Trigeminal Pain Molecules, Allodynia, and Photosensitivity Are Pharmacologically and Genetically Modulated in a Model of Traumatic Brain Injury
Abstract
The pain-signaling molecules, nitric oxide synthase (NOS) and calcitonin gene-related peptide (CGRP), are implicated in the pathophysiology of post-traumatic headache (PTH) as they are for migraine. This study assessed the changes of inducible NOS (iNOS) and its cellular source in the trigeminal pain circuit, as well as the relationship between iNOS and CGRP after controlled cortical impact (CCI) injury in mice. The effects of a CGRP antagonist (MK8825) and sumatriptan on iNOS messenger RNA (mRNA) and protein were compared to vehicle at 2 weeks postinjury. Changes in CGRP levels in the trigeminal nucleus caudalis (TNC) in iNOS knockouts with CCI were compared to wild-type (WT) mice at 3 days and 2 weeks post injury. Trigeminal allodynia and photosensitivity were measured. MK8825 and sumatriptan increased allodynic thresholds in CCI groups compared to vehicle (p < 0.01), whereas iNOS knockouts were not different from WT. Photosensitivity was attenuated in MK8825 mice and iNOS knockouts compared to WT (p < 0.05). MK8825 and sumatriptan reduced levels of iNOS mRNA and iNOS immunoreactivity in the TNC and ganglia (p < 0.01). Differences in iNOS cellular localization were found between the trigeminal ganglia and TNC. Although the knockout of iNOS attenuated CGRP at 3 days (p < 0.05), it did not reduce CGRP at 2 weeks. CGRP immunoreactivity was found in the meningeal layers post-CCI, while negligible in controls. Findings support the importance of interactions between CGRP and iNOS in mediating allodynia, as well as the individual roles in photosensitivity. Mitigating prolonged increases in CGRP may be a promising intervention for treating acute PTH.
Get full access to this article
View all available purchase options and get full access to this article.
References
1.
Lucas S., Hoffman J.M., Bell K.R. and Dikmen S. (2014). A prospective study of prevalence and characterization of headache following mild traumatic brain injury. Cephalalgia 34, 93–102.
2.
Headache Classification Committee of the International Headache Society. (2013). The International Classification of Headache Disorders, 3rd ed. (beta version). Cephalalgia 33, 629–808.
3.
Theeler B., Lucas S., Riechers R.G. 2nd, and Ruff R.L. (2013). Post-traumatic headaches in civilians and military personnel: a comparative, clinical review. Headache 53, 881–900.
4.
Theeler B.J., Flynn F.G., and Erickson J.C. (2010). Headaches after concussion in US soldiers returning from Iraq or Afghanistan. Headache 50, 1262–1272.
5.
Ofek H., and Defrin R. (2007). The characteristics of chronic central pain after traumatic brain injury. Pain 131, 330–340.
6.
Burstein R., Yarnitsky D., Goor-Aryeh I., Ransil B.J., and Bajwa Z.H. (2000). An association between migraine and cutaneous allodynia. Ann. Neurol. 47, 614–624.
7.
Burstein R., Jakubowski M., Garcia-Nicas E., Kainz V., Bajwa Z., Hargreaves R., Becerra L., and Borsook D. (2010). Thalamic sensitization transforms localized pain into widespread allodynia. Ann. Neurol. 68, 81–91.
8.
Elliott M.B., Oshinsky M.L., Amenta P.S., Awe O.O., and Jallo J.I. (2012). Nociceptive neuropeptide increases and periorbital allodynia in a model of traumatic brain injury. Headache 52, 966–984.
9.
Macolino C.M., Daiutolo B.V., Alberston B.K., and Elliott M.B. (2014). Mechanical alloydnia induced by traumatic brain injury is independent of restraint stress. J. Neurosci. Methods 226, 139–146.
10.
Recober A., Kuburas A., Zhang Z., Wemmie J.A., Anderson M.G., and Russo A.F. (2009). Role of calcitonin gene-related peptide in light-aversive behavior: implications for migraine. J. Neurosci. 29, 8798–8804.
