Endocannabinoid Degradation Inhibition Improves Neurobehavioral Function, Blood–Brain Barrier Integrity, and Neuroinflammation following Mild Traumatic Brain Injury
Abstract
Traumatic brain injury (TBI) is an increasingly frequent and poorly understood condition lacking effective therapeutic strategies. Inflammation and oxidative stress (OS) are critical components of injury, and targeted interventions to reduce their contribution to injury should improve neurobehavioral recovery and outcomes. Recent evidence reveals potential protective, yet short-lived, effects of the endocannabinoids (ECs), 2-arachidonoyl glycerol (2-AG) and N-arachidonoyl-ethanolamine (AEA), on neuroinflammatory and OS processes after TBI. The aim of this study was to determine whether EC degradation inhibition after TBI would improve neurobehavioral recovery by reducing inflammatory and oxidative damage. Adult male Sprague-Dawley rats underwent a 5-mm left lateral craniotomy, and TBI was induced by lateral fluid percussion. TBI produced apnea (17±5 sec) and a delayed righting reflex (479±21 sec). Thirty minutes post-TBI, rats were randomized to receive intraperitoneal injections of vehicle (alcohol, emulphor, and saline; 1:1:18) or a selective inhibitor of 2-AG (JZL184, 16 mg/kg) or AEA (URB597, 0.3 mg/kg) degradation. At 24 h post-TBI, animals showed significant neurological and -behavioral impairment as well as disruption of blood–brain barrier (BBB) integrity. Improved neurological and -behavioral function was observed in JZL184-treated animals. BBB integrity was protected in both JZL184- and URB597-treated animals. No significant differences in ipsilateral cortex messenger RNA expression of interleukin (IL)-1β, IL-6, chemokine (C-C motif) ligand 2, tumor necrosis factor alpha, cyclooxygenase 2 (COX2), or nicotinamide adenine dinucleotide phosphate oxidase (NOX2) and protein expression of COX2 or NOX2 were observed across experimental groups. Astrocyte and microglia activation was significantly increased post-TBI, and treatment with JZL184 or URB597 blocked activation of both cell types. These findings suggest that EC degradation inhibition post-TBI exerts neuroprotective effects. Whether repeated dosing would achieve greater protection remains to be examined.
Get full access to this article
View all available purchase options and get full access to this article.
References
1.
Warden D. (2006). Military TBI during the Iraq and Afghanistan wars. J. Head Trauma Rehabil. 21, 398–402.
2.
Terrio H., Brenner L.A., Ivins B.J., Cho J.M., Helmick K., Schwab K., Scally K., Bretthauer R., and Warden D. (2009). Traumatic brain injury screening: preliminary findings in a US Army Brigade Combat Team. J. Head Trauma Rehabil. 24, 14–23.
3.
Mayorga M.A. (1997). The pathology of primary blast overpressure injury. Toxicology 121, 17–28.
4.
McKee A.C., Cantu R.C., Nowinski C.J., Hedley-Whyte E., Gavett B.E., Budson A.E., Santini V.E., Lee H.S., Kubilus C.A., and Stern R.A. (2009). PMC2945234; chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J. Neuropathol. Exp. Neurol. 68, 709–735.
5.
Faul M., Xu L., Wald M.M., and Coronado V.G. (2010). Traumatic brain injury in the United States: emergency department visits, hospitalizations and deaths, 2002–2006. Centers for Disease Control and Prevention, National Center for Injury Prevention and Control: Atlanta, GA.
6.
Elder G.A., and Cristian A. (2009). Blast-related mild traumatic brain injury: mechanisms of injury and impact on clinical care. Mt. Sinai J. Med. 76, 111–118.
7.
Okie S. (2005). Traumatic brain injury in the war zone. N. Engl. J. Med. 352, 2043–2047.
8.
Riggio S. (2011). Traumatic brain injury and its neurobehavioral sequelae. Neurol. Clin. 29, 35–47, vii.
9.
Lenzlinger P.M., Morganti-Kossmann M., Laurer H.L., and McIntosh T.K. (2001). The duality of the inflammatory response to traumatic brain injury. Mol. Neurobiol. 24, 169–181.
10.
Werner C., and Engelhard K. (2007). Pathophysiology of traumatic brain injury. Br. J. Anaesth. 99, 4–9.
11.
Schmidt O.I., Heyde C.E., Ertel W., and Stahel P.F. (2005). Closed head injury—an inflammatory disease? Brain Res. Brain Res. Rev. 48, 388–399.
12.
