Brain Networks Subserving Emotion Regulation and Adaptation after Mild Traumatic Brain Injury
Abstract
The majority of patients with traumatic brain injury (TBI) sustain a mild injury (mTBI). One out of 4 patients experiences persistent complaints, despite their often normal neuropsychological test results and the absence of structural brain damage on conventional neuroimaging. Susceptibility to develop persistent complaints is thought to be affected by interindividual differences in adaptation, which can also be influenced by preinjury psychological factors. Coping is a key construct of adaptation and refers to strategies to deal with new situations and serious life events. An important element of coping is the ability to regulate emotions and stress. The prefrontal cortex is a crucial area in this regulation process, given that it exerts a top-down influence on the amygdala and other subcortical structures involved in emotion processing. However, little is known about the role of the prefrontal cortex and associated brain networks in emotion regulation and adaptation post-mTBI. Especially, the influence of prefrontal dysfunction on development of persistent postconcussive complaints is poorly understood. In this article, we aim to integrate findings from functional and structural MRI studies on this topic. Alterations within the default mode, executive and salience network have been found in relation to complaints post-mTBI. Dysfunction of the medial prefrontal cortex may impair network dynamics for emotion regulation and adaptation post-mTBI, resulting in persistent post-concussive complaints.
Get full access to this article
View all available purchase options and get full access to this article.
References
1.
Corrigan J.D., Selassie A.W., and Orman J.A. (2010). The epidemiology of traumatic brain injury. J. Head Trauma Rehabil. 25, 72–80.
2.
Tagliaferri F., Compagnone C., Korsic M., Servadei F., and Kraus J. (2006). A systematic review of brain injury epidemiology in Europe. Acta Neurochir. (Wien) 148, 255–268; discussion, 268.
3.
Benedictus M.R., Spikman J.M., and van der Naalt J. (2010). Cognitive and behavioral impairment in traumatic brain injury related to outcome and return to work. Arch. Phys. Med. Rehabil. 91, 1436–1441.
4.
Bazarian J.J., McClung J., Shah M.N., Cheng Y.T., Flesher W., and Kraus J. (2005). Mild traumatic brain injury in the United States, 1998–2000. Brain Inj. 19, 85–91.
5.
Willer B., and Leddy J.J. (2006). Management of concussion and post-concussion syndrome. Curr. Treat. Options Neurol. 8, 415–426.
6.
Spikman J.M., Timmerman M.E., Milders M.V., Veenstra W.S., and van der Naalt J. (2012). Social cognition impairments in relation to general cognitive deficits, injury severity, and prefrontal lesions in traumatic brain injury patients. J. Neurotrauma 29, 101–111.
7.
Bazarian J.J., Blyth B., and Cimpello L. (2006). Bench to bedside: evidence for brain injury after concussion—looking beyond the computed tomography scan. Acad. Emerg. Med. 13, 199–214.
8.
Iverson G.L., Lovell M.R., Smith S., and Franzen M.D. (2000). Prevalence of abnormal CT-scans following mild head injury. Brain Inj. 14, 1057–1061.
9.
Wood R.L. (2004). Understanding the ‘miserable minority’: a diasthesis-stress paradigm for post-concussional syndrome. Brain Inj. 18, 1135–1153.
10.
Metting Z., Rodiger L.A., Stewart R.E., Oudkerk M., De Keyser J., and van der Naalt J. (2009). Perfusion computed tomography in the acute phase of mild head injury: regional dysfunction and prognostic value. Ann. Neurol. 66, 809–816.
11.
Bonnelle V., Ham T.E., Leech R., Kinnunen K.M., Mehta M.A., Greenwood R.J., and Sharp D.J. (2012). Salience network integrity predicts default mode network function after traumatic brain injury. Proc. Natl. Acad. Sci. U. S. A. 109, 4690–4695.
12.
Bonnelle V., Leech R., Kinnunen K.M., Ham T.E., Beckmann C.F., De Boissezon X., Greenwood R.J., and Sharp D.J. (2011). Default mode network connectivity predicts sustained attention deficits after traumatic brain injury. J. Neurosci. 31, 13442–13451.