11.
Dussor G., Yan J., Xie J.Y., Ossipov M.H., Dodick D.W., and Porreca F. (2014). Targeting TRP channels for novel migraine therapeutics. ACS Chem. Neurosci. 5, 1085–1096.
12.
Goadsby P.J., Charbit A.R., Andreou A.P., Akerman S., and Holland P.R. (2009). Neurobiology of migraine. Neuroscience 161, 327–341.
13.
Levy D., and Burstein R. (2011). The vascular theory of migraine: leave it or love it? Ann Neurol. 69, 600–601.
14.
Bernstein C., and Burstein R. (2012). Sensitization of the trigeminovascular pathway: perspective and implications to migraine pathophysiology. J. Clin. Neurol. 8, 89–99.
15.
Benromano T., Defrin R., Ahn A.H., Zhao J., Pick C.G., and Levy D. (2015). Mild closed head injury promotes a selective trigeminal hypernociception: Implications for the acute emergence of post-traumatic headache. Eur. J. Pain 19, 621–628.
16.
Feliciano D.P., Sahbaie P., Shi X., Klukinov M., Clark J.D., and Yeomans D.C. (2014). Nociceptive sensitization and BDNF up-regulation in a rat model of traumatic brain injury. Neurosci. Lett. 583, 55–59.
17.
Goadsby P.J., Edvinsson L., and Ekman R. (1990). Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann. Neurol. 28, 183–187.
18.
Recober A., and Goadsby P.J. (2010). Calcitonin gene-related peptide: a molecular link between obesity and migraine? Drug News Perspect. 23, 112–117.
19.
Edvinsson L., Mulder H., Goadsby P.J., and Uddman R. (1998). Calcitonin gene-related peptide and nitric oxide in the trigeminal ganglion: cerebral vasodilatation from trigeminal nerve stimulation involves mainly calcitonin gene-related peptide. J. Auton. Nerv. Syst. 70, 15–22.
20.
Olesen J. (2008). The role of nitric oxide (NO) in migraine, tension-type headache and cluster headache. Pharmacol. Ther. 120, 157–171.
21.
Recober A., and Russo A.F. (2009). Calcitonin gene-related peptide: an update on the biology. Curr. Opin. Neurol. 22, 241–246.
22.
Eberhardt M., Dux M., Namer B., Miljkovic J., Cordasic N., Will C., Kichko T.I., de la Roche J., Fischer M., Suarez S.A., Bikiel D., Dorsch K., Leffler A., Babes A., Lampert A., Lennerz J.K., Jacobi J., Marti M.A., Doctorovich F., Hogestatt E.D., Zygmunt P.M., Ivanovic-Burmazovic I., Messlinger K., Reeh P., and Filipovic M.R. (2014). H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP signalling pathway. Nat. Commun. 5, 4381.
23.
Hoffmann J., and Goadsby P.J. (2012). New agents for acute treatment of migraine: CGRP receptor antagonists, iNOS inhibitors. Curr. Treat. Options Neurol. 14, 50–59.
24.
Russo A.F. (2015). Calcitonin gene-related peptide (CGRP): a new target for migraine. Annu. Rev. Pharmacol. Toxicol. 55, 533–552.
25.
Olesen J. (2010). Nitric oxide-related drug targets in headache. Neurotherapeutics 7, 183–190.
26.
Akerman S., Williamson D.J., Kaube H., and Goadsby P.J. (2002). Nitric oxide synthase inhibitors can antagonize neurogenic and calcitonin gene-related peptide induced dilation of dural meningeal vessels. Br. J. Pharmacol. 137, 62–68.
27.
Oshinsky M.L., and Gomonchareonsiri S. (2007). Episodic dural stimulation in awake rats: a model for recurrent headache. Headache 47, 1026–1036.
28.
