Extent of Cord Pathology in the Lumbosacral Enlargement in Non-Traumatic versus Traumatic Spinal Cord Injury
Publication: Journal of Neurotrauma
Volume 39, Issue Number 9-10
Abstract
This study compares remote neurodegenerative changes caudal to a cervical injury in degenerative cervical myelopathy (DCM; i.e., non-traumatic) and incomplete traumatic spinal cord injury (tSCI) patients, using magnetic resonance imaging (MRI)–based tissue area measurements and diffusion tensor imaging (DTI). Eighteen mild-to-moderate DCM patients with sensory impairments (modified Japanese Orthopedic score: 16.2 ± 1.9), 14 incomplete tetraplegic tSCI patients (American Spinal Injury Association Impairment Scale C and D), and 20 healthy controls were recruited. All participants received DTI and T2*-weighted scans in the lumbosacral enlargement (caudal to injury) and at C2/C3 (rostral to injury). MRI readouts included DTI metrics in the white matter (WM) columns and cross-sectional WM and gray matter area. One-way analysis of variance with Tukey's post hoc comparison (p < 0.05) was used to assess group differences. In the lumbosacral enlargement, compared with DCM, tSCI patients exhibited decreased fractional anisotropy in the lateral (tSCI vs. DCM, -11.9%, p = 0.007) and ventral WM column (-8.0%, p = 0.021), and showed a trend toward lower values in the dorsal column (-8.9%, p = 0.068). At C2/C3, compared with controls, fractional anisotropy was lower in both groups in the dorsal (DCM vs. controls, -7.9%, p = 0.024; tSCI vs. controls, -10.0%, p = 0.007) and in the lateral column (DCM: -6.2%, p = 0.039; tSCI: -13.3%, p < 0.001), while tSCI patients had lower fractional anisotropy than DCM patients in the lateral column (-7.6%, p = 0.029). WM areas were not different between patient groups but were lower compared with controls in the lumbosacral enlargement (DCM: -16.9%, p < 0.001; tSCI: -10.5%, p = 0.043) and at C2/C3 (DCM: -16.0%, p < 0.001; tSCI: -18.1%, p < 0.001). In conclusion, mild-to-moderate DCM and incomplete tSCI lead to similar degree of degeneration of the dorsal and lateral columns at C2/C3, but tSCI results in more widespread white matter damage in the lumbosacral enlargement. These remote changes are likely to contribute to the patients' impairment and recovery. DTI is a sensitive tool to assess remote pathological changes in DCM and tSCI patients.
Get full access to this article
View all available purchase options and get full access to this article.
References
1. Nouri, A., Martin, A.R., Nater, A., Witiw, C.D., Kato, S., Tetreault, L., Reihani-Kermani, H., Santaguida, C., and Fehlings, M.G. (2017). Influence of magnetic resonance imaging features on surgical decision-making in degenerative cervical myelopathy: results from a global survey of AOSpine International Members. World Neurosurg. 105, 864–874.
2. Badhiwala, J.H., Ahuja, C.S., Akbar, M.A., Witiw, C.D., Nassiri, F., Furlan, J.C., Curt, A., Wilson, J.R., and Fehlings, M.G. (2020). Degenerative cervical myelopathy—update and future directions. Nat. Rev. Neurol. 16, 108–124.
3. Ahuja, C.S., Wilson, J.R., Nori, S., Kotter, M.R.N., Druschel, C., Curt, A., and Fehlings, M.G. (2017). Traumatic spinal cord injury. Nat. Rev. Dis. Prim. 3, 17018.
4. Bednarik, J., Kadanka, Z., Dusek, L., Kerkovsky, M., Vohanka, S., Novotny, O., Urbanek, I., and Kratochvilova, D. (2008). Presymptomatic spondylotic cervical myelopathy: an updated predictive model. Eur. Spine J. 17, 421–431.
5. Karadimas, S.K., Erwin, W.M., Ely, C.G., Dettori, J.R., and Fehlings, M.G. (2013). Pathophysiology and natural history of cervical spondylotic myelopathy. Spine (Phila. Pa. 1976). 38, S21-S36.
6. Akter, F., Yu, X., Qin, X., Yao, S., Nikrouz, P., Syed, Y., and Kotter, M. (2020). The pathophysiology of degenerative cervical myelopathy and the physiology of recovery following decompression. Front. Neurosci. 14, 138.
7. Yu, W.R., Liu, T., Kiehl, T.R., and Fehlings, M.G. (2011). Human neuropathological and animal model evidence supporting a role for Fas-mediated apoptosis and inflammation in cervical spondylotic myelopathy. Brain 134, 1277–1292.
