Research Article
No access
Published Online: 1 March 2018

High-Fidelity Measures of Whole-Brain Functional Connectivity and White Matter Integrity Mediate Relationships between Traumatic Brain Injury and Post-Traumatic Stress Disorder Symptoms

Publication: Journal of Neurotrauma
Volume 35, Issue Number 5

Abstract

Traumatic brain injury (TBI) disrupts brain communication and increases risk for post-traumatic stress disorder (PTSD). However, mechanisms by which TBI-related disruption of brain communication confers PTSD risk have not been successfully elucidated in humans. This may be in part because functional MRI (fMRI), the most common technique for measuring functional brain communication, is unreliable for characterizing individual patients. However, this unreliability can be overcome with sufficient within-individual data. Here, we examined whether relationships could be observed among TBI, structural and functional brain connectivity, and PTSD severity by collecting ∼3.5 hours of resting-state fMRI and diffusion tensor imaging (DTI) data in each of 26 United States military veterans. We observed that a TBI history was associated with decreased whole-brain resting-state functional connectivity (RSFC), while the number of lifetime TBIs was associated with reduced whole-brain fractional anisotropy (FA). Both RSFC and FA explained independent variance in PTSD severity, with RSFC mediating the TBI–PTSD relationship. Finally, we showed that large amounts of per-individual data produced highly reliable RSFC measures, and that relationships among TBI, RSFC/FA, and PTSD could not be observed with typical data quantities. These results demonstrate links among TBI, brain connectivity, and PTSD severity, and illustrate the need for precise characterization of individual patients using high-data fMRI scanning.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Wojcik B.E., Stein C.R., Bagg K., Humphrey R.J., and Orosco J. (2010). Traumatic brain injury hospitalizations of U.S. army soldiers deployed to Afghanistan and Iraq. Am. J. Prev. Med. 38, S108–S116.
2.
Taylor C.A., Bell J., Breiding M., and Xu L. (2017). Traumatic brain injury–related emergency department visits, hospitalizations, and deaths — United States, 2007 and 2013. MMWR Surveill. Summ. 66, 1–16.
3.
Dikmen S., Machamer J., and Temkin N. (2001). Mild head injury: facts and artifacts. J. Clin. Exp. Neuropsychol. 23, 729–738.
4.
Belanger H.G., Curtiss G., Demery J.A., Lebowitz B.K., and Vanderploeg R.D. (2005). Factors moderating neuropsychological outcomes following mild traumatic brain injury: a meta-analysis. J. Int. Neuropsychol. Soc. 11, 215–227.
5.
Hessen E., Nestvold K., and Anderson V. (2007). Neuropsychological function 23 years after mild traumatic brain injury: a comparison of outcome after paediatric and adult head injuries. Brain Inj. 21, 963–979.
6.
Vanderploeg R.D., Curtiss G., Luis C.A., and Salazar A.M. (2007). Long-term morbidities following self-reported mild traumatic brain injury. J. Clin. Exp. Neuropsychol. 29, 585–598.
7.
Vanderploeg R.D., Belanger H.G., and Curtiss G. (2009). Mild traumatic brain injury and posttraumatic stress disorder and their associations with health symptoms. Arch. Phys. Med. Rehabil. 90, 1084–1093.
8.
Zaloshnja E., Miller T., Langlois J.A., and Selassie A.W. (2008). Prevalence of long-term disability from traumatic brain injury in the civilian population of the United States, 2005. J. Head Trauma Rehabil. 23, 394–400.
9.
Stein M.B., and McAllister T.W. (2009). Exploring the convergence of posttraumatic stress disorder and mild traumatic brain injury. Am. J. Psychiatry 166, 768–776.
10.
Dikmen S., Machamer J., Fann J.R., and Temkin N.R. (2010). Rates of symptom reporting following traumatic brain injury. J. Int. Neuropsychol. Soc. 16, 401–411.
11.
Thompson J.M., Scott K.C., and Dubinsky L. (2008). Battlefield brain: unexplained symptoms and blast-related mild traumatic brain injury. Can. Fam. Physician 54, 1549–1551.