Bates E.A., Nikai T., Brennan K.C., Fu Y.H., Charles A.C., Basbaum A.I., Ptacek L.J., and Ahn A.H. (2010). Sumatriptan alleviates nitroglycerin-induced mechanical and thermal allodynia in mice. Cephalalgia 30, 170–178.
29.
De Alba J., Clayton N.M., Collins S.D., Colthup P., Chessell I., and Knowles R.G. (2006). GW274150, a novel and highly selective inhibitor of the inducible isoform of nitric oxide synthase (iNOS), shows analgesic effects in rat models of inflammatory and neuropathic pain. Pain 120, 170–181.
30.
Tanabe M., Nagatani Y., Saitoh K., Takasu K., and Ono H. (2009). Pharmacological assessments of nitric oxide synthase isoforms and downstream diversity of NO signaling in the maintenance of thermal and mechanical hypersensitivity after peripheral nerve injury in mice. Neuropharmacology 56, 702–708.
31.
MacMicking J.D., Nathan C., Hom G., Chartrain N., Fletcher D.S., Trumbauer M., Stevens K., Xie Q.W., Sokol K., Hutchinson N., Mudget J.S., and Chen H. (1995). Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell 81, 641–650.
32.
Cole J.T., Yarnell A., Kean W.S., Gold E., Lewis B., Ren M., McMullen D.C., Jacobowitz D.M., Pollard H.B., O‘Neill J.T., Grunberg N.E., Dalgard C.L., Frank J.A. and Watson W.D. (2011). Craniotomy: true sham for traumatic brain injury, or a sham of a sham? J. Neurotrauma 28, 359–369.
33.
Flexman A.M., Ng J.L., and Gelb A.W. (2010). Acute and chronic pain following craniotomy. Curr. Opin. Anaesthesiol. 23, 551–557.
34.
Elliott M.B., Tuma R.F., Amenta P.S., Barbe M.F., and Jallo J.I. (2011). Acute effects of a selective cannabinoid-2 receptor agonist on neuroinflammation in a murine model of traumatic brain injury. J. Neurotrauma 28, 973–981.
35.
Amenta P.S., Jallo J.I., Tuma R.F., and Elliott M.B. (2012). A cannabinoid type 2 receptor agonist attenuates blood-brain barrier damage and neurodegeneration in a murine model of traumatic brain injury. J. Neurosci. Res. 90, 2293–2305.
36.
Elliott M.B., Tuma R.F., Amenta P.S., Barbe M.F., and Jallo J.I. (2011). Acute effects of a selective cannabinoid-2 receptor agonist on neuroinflammation in a model of traumatic brain injury. J. Neurotrauma 28, 973–981.
37.
Bell I.M., Stump C.A., Gallicchio S.N., Staas D.D., Zartman C.B., Moore E.L., Sain N., Urban M., Bruno J.G., Calamari A., Kemmerer A.L., Mosser S.D., Fandozzi C., White R.B., Zrada M.M., Selnick H.G., Graham S.L., Vacca J.P., Kane S.A., and Salvatore C.A. (2012). MK-8825: a potent and selective CGRP receptor antagonist with good oral activity in rats. Bioorg. Med. Chem. Lett. 22, 3941–3945.
38.
Shivanand K., Raju S., Nizamuddin S. and Jayakar B. (2011). In vivo bioavailability studies of sumatriptan succinate buccal tablets. Daru 19, 224–230.
39.
Wang X., Fang Y., Liang J., Yin Z., Miao J., and Luo N. (2010). Selective inhibition of 5-HT7 receptor reduces CGRP release in an experimental model for migraine. Headache 50, 579–587.
40.
Dobson C.F., Tohyama Y., Diksic M., and Hamel E. (2004). Effects of acute or chronic administration of anti-migraine drugs sumatriptan and zolmitriptan on serotonin synthesis in the rat brain. Cephalalgia 24, 2–11.
41.
