Neurodegeneration in the Spinal Ventral Horn Prior to Motor Impairment in Cervical Spondylotic Myelopathy
Abstract
Remote gray matter pathology has been suggested rostral to the compression site in cervical spondylotic myelopathy (CSM). We therefore assessed neurodegeneration in the gray matter ventral and dorsal horns. Twenty patients with CSM and 18 healthy subjects underwent a high-resolution structural and diffusion magnetic resonance imaging protocol at vertebra C2/C3. Patients received comprehensive clinical assessments. T2*-weighted data provided cross-sectional area measurements of gray matter ventral and dorsal horns to identify atrophy. At the identical location, mean diffusivity (MD) and fractional anisotropy (FA) determined the microstructural integrity. Finally, the relationships between neurodegeneration occurring in the gray and white matter and clinical impairment were investigated. Patients suffered from mild-to-moderate CSM with mainly sensory impairment. In the ventral horns, cross-sectional area was not reduced (p = 0.863) but MD was increased (p = 0.045). The magnitude of MD changes within the ventral horn was associated with white matter diffusivity changes (MD: p = 0.013; FA: p = 0.028) within the lateral corticospinal tract. In contrast, dorsal horn cross-sectional area was reduced by 16.0% (p < 0.001) without alterations in diffusivity indices, compared with controls. No associations between the magnitude of ventral and dorsal horn neurodegeneration and clinical impairment were evident. Focal cord gray matter pathology is evident remote to the compression site in vivo in CSM patients. Microstructural changes in the ventral horns (i.e., motoneurons) related to corticospinal tract integrity in the absence of atrophy and marked motor impairment. Dorsal horn atrophy corresponded to main clinical representation of sensory impairment. Thus, neuroimaging biomarkers of cord gray matter integrity reveal focal neurodegeneration prior to marked clinical impairment and thus could serve as predictors of ensuing impairment in CSM patients.
Get full access to this article
View all available purchase options and get full access to this article.
References
1.
Moore A.P. and Blumhardt L.D. (1997). A prospective survey of the causes of non-traumatic spastic paraparesis and tetraparesis in 585 patients. Spinal Cord 35, 361–367.
2.
van Middendorp J.J., Pouw M.H., Hayes K.C., Williams R., Chhabra H.S., Putz C., Veth R.P.H., Geurts a C.H., Aito S., Kriz J., McKinley W., van Asbeck F.W. a, Curt A., Fehlings M.G., Van de Meent H., and Hosman A.J.; EM-SCI Study Group Collaborators. (2010). Diagnostic criteria of traumatic central cord syndrome. Part 2: a questionnaire survey among spine specialists. Spinal Cord 48, 657–663.
3.
Karadimas S.K., Gatzounis G., and Fehlings M.G. (2014). Pathobiology of cervical spondylotic myelopathy. Eur. Spine J. 24, 132–138.
4.
Nakano K.K., Schoene W.C., Baker R.A., and Dawson D.M. (1978). The cervical myelopathy associated with rheumatoid arthritis: analysis of patients, with 2 postmortem cases. Ann. Neurol. 3, 144–151.
5.
Ito T., Oyanagi K., Takahashi H., Takahashi H.E., and Ikuta F. (1996). Cervical spondylotic myelopathy. Clinicopathologic study on the progression pattern and thin myelinated fibers of the lesions of seven patients examined during complete autopsy. Spine (Phila. Pa. 1976). 21, 827–833.
6.
Yu W.R., Liu T., Kiehl T.R., and Fehlings M.G. (2011). Human neuropathological and animal model evidence supporting a role for Fas-mediated apoptosis and inflammation in cervical spondylotic myelopathy. Brain 134, 1277–1292.
7.
Grabher P., Mohammadi S., Trachsler A., Friedl S., David G., Sutter R., Weiskopf N., Thompson A.J., Curt A., and Freund P. (2016). Voxel-based analysis of gray and white matter degeneration in cervical spondylotic myelopathy. Sci. Rep. 6, 24636.
8.