12.
Bruce M.L. (2010). Suicide risk and prevention in veteran populations. Ann. N. Y. Acad. Sci. 1208, 98–103.
13.
Kennedy J.E., Cullen M.A., Amador R.R., Huey J.C., and Leal F.O. (2010). Symptoms in military service members after blast mTBI with and without associated injuries. NeuroRehabilitation 26, 191–197.
14.
Rosenfeld J.V., and Ford N.L. (2010). Bomb blast, mild traumatic brain injury and psychiatric morbidity: a review. Injury 41, 437–443.
15.
Ursano R.J., Goldenberg M., Zhang L., Carlton J., Fullerton C.S., Li H., Johnson L., and Benedek D. (2010). Posttraumatic stress disorder and traumatic stress: from bench to bedside, from war to disaster. Ann. N. Y. Acad. Sci. 1208, 72–81.
16.
Agoston D.V., and Kamnaksh A. (2015). Modeling the Neurobehavioral consequences of blast-induced traumatic brain injury spectrum disorder and identifying related biomarkers, in: Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects. Kobeissy F.H. (ed.). CRC Press/Taylor and Francis Group: Boca Raton, FL.
17.
Cole W.R., and Bailie J.M. (2016). Neurocognitive and psychiatric symptoms following mild traumatic brain injury, in: Translational Research in Traumatic Brain Injury. Laskowitz D., and Grant G. (eds.). CRC Press/Taylor and Francis Group: Boca Raton, FL.
18.
Langlois J.A., Rutland-Brown W., and Wald M.M. (2006). The epidemiology and impact of traumatic brain injury: a brief overview. J. Head Trauma Rehabil. 21, 375–378.
19.
Pearce J.M.S. (2008). Observations on concussion. Eur. Neurol. 59, 113–119.
20.
Silver J.M., McAllister T.W., and Yudofsky S.C. (2011). Textbook of Traumatic Brain Injury. Arlington, VA: American Psychiatric Publishing.
21.
Hulkower M.B., Poliak D.B., Rosenbaum S.B., Zimmerman M.E., and Lipton M.L. (2013). A decade of DTI in traumatic brain injury: 10 years and 100 articles later. AJNR Am. J. Neuroradiol. 34, 2064–2074.
22.
Kaplan G.B., Leite-Morris K.A., Wang L., Rumbika K.K., Heinrichs S.C., Zeng X., Wu L., Arena D.T., and Teng Y.D. (2017). Pathophysiological bases of comorbidity: traumatic brain injury and post-traumatic stress disorder. J. Neurotrauma [Epub ahead of print].
23.
Greicius M.D., Supekar K., Menon V., and Dougherty R.F. (2009). Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex 19, 72–78.
24.
Honey C.J., Sporns O., Cammoun L., Gigandet X., Thiran J.P., Meuli R., and Hagmann P. (2009). Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl. Acad. Sci. 106, 2035–2040.
25.
Petersen S.E., and Sporns O. (2015). Brain networks and cognitive architectures. Neuron 88, 207–219.
26.
Vakhtin A.A., Calhoun V.D., Jung R.E., Prestopnik J.L., Taylor P.A., and Ford C.C. (2013). Changes in intrinsic functional brain networks following blast-induced mild traumatic brain injury. Brain Inj. 27, 1304–1310.
27.
Palacios E.M., Sala-Llonch R., Junque C., Roig T., Tormos J.M., Bargallo N., and Vendrell P. (2013). Resting-state functional magnetic resonance imaging activity and connectivity and cognitive outcome in traumatic brain injury. JAMA Neurol. 70, 845–851.
28.
Sharp D.J., Beckmann C.F., Greenwood R., Kinnunen K.M., Bonnelle V., De Boissezon X., Powell J.H., Counsell S.J., Patel M.C., and Leech R. (2011). Default mode network functional and structural connectivity after traumatic brain injury. Brain 134, 2233–2247.
29.
Bharath R.D., Munivenkatappa A., Gohel S., Panda R., Saini J., Rajeswaran J., Shukla D., Bhagavatula I.D., and Biswal B.B. (2015). Recovery of resting brain connectivity ensuing mild traumatic brain injury. Front. Hum. Neurosci. 9, 513.
30.
Sours C., Zhuo J., Roys S., Shanmuganathan K., and Gullapalli R.P. (2015). Disruptions in resting state functional connectivity and cerebral blood flow in mild traumatic brain injury patients. PloS One 10, e0134019.
31.