Chaplan S.R., Bach F.W., Pogrel J.W., Chung J.M., and Yaksh T.L. (1994). Quantitative assessment of tactile allodynia in the rat paw. J. Neurosci. Methods 53, 55–63.
42.
Russo A.F., Kuburas A., Kaiser E.A., Raddant A.C. and Recober A. (2009). A potential preclinical migraine model: CGRP-sensitized mice. Mol. Cell Pharmacol. 1, 264–270.
43.
Mouton P.R. (ed). (2002). Principles and Practices of Unbiased Stereology. The Johns Hopkins University Press: Baltimore, MD.
44.
Hazra A., Macolino C., Elliott M.B., and Chin J. (2014). Delayed thalamic astrocytosis and disrupted sleep-wake patterns in a preclinical model of traumatic brain injury. J. Neurosci. Res. 92, 1434–1445.
45.
Bogdan C. (2015). Nitric oxide synthase in innate and adaptive immunity: an update. Trends Immunol. 36, 161–178.
46.
Seiler K., Nusser J.I., Lennerz J.K., Neuhuber W.L., and Messlinger K. (2013). Changes in calcitonin gene-related peptide (CGRP) receptor component and nitric oxide receptor (sGC) immunoreactivity in rat trigeminal ganglion following glyceroltrinitrate pretreatment. J. Headache Pain 14, 74.
47.
Lennerz J.K., Ruhle V., Ceppa E.P., Neuhuber W.L., Bunnett N.W., Grady E.F., and Messlinger K. (2008). Calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), and calcitonin gene-related peptide (CGRP) immunoreactivity in the rat trigeminovascular system: differences between peripheral and central CGRP receptor distribution. J. Comp. Neurol. 507, 1277–1299.
48.
Onyszchuk G., LeVine S.M., Brooks W.M., and Berman N.E. (2009). Post-acute pathological changes in the thalamus and internal capsule in aged mice following controlled cortical impact injury: a magnetic resonance imaging, iron histochemical, and glial immunohistochemical study. Neurosci. Lett. 452, 204–208.
49.
Mayer C.L., Huber B.R., and Peskind E. (2013). Traumatic brain injury, neuroinflammation, and post-traumatic headaches. Headache 53, 1523–1530.
50.
Woolf C.J., and Salter M.W. (2000). Neuronal plasticity: increasing the gain in pain. Science 288, 1765–1769.
51.
Amenta P.S., Jallo J.I., Tuma R.F., Hooper D.C., and Elliott M.B. (2014). Cannabinoid receptor type-2 stimulation, blockade, and deletion alters the vascular inflammatory responses to traumatic brain injury. J. Neuroinflamm. 11, 191.
52.
Benromano T., Defrin R., Ahn A.H., Zhao J., Pick C.G., and Levy D. (2015). Mild closed head injury promotes a selective trigeminal hypernociception: Implications for the acute emergence of post-traumatic headache. Eur. J. Pain. 19, 621–628.
53.
Levy D., Kainz V., Burstein R., and Strassman A.M. (2012). Mast cell degranulation distinctly activates trigemino-cervical and lumbosacral pain pathways and elicits widespread tactile pain hypersensitivity. Brain Behav. Immun. 26, 311–317.
54.
Antonova M., Wienecke T., Olesen J., and Ashina M. (2012). Prostaglandin E(2) induces immediate migraine-like attack in migraine patients without aura. Cephalalgia 32, 822–833.
55.
Kawabata A. (2011). Prostaglandin E2 and pain—an update. Biol. Pharm. Bull. 34, 1170–1173.
56.
Petraglia A.L., Maroon J.C., and Bailes J.E. (2012). From the field of play to the field of combat: a review of the pharmacological management of concussion. Neurosurgery 70, 1520–1533; discussion, 1533.
57.
Hughes F.J., Buttery L.D., Hukkanen M.V., O'Donnell A., Maclouf J., and Polak J.M. (1999). Cytokine-induced prostaglandin E2 synthesis and cyclooxygenase-2 activity are regulated both by a nitric oxide-dependent and -independent mechanism in rat osteoblasts in vitro. J. Biol. Chem. 274, 1776–1782.