13.
Jilka S.R., Scott G., Ham T., Pickering A., Bonnelle V., Braga R.M., Leech R., and Sharp D.J. (2014). Damage to the salience network and interactions with the default mode network. J. Neurosci. 34, 10798–10807.
14.
Sharp D.J., Beckmann C.F., Greenwood R., Kinnunen K.M., Bonnelle V., De Boissezon X., Powell J.H., Counsell S.J., Patel M.C., and Leech R. (2011). Default mode network functional and structural connectivity after traumatic brain injury. Brain 134, 2233–2247.
15.
Sharp D.J., Scott G., and Leech R. (2014). Network dysfunction after traumatic brain injury. Nat. Rev. Neurol. 10, 156–166.
16.
Mayer A.R., Bellgowan P.S., and Hanlon F.M. (2015). Functional magnetic resonance imaging of mild traumatic brain injury. Neurosci. Biobehav. Rev. 49C, 8–18.
17.
Smith D.H. (2006). Mild traumatic brain injury and psychiatric illness. BCMJ 48, 510–514.
18.
van der Horn H.J., Spikman J.M., Jacobs B., and van der Naalt J. (2013). Postconcussive complaints, anxiety, and depression related to vocational outcome in minor to severe traumatic brain injury. Arch. Phys. Med. Rehabil. 94, 867–874.
19.
Stulemeijer M., Vos P.E., Bleijenberg G., and van der Werf S.P. (2007). Cognitive complaints after mild traumatic brain injury: things are not always what they seem. J. Psychosom. Res. 63, 637–645.
20.
Anson K., and Ponsford J. (2006). Coping and emotional adjustment following traumatic brain injury. J. Head Trauma Rehabil. 21, 248–259.
21.
Bohnen N., Jolles J., Twijnstra A., Mellink R., and Sulon J. (1992). Coping styles, cortisol reactivity, and performance in a vigilance task of patients with persistent postconcussive symptoms after a mild head injury. Int. J. Neurosci. 64, 97–105.
22.
Cole M.W., Repovs G., and Anticevic A. (2014). The frontoparietal control system: a central role in mental health. Neuroscientist 20, 652–664.
23.
Tops M., Boksem M.A., Quirin M., IJzerman H., and Koole S.L. (2014). Internally directed cognition and mindfulness: an integrative perspective derived from predictive and reactive control systems theory. Front. Psychol. 5, 429.
24.
Andrews-Hanna J.R., Smallwood J., and Spreng R.N. (2014). The default network and self-generated thought: component processes, dynamic control, and clinical relevance. Ann. N. Y. Acad. Sci. 1316, 29–52.
25.
Raichle M.E., MacLeod A.M., Snyder A.Z., Powers W.J., Gusnard D.A., and Shulman G.L. (2001). A default mode of brain function. Proc. Natl. Acad. Sci. U. S. A. 98, 676–682.
26.
Buckner R.L., Andrews-Hanna J.R., and Schacter D.L. (2008). The brain's default network: anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 1124, 1–38.
27.
Seeley W.W., Menon V., Schatzberg A.F., Keller J., Glover G.H., Kenna H., Reiss A.L., and Greicius M.D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 27, 2349–2356.
28.
Sridharan D., Levitin D.J., and Menon V. (2008). A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc. Natl. Acad. Sci. U. S. A. 105, 12569–12574.
29.
Spreng R.N., Stevens W.D., Chamberlain J.P., Gilmore A.W., and Schacter D.L. (2010). Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. Neuroimage 53, 303–317.
30.
Vossel S., Geng J.J., and Fink G.R. (2014). Dorsal and ventral attention systems: distinct neural circuits but collaborative roles. Neuroscientist 20, 150–159.
31.
Cole M.W., and Schneider W. (2007). The cognitive control network: integrated cortical regions with dissociable functions. Neuroimage 37, 343–360.
32.
Tanji J., and Hoshi E. (2008). Role of the lateral prefrontal cortex in executive behavioral control. Physiol. Rev. 88, 37–57.
33.