Salamon N., Ellingson B.M., Nagarajan R., Gebara N., Thomas A., and Holly L.T. (2013). Proton magnetic resonance spectroscopy of human cervical spondylosis at 3T. Spinal Cord 51, 558–563.
9.
Ellingson B.M., Salamon N., Hardy A.J., and Holly L.T. (2015). Prediction of neurological impairment in cervical spondylotic myelopathy using a combination of diffusion mri and proton mr spectroscopy. PLoS One 10, 1–14.
10.
Martin A.R., De Leener B., Cohen-Adad J., Aleksanderek I., Cadotte D.W., Kalsi-Ryan S., Tetreault L., Crawley A., Ginsberg H.J., and Fehlings M.G. (2016). 163 Microstructural MRI quantifies tract-specific injury and correlates with global disability and focal neurological deficits in degenerative cervical myelopathy. Neurosurgery 63, 165.
11.
Goncalves S., Stevens T.K., Doyle-Pettypiece P., Bartha R., and Duggal N. (2016). N-acetylaspartate in the motor and sensory cortices following functional recovery after surgery for cervical spondylotic myelopathy. J. Neurosurg. Spine 25, 1–8.
12.
Kowalczyk I., Duggal N., and Bartha R. (2012). Proton magnetic resonance spectroscopy of the motor cortex in cervical myelopathy. Brain 135, 461–468.
13.
Martin A.R., Aleksanderek I., Cohen-Adad J., Tarmohamed Z., Tetreault L., Smith N., Cadotte D.W., Crawley A., Ginsberg H., Mikulis D.J., and Fehlings M.G. (2016). Translating state-of-the-art spinal cord MRI techniques to clinical use: a systematic review of clinical studies utilizing DTI, MT, MWF, MRS, and fMRI. NeuroImage Clin. 10, 192–238.
14.
Cohen-Adad J., El Mendili M.M., Lehericy S., Pradat P.F., Blancho S., Rossignol S., and Benali H. (2011). Demyelination and degeneration in the injured human spinal cord detected with diffusion and magnetization transfer MRI. Neuroimage 55, 1024–1033.
15.
Gouw A.A., Seewann A., Vrenken H., van der Flier W.M., Rozemuller J.M., Barkhof F., Scheltens P., and Geurts J.J. (2008). Heterogeneity of white matter hyperintensities in Alzheimer's disease: post-mortem quantitative MRI and neuropathology. Brain 131, 3286–3298.
16.
Schmierer K., Wheeler-Kingshott C. A., Boulby P. a, Scaravilli F., Altmann D.R., Barker G.J., Tofts P.S., and Miller D.H. (2007). Diffusion tensor imaging of post mortem multiple sclerosis brain. Neuroimage 35, 467–477.
17.
Karadimas S.K., Laliberte A.M., Tetreault L., Chung Y.S., Arnold P., Foltz W.D., and Fehlings M.G. (2015). Riluzole blocks perioperative ischemia-reperfusion injury and enhances postdecompression outcomes in cervical spondylotic myelopathy. Sci. Transl. Med. 7, 316ra194.
18.
Fehlings M.G., Wilson J.R., Karadimas S.K., Arnold P.M., and Kopjar B. (2013). Clinical evaluation of a neuroprotective drug in patients with cervical spondylotic myelopathy undergoing surgical treatment. Spine (Phila. Pa. 1976). 38, S68–S75.
19.
Weiskopf N., Mohammadi S., Lutti A., and Callaghan M.F. (2015). Advances in MRI-based computational neuroanatomy: from morphometry to in-vivo histology. Curr. Opin. Neurol. 28, 313–322.
20.
Benzel E.C., Lancon J., Kesterson L., and Hadden T. (1991). Cervical laminectomy and dentate ligament section for cervical spondylotic myelopathy. J. Spinal Disord. 4, 286–295.
21.