58.
Bartfai T. (2001). Immunology. Telling the brain about pain. Nature 410, 425, 427.
59.
Neeb L., Hellen P., Boehnke C., Hoffmann J., Schuh-Hofer S., Dirnagl U., and Reuter U. (2011). IL-1beta stimulates COX-2 dependent PGE(2) synthesis and CGRP release in rat trigeminal ganglia cells. PLoS One 6, e17360.
60.
DeLeo J.A., and Yezierski R.P. (2001). The role of neuroinflammation and neuroimmune activation in persistent pain. Pain 90, 1–6.
61.
Scholz J., and Woolf C.J. (2007). The neuropathic pain triad: neurons, immune cells and glia. Nat. Neurosci. 10, 1361–1368.
62.
Watkins L.R., Milligan E.D., and Maier S.F. (2001). Glial activation: a driving force for pathological pain. Trends Neurosci. 24, 450–455.
63.
Wieseler-Frank J., Maier S.F., and Watkins L.R. (2004). Glial activation and pathological pain. Neurochem. Int. 45, 389–395.
64.
Kroncke K.D., Fehsel K., and Kolb-Bachofen V. (1998). Inducible nitric oxide synthase in human diseases. Clin. Exp. Immunol. 113, 147–156.
65.
Bechade C., Colasse S., Diana M.A., Rouault M., and Bessis A. (2014). NOS2 expression is restricted to neurons in the healthy brain but is triggered in microglia upon inflammation. Glia 62, 956–963.
66.
Cherian L., Hlatky R., and Robertson C.S. (2004). Nitric oxide in traumatic brain injury. Brain Pathol. 14, 195–201.
67.
Gahm C., Holmin S., Rudehill S., and Mathiesen T. (2005). Neuronal degeneration and iNOS expression in experimental brain contusion following treatment with colchicine, dexamethasone, tirilazad mesylate and nimodipine. Acta Neurochir. (Wien) 147, 1071–1084; discussion, 1084.
68.
Wada K., Chatzipanteli K., Kraydieh S., Busto R., and Dietrich W.D. (1998). Inducible nitric oxide synthase expression after traumatic brain injury and neuroprotection with aminoguanidine treatment in rats. Neurosurgery 43, 1427–1436.
69.
Bellamy J., Bowen E.J., Russo A.F., and Durham P.L. (2006). Nitric oxide regulation of calcitonin gene-related peptide gene expression in rat trigeminal ganglia neurons. Eur. J. Neurosci. 23, 2057–2066.
70.
Dieterle A., Fischer M.J., Link A.S., Neuhuber W.L., and Messlinger K. (2011). Increase in CGRP- and nNOS-immunoreactive neurons in the rat trigeminal ganglion after infusion of an NO donor. Cephalalgia 31, 31–42.
71.
Maihofner C., Euchenhofer C., Tegeder I., Beck K.F., Pfeilschifter J., and Geisslinger G. (2000). Regulation and immunhistochemical localization of nitric oxide synthases and soluble guanylyl cyclase in mouse spinal cord following nociceptive stimulation. Neurosci. Lett. 290, 71–75.
72.
Fischer M.J. (2010). Calcitonin gene-related peptide receptor antagonists for migraine. Expert Opin. Investig. Drugs 19, 815–823.
73.
May A., and Goadsby P.J. (1999). The trigeminovascular system in humans: pathophysiologic implications for primary headache syndromes of the neural influences on the cerebral circulation. J. Cereb. Blood Flow Metab. 19, 115–127.
74.
Liu Y., Broman J., Edvinsson L. (2008). Central projections of the sensory innervation of the rat middle meningeal artery. Brain Res. 1208, 103–110.
75.
Burstein R., Zhang X., Levy D., Aoki K.R., and Brin M.F. (2014). Selective inhibition of meningeal nociceptors by botulinum neurotoxin type A: therapeutic implications for migraine and other pains. Cephalalgia 34, 853–869.