Shenhav A., Botvinick M.M., and Cohen J.D. (2013). The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron 79, 217–240.
34.
Uddin L.Q. (2014). Salience processing and insular cortical function and dysfunction. Nat. Rev. Neurosci. 16, 55–61.
35.
Dosenbach N.U., Visscher K.M., Palmer E.D., Miezin F.M., Wenger K.K., Kang H.C., Burgund E.D., Grimes A.L., Schlaggar B.L., and Petersen S.E. (2006). A core system for the implementation of task sets. Neuron 50, 799–812.
36.
Weissman D.H., Roberts K.C., Visscher K.M., and Woldorff M.G. (2006). The neural bases of momentary lapses in attention. Nat. Neurosci. 9, 971–978.
37.
Sonuga-Barke E.J., and Castellanos F.X. (2007). Spontaneous attentional fluctuations in impaired states and pathological conditions: a neurobiological hypothesis. Neurosci. Biobehav. Rev. 31, 977–986.
38.
Leech R., and Sharp D.J. (2013). The role of the posterior cingulate cortex in cognition and disease. Brain 137, 12–32.
39.
Leech R., Kamourieh S., Beckmann C.F., and Sharp D.J. (2011). Fractionating the default mode network: distinct contributions of the ventral and dorsal posterior cingulate cortex to cognitive control. J. Neurosci. 31, 3217–3224.
40.
de Kloet E.R., Joels M., and Holsboer F. (2005). Stress and the brain: from adaptation to disease. Nat. Rev. Neurosci. 6, 463–475.
41.
Lucassen P.J., Pruessner J., Sousa N., Almeida O.F., Van Dam A.M., Rajkowska G., Swaab D.F., and Czeh B. (2014). Neuropathology of stress. Acta Neuropathol. 127, 109–135.
42.
Craig A.D. (2009). How do you feel—now? The anterior insula and human awareness. Nat. Rev. Neurosci. 10, 59–70.
43.
Liberzon I., Phan K.L., Decker L.R., and Taylor S.F. (2003). Extended amygdala and emotional salience: a PET activation study of positive and negative affect. Neuropsychopharmacology 28, 726–733.
44.
Hermans E.J., van Marle H.J., Ossewaarde L., Henckens M.J., Qin S., van Kesteren M.T., Schoots V.C., Cousijn H., Rijpkema M., Oostenveld R., and Fernandez G. (2011). Stress-related noradrenergic activity prompts large-scale neural network reconfiguration. Science 334, 1151–1153.
45.
Veer I.M., Oei N.Y., Spinhoven P., van Buchem M.A., Elzinga B.M., and Rombouts S.A. (2011). Beyond acute social stress: increased functional connectivity between amygdala and cortical midline structures. Neuroimage 57, 1534–1541.
46.
Banks S.J., Eddy K.T., Angstadt M., Nathan P.J., and Phan K.L. (2007). Amygdala-frontal connectivity during emotion regulation. Soc. Cogn. Affect. Neurosci. 2, 303–312.
47.
Herwig U., Baumgartner T., Kaffenberger T., Bruhl A., Kottlow M., Schreiter-Gasser U., Abler B., Jancke L., and Rufer M. (2007). Modulation of anticipatory emotion and perception processing by cognitive control. Neuroimage 37, 652–662.
48.
Herwig U., Kaffenberger T., Jancke L., and Bruhl A. B. (2010). Self-related awareness and emotion regulation. Neuroimage 50, 734–741.
49.
Frank D.W., Dewitt M., Hudgens-Haney M., Schaeffer D.J., Ball B.H., Schwarz N.F., Hussein A.A., Smart L.M., and Sabatinelli D. (2014). Emotion regulation: Quantitative meta-analysis of functional activation and deactivation. Neurosci. Biobehav. Rev. 45C, 202–211.
50.
Golkar A., Johansson E., Kasahara M., Osika W., Perski A., and Savic I. (2014). The influence of work-related chronic stress on the regulation of emotion and on functional connectivity in the brain. PLoS One 9, e104550.
51.