Robinson M.E., Lindemer E.R., Fonda J.R., Milberg W.P., McGlinchey R.E., and Salat D.H. (2015). Close-range blast exposure is associated with altered functional connectivity in Veterans independent of concussion symptoms at time of exposure. Hum. Brain Mapp. 36, 911–922.
32.
Mayer A.R., Ling J.M., Allen E.A., Klimaj S.D., Yeo R.A., and Hanlon F.M. (2015). Static and dynamic intrinsic connectivity following mild traumatic brain injury. J. Neurotrauma 32, 1046–1055.
33.
Iraji A., Benson R.R., Welch R.D., O'Neil B.J., Woodard J.L., Ayaz S.I., Kulek A., Mika V., Medado P., Soltanian-Zadeh H., Liu T., Haacke E.M., and Kou Z. (2015). Resting state functional connectivity in mild traumatic brain injury at the acute stage: independent component and seed-based analyses. J. Neurotrauma 32, 1031–1045.
34.
Nathan D.E., Oakes T.R., Yeh P.H., French L.M., Harper J.F., Liu W., Wolfowitz R.D., Wang B.Q., Graner J.L., and Riedy G. (2015). Exploring variations in functional connectivity of the resting state default mode network in mild traumatic brain injury. Brain Connect. 5, 102–114.
35.
Mayer A.R., Mannell M.V., Ling J., Gasparovic C., and Yeo R.A. (2011). Functional connectivity in mild traumatic brain injury. Hum. Brain Mapp. 32, 1825–1835.
36.
Shumskaya E., Andriessen T.M.J.C., Norris D.G., and Vos P.E. (2012). Abnormal whole-brain functional networks in homogeneous acute mild traumatic brain injury. Neurology 79, 175–182.
37.
Dobryakova E., Boukrina O., and Wylie G.R. (2014). Investigation of information flow during a novel working memory task in individuals with traumatic brain injury. Brain Connect. 5, 433–441.
38.
Jilka S.R., Scott G., Ham T., Pickering A., Bonnelle V., Braga R.M., Leech R., and Sharp D.J. (2014). Damage to the salience network and interactions with the default mode network. J. Neurosci. 34, 10798–10807.
39.
Stevens M.C., Lovejoy D., Kim J., Oakes H., Kureshi I., and Witt S.T. (2012). Multiple resting state network functional connectivity abnormalities in mild traumatic brain injury. Brain Imaging Behav. 6, 293–318.
40.
Tang L., Ge Y., Sodickson D.K., Miles L., Zhou Y., Reaume J., and Grossman R.I. (2011). Thalamic resting-state functional networks: disruption in patients with mild traumatic brain injury. Radiology 260, 831–840.
41.
Bonnelle V., Leech R., Kinnunen K.M., Ham T.E., Beckmann C.F., Boissezon X.D., Greenwood R.J., and Sharp D.J. (2011). Default mode network connectivity predicts sustained attention deficits after traumatic brain injury. J. Neurosci. 31, 13,442–13,451.
42.
Hayes J.P., Bigler E.D., and Verfaellie M. (2016). Traumatic brain injury as a disorder of brain connectivity. J. Int. Neuropsychol. Soc. JINS 22, 120–137.
43.
Bryant R.A. (2001). Posttraumatic stress disorder and traumatic brain injury: can they co-exist? Clin. Psychol. Rev. 21, 931–948.
44.
Ohry A., Rattok J., and Solomon Z. (1996). Post-traumatic stress disorder in brain injury patients. Brain Inj. 10, 687–695.
45.
Bryant R.A., Marosszeky J.E., Crooks J., and Gurka J.A. (2000). Posttraumatic stress disorder after severe traumatic brain injury. Am. J. Psychiatry 157, 629–631.
46.
Ashman T.A., Spielman L.A., Hibbard M.R., Silver J.M., Chandna T., and Gordon W.A. (2004). Psychiatric challenges in the first 6 years after traumatic brain injury: cross-sequential analyses of axis I disorders1. Arch. Phys. Med. Rehabil. 85, Suppl. 2, 36–42.
47.
Sojka P., Stålnacke B.-M., Björnstig U., and Karlsson K. (2006). One-year follow-up of patients with mild traumatic brain injury: occurrence of post-traumatic stress-related symptoms at follow-up and serum levels of cortisol, S-100B and neuron-specific enolase in acute phase. Brain Inj. 20, 613–620.
48.
Schneiderman A.I., Braver E.R., and Kang H.K. (2008). Understanding sequelae of injury mechanisms and mild traumatic brain injury incurred during the conflicts in iraq and Afghanistan: persistent postconcussive symptoms and posttraumatic stress disorder. Am. J. Epidemiol. 167, 1446–1452.
