue characterization. NMR Biomed. 23, 836–848.
113.
Jensen J.H., Helpern J.A., Ramani A., Lu H., and Kaczynski K. (2005). Diffusional kurtosis imaging: The quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn. Reson. Med. 53, 1432–1440.
114.
Browne K.D., Chen X.H., Meaney D.F., and Smith D.H. (2011). Mild traumatic brain injury and diffuse axonal injury in swine. J. Neurotrauma 28, 1747–1755.
115.
Fieremans E., Jensen J.H., and Helpern J.A. (2011). White matter characterization with diffusional kurtosis imaging. Neuroimage. 58, 177–188.
116.
Maier S.E., Vajapeyam S., Mamata H., Westin C.F., Jolesz F.A., and Mulkern R.V. (2004). Biexponential diffusion tensor analysis of human brain diffusion data. Magn. Reson. Med. 51, 321–330.
117.
Mulkern R.V., Zengingonul H.P., Robertson R.L., Bogner P., Zou K.H., Gudbjartsson H., Guttmann C.R., Holtzman D., Kyriakos W., Jolesz F.A., and Maier S.E. (2000). Multi-component apparent diffusion coefficients in human brain: Relationship to spin-lattice relaxation. Magn. Reson. Med. 44, 292–300.
118.
Pasternak O., Sochen N., Gur Y., Intrator N., and Assaf Y. (2009). Free water elimination and mapping from diffusion MRI. Magn. Reson. Med. 62, 717–730.
119.
Pasternak O., Koerte I.K., Bouix S., Fredman E., Sasaki T., Mayinger M., Helmer K.G., Johnson A.M., Holmes J.D., Forwell L.A., Skopelja E.N., Shenton M.E., and Echlin P.S. (2014). Hockey Concussion Education Project, Part 2. Microstructural white matter alterations in acutely concussed ice hockey players: a longitudinal free-water MRI study. J. Neurosurg. 120, 873–881.

Information & Authors

Information

Published In

cover image Journal of Neurotrauma
Journal of Neurotrauma
Volume 31Issue Number 14July 15, 2014
Pages: 1235 - 1248
PubMed: 24779720

History

Published online: 25 July 2014
Published in print: July 15, 2014
Published ahead of production: 29 April 2014

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Andrew B. Dodd
The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico.
Katherine Epstein
The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico.
Josef M. Ling
The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico.
Andrew R. Mayer
The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico.
Neurology Department, University of New Mexico School of Medicine, Albuquerque, New Mexico.
Department of Psychology, University of New Mexico, Albuquerque, New Mexico.

Notes

Address correspondence to:Andrew R. Mayer, PhDThe Mind Research NetworkPete and Nancy Domenici Hall1101 Yale Boulevard NEAlbuquerque, NM 87106E-mail: [email protected]

Author Disclosure Statement

No competing financial interests exist.

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/EPUB

Full Text

View Full Text

Figures

Tables

Media

Share

Share

Copy the content Link

Share on social media

Back to Top