Sylvester C.M., Corbetta M., Raichle M.E., Rodebaugh T.L., Schlaggar B.L., Sheline Y.I., Zorumski C.F., and Lenze E.J. (2012). Functional network dysfunction in anxiety and anxiety disorders. Trends Neurosci. 35, 527–535.
52.
Whitfield-Gabrieli S., and Ford J.M. (2012). Default mode network activity and connectivity in psychopathology. Annu. Rev. Clin. Psychol. 8, 49–76.
53.
Beauregard M., Paquette V., and Levesque J. (2006). Dysfunction in the neural circuitry of emotional self-regulation in major depressive disorder. Neuroreport 17, 843–846.
54.
Mochcovitch M.D., da Rocha Freire R.C., Garcia R.F., and Nardi A.E. (2014). A systematic review of fMRI studies in generalized anxiety disorder: evaluating its neural and cognitive basis. J. Affect. Disord. 167C, 336–342.
55.
Zhong M., Wang X., Xiao J., Yi J., Zhu X., Liao J., Wang W., and Yao S. (2011). Amygdala hyperactivation and prefrontal hypoactivation in subjects with cognitive vulnerability to depression. Biol. Psychol. 88, 233–242.
56.
Hamilton J.P., Furman D.J., Chang C., Thomason M.E., Dennis E., and Gotlib I. H. (2011). Default-mode and task-positive network activity in major depressive disorder: implications for adaptive and maladaptive rumination. Biol. Psychiatry 70, 327–333.
57.
Manoliu A., Meng C., Brandl F., Doll A., Tahmasian M., Scherr M., Schwerthoffer D., Zimmer C., Forstl H., Bauml J., Riedl V., Wohlschlager A.M., and Sorg C. (2014). Insular dysfunction within the salience network is associated with severity of symptoms and aberrant inter-network connectivity in major depressive disorder. Front. Hum. Neurosci. 7, 930.
58.
Sripada R.K., King A.P., Welsh R.C., Garfinkel S.N., Wang X., Sripada C.S., and Liberzon I. (2012). Neural dysregulation in posttraumatic stress disorder: evidence for disrupted equilibrium between salience and default mode brain networks. Psychosom. Med. 74, 904–911.
59.
Hahn A., Stein P., Windischberger C., Weissenbacher A., Spindelegger C., Moser E., Kasper S., and Lanzenberger R. (2011). Reduced resting-state functional connectivity between amygdala and orbitofrontal cortex in social anxiety disorder. Neuroimage 56, 881–889.
60.
Pannekoek J.N., Veer I.M., van Tol M.J., van der Werff S.J., Demenescu L.R., Aleman A., Veltman D.J., Zitman F.G., Rombouts S.A., and van der Wee N.J. (2013). Aberrant limbic and salience network resting-state functional connectivity in panic disorder without comorbidity. J. Affect. Disord. 145, 29–35.
61.
Mollayeva T., Kendzerska T., Mollayeva S., Shapiro C.M., Colantonio A., and Cassidy J.D. (2014). A systematic review of fatigue in patients with traumatic brain injury: the course, predictors and consequences. Neurosci. Biobehav. Rev. 47C, 684–716.
62.
Bryer E.J., Medaglia J.D., Rostami S., and Hillary F.G. (2013). Neural recruitment after mild traumatic brain injury is task dependent: a meta-analysis. J. Int. Neuropsychol. Soc. 19, 751–762.
63.
Shumskaya E., Andriessen T.M., Norris D.G., and Vos P.E. (2012). Abnormal whole-brain functional networks in homogeneous acute mild traumatic brain injury. Neurology 79, 175–182.
64.
Mayer A.R., Mannell M.V., Ling J., Gasparovic C., and Yeo R.A. (2011). Functional connectivity in mild traumatic brain injury. Hum. Brain Mapp. 32, 1825–1835.
65.
Sours C., Zhuo J., Janowich J., Aarabi B., Shanmuganathan K., and Gullapalli R. P. (2013). Default mode network interference in mild traumatic brain injury—a pilot resting state study. Brain Res. 1537, 201–215.
66.