49.
Carlson K.F., Nelson D., Orazem R.J., Nugent S., Cifu D.X., and Sayer N.A. (2010). Psychiatric diagnoses among Iraq and Afghanistan war veterans screened for deployment-related traumatic brain injury. J. Trauma. Stress 23, 17–24.
50.
Morissette S.B., Woodward M., Kimbrel N.A., Meyer E.C., Kruse M.I., Dolan S., and Gulliver S.B. (2011). Deployment-related TBI, persistent postconcussive symptoms, PTSD, and depression in OEF/OIF veterans. Rehabil. Psychol. 56, 340–350.
51.
Motzkin J.C., and Koenigs M.R. (2015). Chapter 39: Post-traumatic stress disorder and traumatic brain injury, in: Grafman J, and Salazar A.M. (eds). Handbook of Clinical Neurology. Elsevier, pps. 633–648.
52.
Etkin A., and Wager T.D. (2007). Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am. J. Psychiatry 164, 1476–1488.
53.
Koenigs M., and Grafman J. (2009). Posttraumatic stress disorder: the role of medial prefrontal cortex and amygdala. Neuroscientist 15, 540–548.
54.
Wolf J.A., and Koch P.F. (2016). Disruption of network synchrony and cognitive dysfunction after traumatic brain injury. Front. Syst. Neurosci. 10, 43.
55.
Spielberg J.M., McGlinchey R.E., Milberg W.P., and Salat D.H. (2015). Brain network disturbance related to posttraumatic stress and traumatic brain injury in veterans. Biol. Psychiatry 78, 210–216.
56.
Patel R., Spreng R.N., Shin L.M., and Girard T.A. (2012). Neurocircuitry models of posttraumatic stress disorder and beyond: A meta-analysis of functional neuroimaging studies. Neurosci. Biobehav. Rev. 36, 2130–2142.
57.
Dolan S., Martindale S., Robinson J., Kimbrel N.A., Meyer E.C., Kruse M.I., Morissette S.B., Young K.A., and Gulliver S.B. (2012). Neuropsychological sequelae of PTSD and TBI following war deployment among OEF/OIF veterans. Neuropsychol. Rev. 22, 21–34.
58.
Welvaert M., and Rosseel Y. (2013). On the Definition of Signal-To-Noise Ratio and Contrast-To-Noise Ratio for fMRI Data. PLoS One 8, e77089.
59.
Davenport N.D., Lim K.O., Armstrong M.T., and Sponheim S.R. (2012). Diffuse and spatially variable white matter disruptions are associated with blast-related mild traumatic brain injury. NeuroImage 59, 2017–2024.
60.
Jorge R.E., Acion L., White T., Tordesillas-Gutierrez D., Pierson R., Crespo-Facorro B., and Magnotta V.A. (2012). White matter abnormalities in veterans with mild traumatic brain injury. Am. J. Psychiatry 169, 1284–1291.
61.
Hayes J.P., Miller D.R., Lafleche G., Salat D.H., and Verfaellie M. (2015). The nature of white matter abnormalities in blast-related mild traumatic brain injury. NeuroImage Clin. 8, 148–156.
62.
Taber K.H., Hurley R.A., Haswell C.C., Rowland J.A., Hurt S.D., Lamar C.D., and Morey R.A. (2015). White matter compromise in veterans exposed to primary blast forces. J. Head Trauma Rehabil. 30, E15–25.
63.
Laumann T.O., Gordon E.M., Adeyemo B., Snyder A.Z., Joo S.J., Chen M.-Y., Gilmore A.W., McDermott K.B., Nelson S.M., Dosenbach N.U.F., Schlaggar B.L., Mumford J.A., Poldrack R.A., and Petersen S.E. (2015). Functional system and areal organization of a highly sampled individual human brain. Neuron 87, 657–670.
64.
Xu T., Opitz A., Craddock R.C., Wright M.J., Zuo X.-N., and Milham M.P. (2016). Assessing variations in areal organization for the intrinsic brain: from fingerprints to reliability. Cereb. Cortex 26, 4192–4211.
65.
Gordon E.M., Laumann T.O., Gilmore A.W., Newbold D.J., Greene D.J., Berg J.J., Ortega M., Hoyt-Drazen C., Gratton C., Sun H., Hampton J.M., Coalson R.S., Nguyen A.L., McDermott K.B., Shimony J.S., Snyder A.Z., Schlaggar B.L., Petersen S.E., Nelson S.M., and Dosenbach N.U.F. (2017). Precision functional mapping of individual human brains. Neuron 95, 791–807.
66.
Noble S., Spann M.N., Tokoglu F., Shen X., Constable R.T., and Scheinost D. (2017). Influences on the test–retest reliability of functional connectivity mri and its relationship with behavioral utility. Cereb. Cortex 27, 5415–5429.