Chen Y., Constantini S., Trembovler V., Weinstock M., and Shohami E. (1996). An experimental model of closed head injury in mice: pathophysiology, histopathology, and cognitive deficits. J. Neurotrauma 13, 557–568.
13.
Lloyd E., Somera-Molina K., Van Eldik L.J., Watterson D.M., and Wainwright M.S. (2008). PMC2483713; suppression of acute proinflammatory cytokine and chemokine upregulation by post-injury administration of a novel small molecule improves long-term neurologic outcome in a mouse model of traumatic brain injury. J. Neuroinflammation 5, 28.
14.
Jain K.K. (2008). Neuroprotection in traumatic brain injury. Drug Discov. Today 13, 1082–1089.
15.
Loane D.J., and Faden A.I. (2010). Neuroprotection for traumatic brain injury: translational challenges and emerging therapeutic strategies. Trends Pharmacol. Sci. 31, 596–604.
16.
Cernak I., and Noble-Haeusslein L.J. (2010). Traumatic brain injury: an overview of pathobiology with emphasis on military populations. J. Cereb. Blood Flow Metab. 30, 255–266.
17.
Pitkänen A., Longhi L., Marklund N., Morales D.M., and McIntosh T.K. (2005). Neurodegeneration and neuroprotective strategies after traumatic brain injury. Drug Discov. Today Dis. Mech. 2, 409–418.
18.
Di Marzo V., Bifulco M., and De Petrocellis L. (2004). The endocannabinoid system and its therapeutic exploitation. Nat. Rev. Drug Discov. 3, 771–784.
19.
Mackie K., and Stella N. (2006). Cannabinoid receptors and endocannabinoids: evidence for new players. AAPS J. 8, E298–E306.
20.
Mechoulam R., Panikashvili D., and Shohami E. (2002). Cannabinoids and brain injury: therapeutic implications. Trends Mol. Med. 8, 58–61.
21.
Panikashvili D., Shein N.A., Mechoulam R., Trembovler V., Kohen R., Alexandrovich A., and Shohami E. (2006). The endocannabinoid 2-AG protects the blood-brain barrier after closed head injury and inhibits mRNA expression of proinflammatory cytokines. Neurobiol. Dis. 22, 257–264.
22.
Wilson R.I., and Nicoll R.A. (2002). Endocannabinoid signaling in the brain. Science 296, 678–682.
23.
Savinainen J.R., Jarvinen T., Laine K., and Laitinen J.T. (2001). Despite substantial degradation, 2-arachidonoylglycerol is a potent full efficacy agonist mediating CB(1) receptor-dependent G-protein activation in rat cerebellar membranes. Br. J. Pharmacol. 134, 664–672.
24.
Hwang J., Adamson C., Butler D., Janero D.R., Makriyannis A., and Bahr B.A. (2010). Enhancement of endocannabinoid signaling by fatty acid amide hydrolase inhibition: a neuroprotective therapeutic modality. Life Sci. 86, 615–623.
25.
Yu M., Ives D., and Ramesha C.S. (1997). Synthesis of prostaglandin E2 ethanolamide from anandamide by cyclooxygenase-2. J. Biol. Chem. 272, 21181–21186.
26.
Kozak K.R., Rowlinson S.W., and Marnett L.J. (2000). Oxygenation of the endocannabinoid, 2-arachidonylglycerol, to glyceryl prostaglandins by cyclooxygenase-2. J. Biol. Chem. 275, 33744–33749.
27.
Kozak K.R., Prusakiewicz J.J., and Marnett L.J. (2004). Oxidative metabolism of endocannabinoids by COX-2. Curr. Pharm. Des. 10, 659–667.
28.
Nadler V., Biegon A., Beit-Yannai E., Adamchik J., and Shohami E. (1995). 45Ca accumulation in rat brain after closed head injury; attenuation by the novel neuroprotective agent HU-211. Brain Res. 685, 1–11.
29.
Mauler F., Horvath E., De Vry J., Jager R., Schwarz T., Sandmann S., Weinz C., Heinig R., and Bottcher M. (2003). BAY 38-7271: a novel highly selective and highly potent cannabinoid receptor agonist for the treatment of traumatic brain injury. CNS Drug Rev. 9, 343–358.
30.
Biegon A. (2004). Cannabinoids as neuroprotective agents in traumatic brain injury. Curr. Pharm. Des. 10, 2177–2183.
31.
Tchantchou F., and Zhang Y. (2013). Selective inhibition of alpha/beta-hydrolase domain 6 attenuates neurodegeneration, alleviates blood brain barrier breakdown and improves functional recovery in a mouse model of traumatic brain injury. J. Neurotrauma 30, 565–579.