Messe A., Caplain S., Pelegrini-Issac M., Blancho S., Levy R., Aghakhani N., Montreuil M., Benali H., and Lehericy S. (2013). Specific and evolving resting-state network alterations in post-concussion syndrome following mild traumatic brain injury. PLoS One 8, e65470.
67.
Sours C., Rosenberg J., Kane R., Roys S., Zhuo J., Shanmuganathan K., and Gullapalli R.P. (2015). Associations between interhemispheric functional connectivity and the Automated Neuropsychological Assessment Metrics (ANAM) in civilian mild TBI. Brain Imaging Behav. 9, 190–203.
68.
Zhu D.C., Covassin T., Nogle S., Doyle S., Russell D., Pearson R.L., Monroe J., Liszewski C.M., DeMarco J.K., and Kaufman D.I. (2015). A potential biomarker in sports-related concussion: brain functional connectivity alteration of the default-mode network measured with longitudinal resting-state fMRI over thirty days. J. Neurotrauma 32, 327–341.
69.
Johnson B., Zhang K., Gay M., Horovitz S., Hallett M., Sebastianelli W., and Slobounov S. (2012). Alteration of brain default network in subacute phase of injury in concussed individuals: resting-state fMRI study. Neuroimage 59, 511–518.
70.
Rapoport M.J., McCullagh S., Streiner D., and Feinstein A. (2003). The clinical significance of major depression following mild traumatic brain injury. Psychosomatics 44, 31–37.
71.
Lagarde E., Salmi L.R., Holm L.W., Contrand B., Masson F., Ribereau-Gayon R., Laborey M., and Cassidy J.D. (2014). Association of symptoms following mild traumatic brain injury with posttraumatic stress disorder vs postconcussion syndrome. JAMA Psychiatry 71, 1032–1040.
72.
Nathan D.E., Yeh P.H., French L.M., Harper J.F., Liu W., Wolfowitz R.D., Wang B.Q., Graner J.L., Oakes T., and Riedy G. (2014). Exploring variations in functional connectivity of the resting state default mode network in mild traumatic brain injury. Brain Connect. 5, 102–114.
73.
Chen J.K., Johnston K.M., Petrides M., and Ptito A. (2008). Neural substrates of symptoms of depression following concussion in male athletes with persisting postconcussion symptoms. Arch. Gen. Psychiatry 65, 81–89.
74.
Maki-Marttunen V., Kuusinen V., Brause M., Perakyla J., Polvivaara M., Ribeiro R., Ohman J., and Hartikainen K. (2014). Enhanced attention capture by emotional stimuli in mild traumatic brain injury. J Neurotrauma 32, 272–279.
75.
Zhou Y., Milham M.P., Lui Y.W., Miles L., Reaume J., Sodickson D.K., Grossman R.I., and Ge Y. (2012). Default-mode network disruption in mild traumatic brain injury. Radiology 265, 882–892.
76.
Stevens M.C., Lovejoy D., Kim J., Oakes H., Kureshi I., and Witt S.T. (2012). Multiple resting state network functional connectivity abnormalities in mild traumatic brain injury. Brain Imaging Behav. 6, 293–318.
77.
Newsome M.R., Scheibel R.S., Mayer A.R., Chu Z.D., Wilde E.A., Hanten G., Steinberg J.L., Lin X., Li X., Merkley T.L., Hunter J.V., Vasquez A.C., Cook L., Lu H., Vinton K., and Levin H.S. (2013). How functional connectivity between emotion regulation structures can be disrupted: preliminary evidence from adolescents with moderate to severe traumatic brain injury. J. Int. Neuropsychol. Soc. 19, 911–924.
78.
Lange R.T., Panenka W.J., Shewchuk J.R., Heran M.K., Brubacher J.R., Bioux S., Eckbo R., Shenton M.E., and Iverson G.L. (2015). Diffusion tensor imaging findings and postconcussion symptom reporting six weeks following mild traumatic brain injury. Arch. Clin. Neuropsychol. 30, 7–25.
79.
Eierud C., Craddock R.C., Fletcher S., Aulakh M., King-Casas B., Kuehl D., and LaConte S.M. (2014). Neuroimaging after mild traumatic brain injury: review and meta-analysis. Neuroimage Clin. 4, 283–294.