67.
Vasterling J.J., Schumm J., Proctor S.P., Gentry E., King D.W., and King L.A. (2008). Posttraumatic stress disorder and health functioning in a non-treatment-seeking sample of Iraq war veterans: a prospective analysis. J. Rehabil. Res. Dev. 45, 347–358.
68.
Weathers F.W., Litz B.T., Keane T.M., Palmieri P.A., Marx B.P., and Schnurr P.P. (2013). The PTSD Checklist for DSM-5 (PCL-5). Available at: www.ptsd.va.gov/professional/assessment/adult-sr/ptzd.checklist.asp (last accessed July 12, 2017).
69.
Hoge C.W., Castro C.A., Messer S.C., McGurk D., Cotting D.I., and Koffman R.L. (2004). Combat duty in Iraq and Afghanistan, mental health problems, and barriers to care. N. Engl. J. Med. 351, 13–22.
70.
Meyer E.C., Morissette S.B., Kimbrel N.A., Kruse M.I., and Gulliver S.B. (2013). Acceptance and Action Questionnaire—II scores as a predictor of posttraumatic stress disorder symptoms among war veterans. Psychol. Trauma Theory Res. Pract. Policy 5, 521–528.
71.
Jenkinson M., Beckmann C.F., Behrens T.E.J., Woolrich M.W., and Smith S.M. (2012). FSL. NeuroImage 62, 782–790.
72.
Glasser M.F., Sotiropoulos S.N., Wilson J.A., Coalson T.S., Fischl B., Andersson J.L., Xu J., Jbabdi S., Webster M., Polimeni J.R., Van Essen D.C., Jenkinson M., and WU-Minn HCP Consortium. (2013). The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage 80, 105–124.
73.
Dale A.M., and Sereno M.I. (1993). Improved localizadon of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. J. Cogn. Neurosci. 5, 162–176.
74.
Dale A.M., Fischl B., and Sereno M.I. (1999). Cortical surface-based analysis: I. segmentation and surface reconstruction. NeuroImage 9, 179–194.
75.
Fischl B., Sereno M.I., and Dale A.M. (1999). Cortical surface-based analysis: ii: inflation, flattening, and a surface-based coordinate system. NeuroImage 9, 195–207.
76.
Ségonne F., Dale A.M., Busa E., Glessner M., Salat D., Hahn H.K., and Fischl B. (2004). A hybrid approach to the skull stripping problem in MRI. NeuroImage 22, 1060–1075.
77.
Van Essen D.C., Drury H.A., Dickson J., Harwell J., Hanlon D., and Anderson C.H. (2001). An integrated software suite for surface-based analyses of cerebral cortex. J. Am. Med. Inform. Assoc. 8, 443–459.
78.
Behrens T.E., Woolrich M.W., Jenkinson M., Johansen-Berg H., Nunes R.G., Clare S., Matthews P.M., Brady J.M., and Smith S.M. (2003). Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn. Reson. Med. 50, 1077–88.
79.
Hua K., Zhang J., Wakana S., Jiang H., Li X., Reich D.S., Calabresi P.A., Pekar J.J., van Zijl P.C.M., and Mori S. (2008). Tract probability maps in stereotaxic spaces: Analyses of white matter anatomy and tract-specific quantification. NeuroImage 39, 336–347.
80.
Greve D.N., and Fischl B. (2009). Accurate and robust brain image alignment using boundary-based registration. NeuroImage 48, 63–72.
81.
Ciric R., Wolf D.H., Power J.D., Roalf D.R., Baum G., Ruparel K., Shinohara R.T., Elliott M.A., Eickhoff S.B., Davatzikos C., Gur R.C., Gur R.E., Bassett D.S., and Satterthwaite T.D. (2017). Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity. NeuroImage 154, 174–187.
82.
Power J.D., Mitra A., Laumann T.O., Snyder A.Z., Schlaggar B.L., and Petersen S.E. (2014). Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage 84, 320–341.
83.
Power J.D., Barnes K.A., Snyder A.Z., Schlaggar B.L., and Petersen S.E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage 59, 2142–54.
84.
Power J.D. (2017). A simple but useful way to assess fMRI scan qualities. NeuroImage 154, 150–158.
85.
Gordon E.M., Laumann T.O., Adeyemo B., Gilmore A.W., Nelson S.M., Dosenbach N.U.F., and Petersen S.E. (2017). Individual-specific features of brain systems identified with resting state functional correlations. NeuroImage 146, 918–939.
86.
Friston K.J., Williams S., Howard R., Frackowiak R.S.J., and Turner R. (1996). Movement-Related effects in fMRI time-series. Magn. Reson. Med. 35, 346–355.