Kirshblum S.C., Waring W., Biering-Sorensen F., Burns S.P., Johansen M., Schmidt-Read M., Donovan W., Graves D., Jha A., Jones L., Mulcahey M.J., and Krassioukov A. (2011). Reference for the 2011 revision of the International Standards for Neurological Classification of Spinal Cord Injury. J. Spinal Cord Med. 34, 547–554.
22.
Itzkovich M., Gelernter I., Biering-Sorensen F., Weeks C., Laramee M.T., Craven B.C., Tonack M., Hitzig S.L., Glaser E., Zeilig G., Aito S., Scivoletto G., Mecci M., Chadwick R.J., El Masry W.S., Osman A., Glass C. a, Silva P., Soni B.M., Gardner B.P., Savic G., Bergström E.M., Bluvshtein V., Ronen J., and Catz A. (2007). The Spinal Cord Independence Measure (SCIM) version III: reliability and validity in a multi-center international study. Disabil. Rehabil. 29, 1926–1933.
23.
Kalsi-Ryan S., Curt A., Verrier M.C., and Fehlings M.G. (2012). Development of the Graded Redefined Assessment of Strength, Sensibility and Prehension (GRASSP): reviewing measurement specific to the upper limb in tetraplegia. J. Neurosurg. Spine 17, 65–76.
24.
Heidemann R.M., Feiweier T., Anwander A., Fasano F., Pfeuffer J., and Turner R. (2009). High resolution single-shot diffusion-weighted imaging with a combination of zoomed EPI and parallel imaging. Poster presented at ISMRM Annual Meeting, Honolulu, Hawaii.
25.
Morelli J.N., Runge V.M., Feiweier T., Kirsch J.E., Williams K.W., and Attenberger U.I. (2010). Evaluation of a modified Stejskal-Tanner diffusion encoding scheme, permitting a marked reduction in TE, in diffusion-weighted imaging of stroke patients at 3 T. Invest. Radiol. 45, 29–35.
26.
Ashburner J. and Ridgway G.R. (2013). Symmetric diffeomorphic modeling of longitudinal structural MRI. Front. Neurosci. 6, 1–19.
27.
Yiannakas M.C., Kearney H., Samson R.S., Chard D.T., Ciccarelli O., Miller D.H., and Wheeler-Kingshott C.A. (2012). Feasibility of gray matter and white matter segmentation of the upper cervical cord in vivo: a pilot study with application to magnetisation transfer measurements. Neuroimage 63, 1054–1059.
28.
Mohammadi S., Möller H.E., Kugel H., Müller D.K., and Deppe M. (2010). Correcting eddy current and motion effects by affine whole-brain registrations: evaluation of three-dimensional distortions and comparison with slicewise correction. Magn. Reson. Med. 64, 1047–1056.
29.
Mohammadi S., Freund P., Feiweier T., Curt A., and Weiskopf N. (2013). The impact of post-processing on spinal cord diffusion tensor imaging. Neuroimage 70, 377–85.
30.
De Leener B., Lévy S., Dupont S.M., Fonov V.S., Stikov N., Louis Collins D., Callot V., and Cohen-Adad J. (2016). SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. Neuroimage 145(Pt A), 24–43.
31.
Mohammadi S., Keller S.S., Glauche V., Kugel H., Jansen A., Hutton C., Flöel A., and Deppe M. (2012). The influence ofspatial registration on eetection of cerebral Asymmetries Using Voxel-based statistics of fractional anisotropy images and TBSS. PLoS One 7, e36851.
32.
Friston K.J., Worsley K.J., Frackowiak R.S., Mazziotta J.C., and Evans A.C. (1994). Assessing the significance of focal activations using their spatial extent. Hum. Brain Mapp. 1, 210–220.
33.
Karadimas S.K., Moon E.S., Yu W.R., Satkunendrarajah K., Kallitsis J.K., Gatzounis G., and Fehlings M.G. (2013). A novel experimental model of cervical spondylotic myelopathy (CSM) to facilitate translational research. Neurobiol. Dis. 54, 43–58.
34.