80.
Chu Z., Wilde E.A., Hunter J.V., McCauley S.R., Bigler E.D., Troyanskaya M., Yallampalli R., Chia J.M., and Levin H.S. (2010). Voxel-based analysis of diffusion tensor imaging in mild traumatic brain injury in adolescents. AJNR Am. J. Neuroradiol. 31, 340–346.
81.
Maller J.J., Thomson R.H., Pannek K., Rose S.E., Bailey N., Lewis P.M., and Fitzgerald P.B. (2014). The (Eigen)value of diffusion tensor imaging to investigate depression after traumatic brain injury. Hum. Brain Mapp. 35, 227–237.
82.
Rao V., Mielke M., Xu X., Smith G.S., McCann U.D., Bergey A., Doshi V., Pham D.L., Yousem D., and Mori S. (2012). Diffusion tensor imaging atlas-based analyses in major depression after mild traumatic brain injury. J. Neuropsychiatry Clin. Neurosci. 24, 309–315.
83.
Strain J., Didehbani N., Cullum C.M., Mansinghani S., Conover H., Kraut M.A., Hart J. Jr., and Womack K.B. (2013). Depressive symptoms and white matter dysfunction in retired NFL players with concussion history. Neurology 81, 25–32.
84.
Waljas M., Iverson G.L., Lange R.T., Hakulinen U., Dastidar P., Huhtala H., Liimatainen S., Hartikainen K., and Ohman J. (2015). A prospective biopsychosocial study of the persistent post-concussion symptoms following mild traumatic brain injury. J. Neurotrauma 32, 534–547.
85.
Palacios E.M., Sala-Llonch R., Junque C., Roig T., Tormos J.M., Bargallo N., and Vendrell P. (2013). Resting-state functional magnetic resonance imaging activity and connectivity and cognitive outcome in traumatic brain injury. JAMA Neurol. 70, 845–851.
86.
Palacios E.M., Sala-Llonch R., Junque C., Roig T., Tormos J.M., Bargallo N., and Vendrell P. (2012). White matter integrity related to functional working memory networks in traumatic brain injury. Neurology 78, 852–860.
87.
Pandit A.S., Expert P., Lambiotte R., Bonnelle V., Leech R., Turkheimer F.E., and Sharp D.J. (2013). Traumatic brain injury impairs small-world topology. Neurology 80, 1826–1833.
88.
Nielsen M.B., and Knardahl S. (2014). Coping strategies: a prospective study of patterns, stability, and relationships with psychological distress. Scand. J. Psychol. 55, 142–150.
89.
Lingsma H.F., Yue J.K., Maas A.I., Steyerberg E.W., and Manley G.T.; TRACK-TBI Investigators, Cooper S.R., Dams-O'Connor K., Gordon W.A., Menon D.K., Mukherjee P., Okonkwo D.O., Puccio A.M., Schnyer D.M., Valadka A.B., Vassar M. J., and Yuh E.L. (2015). Outcome prediction after mild and complicated mild traumatic brain injury: external validation of existing models and identification of new predictors using the TRACK-TBI pilot study. J. Neurotrauma 32, 83–94.
90.
Ponsford J., Cameron P., Fitzgerald M., Grant M., Mikocka-Walus A., and Schonberger M. (2012). Predictors of postconcussive symptoms 3 months after mild traumatic brain injury. Neuropsychology 26, 304–313.
Information & Authors
Information
Published In
Copyright
Copyright 2016, Mary Ann Liebert, Inc.
History
Published in print: January 1, 2016
Published online: 24 December 2015
Published ahead of print: 28 August 2015
Published ahead of production: 12 May 2015
Topics
Authors
Author Disclosure Statement
No competing financial interests exist.
Metrics & Citations
Metrics
Citations
Export Citation
Export citation
Select the format you want to export the citations of this publication.
View Options
Get Access
Access content
To read the fulltext, please use one of the options below to sign in or purchase access.⚠ Society Access
If you are a member of a society that has access to this content please log in via your society website and then return to this publication.