87.
Carp J. (2013). Optimizing the order of operations for movement scrubbing: Comment on Power et al. NeuroImage 76, 436–438.
88.
Glasser M.F., and Van Essen D.C. (2011). Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. J. Neurosci. 31, 11,597–11,616.
89.
Gordon E.M., Laumann T.O., Adeyemo B., Huckins J.F., Kelley W.M., and Petersen S.E. (2016). Generation and evaluation of a cortical area parcellation from resting-state correlations. Cereb. Cortex 26, 288–303.
90.
Hoge C.W., McGurk D., Thomas J.L., Cox A.L., Engel C.C., and Castro C.A. (2008). Mild traumatic brain injury in U.S. soldiers returning from Iraq. N. Engl. J. Med. 358, 453–463.
91.
Bryant R.A., O'Donnell M.L., Creamer M., McFarlane A.C., Clark C.R., and Silove D. (2010). The psychiatric sequelae of traumatic injury. Am. J. Psychiatry 167, 312–320.
92.
McAllister T.W., and Stein M.B. (2010). Effects of psychological and biomechanical trauma on brain and behavior. Ann. N. Y. Acad. Sci. 1208, 46–57.
93.
Lanius R.A., Bluhm R.L., Coupland N.J., Hegadoren K.M., Rowe B., Théberge J., Neufeld R.W.J., Williamson P.C., and Brimson M. (2010). Default mode network connectivity as a predictor of post-traumatic stress disorder symptom severity in acutely traumatized subjects. Acta Psychiatr. Scand. 121, 33–40.
94.
Nicholson A.A., Sapru I., Densmore M., Frewen P.A., Neufeld R.W.J., Théberge J., McKinnon M.C., and Lanius R.A. (2016). Unique insula subregion resting-state functional connectivity with amygdala complexes in posttraumatic stress disorder and its dissociative subtype. Psychiatry Res. 250, 61–72.
95.
Reuveni I., Bonne O., Giesser R., Shragai T., Lazarovits G., Isserles M., Schreiber S., Bick A.S., and Levin N. (2016). Anatomical and functional connectivity in the default mode network of post-traumatic stress disorder patients after civilian and military-related trauma. Hum. Brain Mapp. 37, 589–599.
96.
Zhang X., Zhang J., Wang L., Li R., and Zhang W. (2016). Altered resting-state functional connectivity of the amygdala in Chinese earthquake survivors. Prog. Neuropsychopharmacol. Biol. Psychiatry 65, 208–214.
97.
Nathan D.E., Bellgowan J.A.F., French L.M., Wolf J., Oakes T.R., Mielke J., Sham E.B., Liu W., and Riedy G. (2017). Assessing the impact of post-traumatic stress symptoms on the resting-state default mode network in a military chronic mild traumatic brain injury sample. Brain Connect. 7, 236–249.
98.
Bazarian J.J., Donnelly K., Peterson D.R., Warner G.C., Zhu T., and Zhong J. (2013). The relation between posttraumatic stress disorder and mild traumatic brain injury acquired during Operations Enduring Freedom and Iraqi Freedom. J. Head Trauma Rehabil. 28, 1–12.
99.
Costanzo M.E., Chou Y.-Y., Leaman S., Pham D.L., Keyser D., Nathan D.E., Coughlin M., Rapp P., and Roy M.J. (2014). Connecting combat-related mild traumatic brain injury with posttraumatic stress disorder symptoms through brain imaging. Neurosci. Lett. 577, 11–15.
100.
Sorg S.F., Schiehser D.M., Bondi M.W., Luc N., Clark A.L., Jacobson M.W., Frank L.R., and Delano-Wood L. (2016). White matter microstructural compromise is associated with cognition but not posttraumatic stress disorder symptoms in military veterans with traumatic brain injury. J. Head Trauma Rehabil. 31, 297–308.
101.
Andrews-Hanna J.R., Snyder A.Z., Vincent J.L., Lustig C., Head D., Raichle M.E., and Buckner R.L. (2007). Disruption of large-scale brain systems in advanced aging. Neuron 56, 924–935.
102.
van den Heuval M., Mandl R., Luigjes J., and Pol H. (2008). Microstructural organization of the cingulum tract and the level of default mode functional connectivity. J. Neurosci. 43, 10844–10851.
103.
Fjell A.M., Sneve M.H., Storsve A.B., Grydeland H., Yendiki A., and Walhovd K.B. (2016). Brain events underlying episodic memory changes in aging: a longitudinal investigation of structural and functional connectivity. Cereb. Cortex 26, 1272–1286.