32.
Knoller N., Levi L., Shoshan I., Reichenthal E., Razon N., Rappaport Z.H., and Biegon A. (2002). Dexanabinol (HU-211) in the treatment of severe closed head injury: a randomized, placebo-controlled, phase II clinical trial. Crit. Care Med. 30, 548–554.
33.
Shohami E., Cohen-Yeshurun A., Magid L., Algali M., and Mechoulam R. (2011). Endocannabinoids and traumatic brain injury. Br. J. Pharmacol. 163, 1402–1410.
34.
Correa F., Mestre L., Molina-Holgado E., Arevalo-Martin A., Docagne F., Romero E., Molina-Holgado F., Borrell J., and Guaza C. (2005). The role of cannabinoid system on immune modulation: therapeutic implications on CNS inflammation. Mini Rev. Med. Chem. 5, 671–675.
35.
Downer E.J. (2011). Cannabinoids and innate immunity: taking a toll on neuroinflammation. ScientificWorldJournal 11, 855–865.
36.
Dixon C.E., Lyeth B.G., Povlishock J.T., Findling R.L., Hamm R.J., Marmarou A., Young H.F., and Hayes R.L. (1987). A fluid percussion model of experimental brain injury in the rat. J. Neurosurg. 67, 110–119.
37.
McIntosh T.K., Vink R., Noble L., Yamakami I., Fernyak S., Soares H., and Faden A.L. (1989). Traumatic brain injury in the rat: characterization of a lateral fluid-percussion model. Neuroscience 28, 233–244.
38.
Thompson H.J., Lifshitz J., Marklund N., Grady M.S., Graham D.I., Hovda D.A., and McIntosh T.K. (2005). Lateral fluid percussion brain injury: a 15-year review and evaluation. J. Neurotrauma 22, 42–75.
39.
Ling G.S.F., Lee E.Y., and Kalehua A.N. (2004). Traumatic brain injury in the rat using the fluid-percussion model. Curr. Protoc. Neurosci. Chapter 9, Unit 9.2.
40.
Teng S.X., and Molina P.E. (2014). Acute alcohol intoxication prolongs neuroinflammation without exacerbating neurobehavioral dysfunction following mild traumatic brain injury. J. Neurotrauma 31, 378–386.
41.
Boyko M., Ohayon S., Goldsmith T., Novack L., Novack V., Perry Z.H., Gruenbaum B.F., Gruenbaum S.E., Steiner O., Shapira Y., Teichberg V.I., and Zlotnik A. (2011). Morphological and neuro-behavioral parallels in the rat model of stroke. Behav. Brain Res. 223, 17–23.
42.
Euser A.G., Bullinger L., and Cipolla M.J. (2008). Magnesium sulphate treatment decreases blood-brain barrier permeability during acute hypertension in pregnant rats. Exp. Physiol. 93, 254–261.
43.
Xu Q., Qaum T., and Adamis A.P. (2001). Sensitive blood-retinal barrier breakdown quantitation using Evans blue. Invest. Ophthalmol. Vis. Sci. 42, 789–794.
44.
de Jonge H.J., Fehrmann R.S., de Bont E.S., Hofstra R.M., Gerbens F., Kamps W.A., de Vries E.G., van der Zee A.G., te Meerman G.J., and ter Elst A. (2007). Evidence based selection of housekeeping genes. PLoS One 2, e898.
45.
Panikashvili D., Simeonidou C., Ben-Shabat S., Hanus L., Breuer A., Mechoulam R., and Shohami E. (2001). An endogenous cannabinoid (2-AG) is neuroprotective after brain injury. Nature 413, 527–531.
46.
Maas A.I., Murray G., Henney H., Kassem N., Legrand V., Mangelus M., Muizelaar J., Stocchetti N., and Knoller N. (2006). Efficacy and safety of dexanabinol in severe traumatic brain injury: results of a phase III randomised, placebo-controlled, clinical trial. Lancet Neurol. 5, 38–45.
47.
Cravatt B.F., Demarest K., Patricelli M.P., Bracey M.H., Giang D.K., Martin B.R., and Lichtman A.H. (2001). Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc. Natl. Acad. Sci. U. S. A. 98, 9371–9376.
48.
Nagayama T., Sinor A.D., Simon R.P., Chen J., Graham S.H., Jin K., and Greenberg D.A. (1999). Cannabinoids and neuroprotection in global and focal cerebral ischemia and in neuronal cultures. J. Neurosci. 19, 2987–2995.
49.
Povlishock J.T. (1992). Traumatically induced axonal injury: pathogenesis and pathobiological implications. Brain Pathol. 2, 1–12.