Felix M.-S., Popa N., Djelloul M., Boucraut J., Gauthier P., Bauer S., and Matarazzo V.A. (2012). Alteration of forebrain neurogenesis after cervical spinal cord injury in the adult rat. Front. Neurosci. 6, 45.
35.
Lemon R.N. and Griffiths J. (2005). Comparing the function of the corticospinal system in different species: Organizational differences for motor specialization? Muscle Nerve 32, 261–279.
36.
Isa T., Ohki Y., Alstermark B., Pettersson L.-G., and Sasaki S. (2007). Direct and indirect cortico-motoneuronal pathways and control of hand/arm movements. Physiology 22, 145–152.
37.
Lemon R.N. (2008). Descending pathways in motor control. Annu. Rev. Neurosci. 31, 195–218.
38.
Buss A., Brook G. a, Kakulas B., Martin D., Franzen R., Schoenen J., Noth J., and Schmitt A.B. (2004). Gradual loss of myelin and formation of an astrocytic scar during Wallerian degeneration in the human spinal cord. Brain 127, 34–44.
39.
Woods T.M., Cusick C.G., Pons T.P., Taub E., and Jones E.G. (1999). Progressive transneuronal changes in the brainstem and thalamus after long-term dorsal rhizotomies in adult macaque monkeys. J. Neurosci. 20, 3884–3899.
40.
Darian-Smith C., Hopkins S., and Ralston H.J. (2010). Changes in synaptic populations in the spinal dorsal horn following a dorsal rhizotomy in the monkey. J. Comp. Neurol. 518, 103–117.
41.
Reed J.L., Liao C., Qi H., and Kaas J.H. (2016). Plasticity and Recovery After Dorsal Column Spinal Cord Injury in Nonhuman Primates. J. Exp. Neurosci. 10, 11–21.
42.
Rojas-Piloni G., Martínez-Lorenzana G., Condés-Lara M., and Rodríguez-Jiménez J. (2010). Direct sensorimotor corticospinal modulation of dorsal horn neuronal C-fiber responses in the rat. Brain Res. 1351, 104–114.
43.
Wu Y.P. and Ling E.A. (1998). Transsynaptic changes of neurons and associated microglial reaction in the spinal cord of rats following middle cerebral artery occlusion. Neurosci. Lett. 256, 41–44.
44.
Lycklama G., Thompson A., Filippi M., Miller D., Polman C., Fazekas F., and Barkhof F. (2003). Spinal-cord MRI in multiple sclerosis. Lancet Neurol. 2, 555–562.
45.
Huber E., Curt A., and Freund P. (2015). Tracking trauma-induced structural and functional changes above the level of spinal cord injury. Curr. Opin. Neurol. 28, 365–72.
46.
Grabher P., Callaghan M.F., Ashburner J., Weiskopf N., Thompson A.J., Curt A., and Freund P. (2015). Tracking sensory system atrophy and outcome prediction in spinal cord injury. Ann. Neurol. 78, 751–761.
47.
Freund P., Weiskopf N., Ashburner J., Wolf K., Sutter R., Altmann D.R., Friston K., Thompson A., and Curt A. (2013). MRI investigation of the sensorimotor cortex and the corticospinal tract after acute spinal cord injury: a prospective longitudinal study. Lancet Neurol. 12, 873–881.
Information & Authors
Information
Published In
Journal of Neurotrauma
Volume 34 • Issue Number 15 • August 1, 2017
Pages: 2329 - 2334
PubMed: 28462691
Copyright
Copyright 2017, Mary Ann Liebert, Inc.
History
Published in print: August 1, 2017
Published online: 1 August 2017
Published ahead of print: 27 June 2017
Published ahead of production: 2 May 2017
Topics
Authors
Author Disclosure Statement
No competing financial interests exist.
Metrics & Citations
Metrics
Citations
Export Citation
Export citation
Select the format you want to export the citations of this publication.
View Options
Get Access
Access content
To read the fulltext, please use one of the options below to sign in or purchase access.⚠ Society Access
If you are a member of a society that has access to this content please log in via your society website and then return to this publication.