104.
Tsang A., Lebel C.A., Bray S.L., Goodyear B.G., Hafeez M., Sotero R.C., McCreary C.R., and Frayne R. (2017). White matter structural connectivity is not correlated to cortical resting-state functional connectivity over the healthy adult lifespan. Front. Aging Neurosci. 9, 144.
105.
Hirsiger S., Koppelmans V., Mérillat S., Liem F., Erdeniz B., Seidler R.D., and Jäncke L. (2016). Structural and functional connectivity in healthy aging: associations for cognition and motor behavior. Hum. Brain Mapp. 37, 855–867.
106.
Logothetis N.K., Pauls J., Augath M., Trinath T., and Oeltermann A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157.
107.
Goense J.B.M., and Logothetis N.K. (2008). Neurophysiology of the BOLD fMRI signal in awake monkeys. Curr. Biol. 18, 631–640.
108.
Koch S.B.J., van Zuiden M., Nawijn L., Frijling J.L., Veltman D.J., and Olff M. (2017). Decreased uncinate fasciculus tract integrity in male and female patients with PTSD: a diffusion tensor imaging study. J. Psychiatry Neurosci. 42, 160129.
109.
Sripada R.K., King A.P., Garfinkel S.N., Wang X., Sripada C.S., Welsh R.C., and Liberzon I. (2012). Altered resting-state amygdala functional connectivity in men with posttraumatic stress disorder. J. Psychiatry Neurosci. 37, 241–249.
110.
Koch S.B.J., van Zuiden M., Nawijn L., Frijling J.L., Veltman D.J., and Olff M. (2016). Intranasal oxytocin normalizes amygdala functional connectivity in posttraumatic stress disorder. Neuropsychopharmacology 41, 2041–2051.
111.
Todd N., Josephs O., Zeidman P., Flandin G., Moeller S., and Weiskopf N. (2017). Functional sensitivity of 2D simultaneous multi-slice echo-planar imaging: effects of acceleration on g-factor and physiological noise. Front. Neurosci. 11, 158.
112.
Mohammadi S., Nagy Z., Hutton C., Josephs O., and Weiskopf N. (2012). Correction of vibration artifacts in DTI using phase-encoding reversal (COVIPER). Magn. Reson. Med. 68, 882–889.
113.
Mac Donald C.L., Johnson A.M., Cooper D., Nelson E.C., Werner N.J., Shimony J.S., Snyder A.Z., Raichle M.E., Witherow J.R., Fang R., Flaherty S.F., and Brody D.L. (2011). Detection of blast-related traumatic brain injury in U.S. military personnel. N. Engl. J. Med. 364, 2091–2100.
114.
Robinson M.E., Clark D.C., Milberg W.P., McGlinchey R.E., and Salat D.H. (2017). Characterization of differences in functional connectivity associated with close-range blast exposure. J. Neurotrauma 34, S53–S61.
115.
Sponheim S.R., McGuire K.A., Kang S.S., Davenport N.D., Aviyente S., Bernat E.M., and Lim K.O. (2011). Evidence of disrupted functional connectivity in the brain after combat-related blast injury. NeuroImage 54, Suppl. 1, S21-29.
116.
Greer N., Sayer N., Koeller E., Velasquez T., and Wilt T.J. (2017). Outcomes associated with blast versus nonblast-related traumatic brain injury in US military service members and veterans: a systematic review. J. Head Trauma Rehabil.
117.
Ozer E.J., Best S.R., Lipsey T.L., and Weiss D.S. (2003). Predictors of posttraumatic stress disorder and symptoms in adults: a meta-analysis. Psychol. Bull. 129, 52–73.
118.
Xue C., Ge Y., Tang B., Liu Y., Kang P., Wang M., and Zhang L. (2015). A meta-analysis of risk factors for combat-related PTSD among military personnel and veterans. PloS One 10, e0120270.
119.
Liang Z., King J., and Zhang N. (2014). Neuroplasticity to a single-episode traumatic stress revealed by resting-state fMRI in awake rats. NeuroImage 103, 485–491.
120.
Thomason M.E., Marusak H.A., Tocco M.A., Vila A.M., McGarragle O., and Rosenberg D.R. (2015). Altered amygdala connectivity in urban youth exposed to trauma. Soc. Cogn. Affect. Neurosci. 10, 1460–1468.
121.
DiGangi J.A., Tadayyon A., Fitzgerald D.A., Rabinak C.A., Kennedy A., Klumpp H., Rauch S.A.M., and Phan K.L. (2016). Reduced default mode network connectivity following combat trauma. Neurosci. Lett. 615, 37–43.