50.
Lloyd E., Somera-Molina K., Van Eldik L.J., Watterson D.M., and Wainwright M.S. (2008). Suppression of acute proinflammatory cytokine and chemokine upregulation by post-injury administration of a novel small molecule improves long-term neurologic outcome in a mouse model of traumatic brain injury. J. Neuroinflammation 5, 28.
51.
Lewen A., Matz P., and Chan P.H. (2000). Free radical pathways in CNS injury. J. Neurotrauma 17, 871–890.
52.
Tyurin V.A., Tyurina Y.Y., Borisenko G.G., Sokolova T.V., Ritov V.B., Quinn P.J., Rose M., Kochanek P., Graham S.H., and Kagan V.E. (2000). Oxidative stress following traumatic brain injury in rats: quantitation of biomarkers and detection of free radical intermediates. J. Neurochem. 75, 2178–2189.
53.
Pratico D., Reiss P., Tang L.X., Sung S., Rokach J., and McIntosh T.K. (2002). Local and systemic increase in lipid peroxidation after moderate experimental traumatic brain injury. J. Neurochem. 80, 894–898.
54.
Dubois R.N., Abramson S.B., Crofford L., Gupta R.A., Simon L.S., Van De Putte L.B., and Lipsky P.E. (1998). Cyclooxygenase in biology and disease. FASEB J. 12, 1063–1073.
55.
Strauss K.I., Barbe M.F., Marshall R.M., Raghupathi R., Mehta S., and Narayan R.K. (2000). Prolonged cyclooxygenase-2 induction in neurons and glia following traumatic brain injury in the rat. J. Neurotrauma 17, 695–711.
56.
Gopez J.J., Yue H., Vasudevan R., Malik A.S., Fogelsanger L.N., Lewis S., Panikashvili D., Shohami E., Jansen S.A., Narayan R.K., and Strauss K.I. (2005). Cyclooxygenase-2-specific inhibitor improves functional outcomes, provides neuroprotection, and reduces inflammation in a rat model of traumatic brain injury. Neurosurgery 56, 590–604.
57.
Wang Z., Wei X., Liu K., Zhang X., Yang F., Zhang H., He Y., Zhu T., Li F., Shi W., Zhang Y., Xu H., Liu J., and Yi F. (2013). NOX2 deficiency ameliorates cerebral injury through reduction of complexin II-mediated glutamate excitotoxicity in experimental stroke. Free Radic. Biol. Med. 65, 942–951.
58.
Dohi K., Ohtaki H., Nakamachi T., Yofu S., Satoh K., Miyamoto K., Song D., Tsunawaki S., Shioda S., and Aruga T. (2010). Gp91phox (NOX2) in classically activated microglia exacerbates traumatic brain injury. J. Neuroinflammation 7, 41.
59.
Ridet J.L., Malhotra S.K., Privat A., and Gage F.H. (1997). Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci. 20, 570–577.
60.
Pekny M., and Nilsson M. (2005). Astrocyte activation and reactive gliosis. Glia 50, 427–434.
61.
Eng L.F., Ghirnikar R.S., and Lee Y.L. (2000). Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem. Res. 25, 1439–1451.
62.
Stella N. (2009). Endocannabinoid signaling in microglial cells. Neuropharmacology 56, Suppl 1, 244–253.
63.
Stella N. (2010). Cannabinoid and cannabinoid-like receptors in microglia, astrocytes, and astrocytomas. Glia 58, 1017–1030.
64.
Weiss J.M., Downie S.A., Lyman W.D., and Berman J.W. (1998). Astrocyte-derived monocyte-chemoattractant protein-1 directs the transmigration of leukocytes across a model of the human blood-brain barrier. J. Immunol. 161, 6896–6903.
Information & Authors
Information
Published In
![cover image Journal of Neurotrauma](/cms/10.1089/neu.2015.32.issue-5/asset/14bcca64-db14-cca6-6db1-bcca646db14b/neu.2015.32.issue-5.cover.jpg)
Copyright
Copyright 2015, Mary Ann Liebert, Inc.
History
Published in print: March 1, 2015
Published ahead of print: 19 December 2014
Published online: 28 August 2014
Topics
Authors
Author Disclosure Statement
No competing financial interests exist.
Metrics & Citations
Metrics
Citations
Export Citation
Export citation
Select the format you want to export the citations of this publication.
View Options
Access content
To read the fulltext, please use one of the options below to sign in or purchase access.⚠ Society Access
If you are a member of a society that has access to this content please log in via your society website and then return to this publication.