76.
Li J., Vause C.V., and Durham P.L. (2008). Calcitonin gene-related peptide stimulation of nitric oxide synthesis and release from trigeminal ganglion glial cells. Brain Res. 1196, 22–32.
77.
Feistel S., Albrecht S., and Messlinger K. (2013). The calcitonin gene-related peptide receptor antagonist MK-8825 decreases spinal trigeminal activity during nitroglycerin infusion. J. Headache Pain 14, 93.
78.
Burstein R., Yamamura H., Malick A., and Strassman A.M. (1998). Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons. J. Neurophysiol. 79, 964–982.
79.
Goadsby P.J., and Akerman S. (2012). The trigeminovascular system does not require a peripheral sensory input to be activated—migraine is a central disorder. Focus on ‘Effect of cortical spreading depression on basal and evoked traffic in the trigeminovascular sensory system’. Cephalalgia 32, 3–5.
80.
Hall E.D., Bryant Y.D., Cho W., and Sullivan P.G. (2008). Evolution of post-traumatic neurodegeneration after controlled cortical impact traumatic brain injury in mice and rats as assessed by the de Olmos silver and fluorojade staining methods. J. Neurotrauma 25, 235–247.
81.
Hall K.D., and Lifshitz J. (2010). Diffuse traumatic brain injury initially attenuates and later expands activation of the rat somatosensory whisker circuit concomitant with neuroplastic responses. Brain Res. 1323, 161–173.
82.
Edelmayer R.M., Vanderah T.W., Majuta L., Zhang E.T., Fioravanti B., De Felice M., Chichorro J.G., Ossipov M.H., King T., Lai J., Kori S.H., Nelsen A.C., Cannon K.E., Heinricher M.M., and Porreca F. (2009). Medullary pain facilitating neurons mediate allodynia in headache-related pain. Ann. Neurol. 65, 184–193.
83.
Noseda R., Kainz V., Borsook D., and Burstein R. (2014). Neurochemical pathways that converge on thalamic trigeminovascular neurons: potential substrate for modulation of migraine by sleep, food intake, stress and anxiety. PLoS One 9, e103929.
84.
Bourin M., and Hascoet M. (2003). The mouse light/dark box test. Eur. J. Pharmacol. 463, 55–65.
85.
Thompson S., Recober A., Vogel T.W., Kuburas A., Owens J.A., Sheffield V.C., Russo A.F., and Stone E.M. (2010). Light aversion in mice depends on nonimage-forming irradiance detection. Behav. Neurosci. 124, 821–827.
86.
Kaiser E.A., Kuburas A., Recober A., and Russo A.F. (2012). Modulation of CGRP-induced light aversion in wild-type mice by a 5-HT(1B/D) agonist. J. Neurosci. 32, 15439–15449.
87.
Lenaerts M.E. (2008). Post-traumatic headache: from classification challenges to biological underpinnings. Cephalalgia 28 Suppl. 1, 12–15.
88.
Phares T.W., Kean R.B., Mikheeva T., and Hooper D.C. (2006). Regional differences in blood-brain barrier permeability changes and inflammation in the apathogenic clearance of virus from the central nervous system. J. Immunol. 176, 7666–7675.
Information & Authors
Information
Published In
Copyright
Copyright 2016, Mary Ann Liebert, Inc.
History
Published in print: April 15, 2016
Published online: 11 April 2016
Published ahead of print: 17 December 2015
Published ahead of production: 16 October 2015
Topics
Authors
Author Disclosure Statement
No competing financial interests exist.
Metrics & Citations
Metrics
Citations
Export Citation
Export citation
Select the format you want to export the citations of this publication.
View Options
Get Access
Access content
To read the fulltext, please use one of the options below to sign in or purchase access.⚠ Society Access
If you are a member of a society that has access to this content please log in via your society website and then return to this publication.