Information & Authors

Information

Published In

cover image Journal of Neurotrauma
Journal of Neurotrauma
Volume 35Issue Number 5March 1, 2018
Pages: 767 - 779
PubMed: 29179667

History

Published in print: March 1, 2018
Published online: 1 March 2018
Published ahead of print: 29 January 2018
Published ahead of production: 27 November 2017

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Evan M. Gordon
VISN 17 Center of Excellence for Research on Returning War Veterans, Waco, Texas.
Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas.
Department of Psychology and Neuroscience, Baylor University, Waco, Texas.
Randall S. Scheibel
Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas.
Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas.
Laura Zambrano-Vazquez
VISN 17 Center of Excellence for Research on Returning War Veterans, Waco, Texas.
Meilin Jia-Richards
Department of Psychology and Neuroscience, Baylor University, Waco, Texas.
Geoffrey J. May
VISN 17 Center of Excellence for Research on Returning War Veterans, Waco, Texas.
Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas.
Department of Psychology and Neuroscience, Baylor University, Waco, Texas.
Department of Psychiatry and Behavioral Science, Texas A&M Health Science Center, College of Medicine, College Station, Texas.
Eric C. Meyer
VISN 17 Center of Excellence for Research on Returning War Veterans, Waco, Texas.
Department of Psychiatry and Behavioral Science, Texas A&M Health Science Center, College of Medicine, College Station, Texas.
Steven M. Nelson
VISN 17 Center of Excellence for Research on Returning War Veterans, Waco, Texas.
Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas.
Department of Psychology and Neuroscience, Baylor University, Waco, Texas.

Notes

Address correspondence to:Evan M. Gordon, PhD4800 Memorial Drive, 151-CWaco, TX 76711E-mail: [email protected]

Author Disclosure Statement

No competing financial interests exist.

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top