8. Ito, T., Oyanagi, K., Takahashi, H., Takahashi, H.E., and Ikuta, F. (1996). Cervical spondylotic myelopathy: Clinicopathologic study on the progression pattern and thin myelinated fibers of the lesions of seven patients examined during complete autopsy. Spine (Phila. Pa. 1976). 21, 827–833.
9. Moon, E.S., Karadimas, S.K., Yu, W.R., Austin, J.W., and Fehlings, M.G. (2014). Riluzole attenuates neuropathic pain and enhances functional recovery in a rodent model of cervical spondylotic myelopathy. Neurobiol. Dis. 62, 394–406.
10. Kubota, M., Kobayashi, S., Nonoyama, T., Shimada, S., Takeno, K., Miyazaki, T., Guerrero, A.R., Iwamoto, H., and Baba, H. (2011). Development of a chronic cervical cord compression model in rat: Changes in the neurological behaviors and radiological and pathological findings. J. Neurotrauma 28, 459–467.
11. Uchida, K., Nakajima, H., Watanabe, S., Yayama, T., Guerrero, A.R., Inukai, T., Hirai, T., Sugita, D., Johnson, W.E., and Baba, H. (2012). Apoptosis of neurons and oligodendrocytes in the spinal cord of spinal hyperostotic mouse (twy/twy): Possible pathomechanism of human cervical compressive myelopathy. Eur. Spine J. 21, 490–497.
12. Inukai, T., Uchida, K., Nakajima, H., Yayama, T., Kobayashi, S., Mwaka, E.S., Guerrero, A.R., and Baba, H. (2009). Tumor necrosis factor-alpha and its receptors contribute to apoptosis of oligodendrocytes in the spinal cord of spinal hyperostotic mouse (twy/twy) sustaining chronic mechanical compression. Spine (Phila. Pa. 1976). 34, 2848–2857.
13. Hirai, T., Uchida, K., Nakajima, H., Guerrero, A.R., Takeura, N., Watanabe, S., Sugita, D., Yoshida, A., Johnson, W.E.B., and Baba, H. (2013). The prevalence and phenotype of activated microglia/macrophages within the spinal cord of the hyperostotic mouse (twy/twy) changes in tesponse to chronic progressive spinal cord compression: implications for human cervical compressive myelopathy. PLoS One 8.
14. Figley, S.A., Khosravi, R., Legasto, J.M., Tseng, Y.F., and Fehlings, M.G. (2014). Characterization of vascular disruption and blood-spinal cord barrier permeability following traumatic spinal cord injury. J. Neurotrauma 31, 541–552.
15. Karadimas, S.K., Moon, E.S., Yu, W.R., Satkunendrarajah, K., Kallitsis, J.K., Gatzounis, G., and Fehlings, M.G. (2013). A novel experimental model of cervical spondylotic myelopathy (CSM) to facilitate translational research. Neurobiol. Dis. 54, 43–58.
16. Dhillon, R.S., Parker, J., Syed, Y.A., Edgley, S., Young, A., Fawcett, J.W., Jeffery, N.D., Franklin, R.J.M., and Kotter, M.R.N. (2016). Axonal plasticity underpins the functional recovery following surgical decompression in a rat model of cervical spondylotic myelopathy. Acta Neuropathol. Commun. 4, 89.
17. Fehlings, M.G., and Skaf, G. (1998). A review of the pathophysiology of cervical spondylotic myelopathy with insights for potential novel mechanisms drawn from traumatic spinal cord injury. Spine (Phila. Pa. 1976). 23, 2730–2737.
18. Stroman, P.W., Wheeler-Kingshott, C., Bacon, M., Schwab, J.M., Bosma, R., Brooks, J., Cadotte, D., Carlstedt, T., Ciccarelli, O., Cohen-Adad, J., Curt, A., Evangelou, N., Fehlings, M.G., Filippi, M., Kelley, B.J., Kollias, S., Mackay, A., Porro, C.A., Smith, S., Strittmatter, S.M., Summers, P., and Tracey, I. (2014). The current state-of-the-art of spinal cord imaging: methods. Neuroimage 84, 1070–1081.
19. Wheeler-Kingshott, C.A., Stroman, P.W., Schwab, J.M., Bacon, M., Bosma, R., Brooks, J., Cadotte, D.W., Carlstedt, T., Ciccarelli, O., Cohen-Adad, J., Curt, A., Evangelou, N., Fehlings, M.G., Filippi, M., Kelley, B.J., Kollias, S., Mackay, A., Porro, C.A., Smith, S., Strittmatter, S.M., Summers, P., Thompson, A.J., and Tracey, I. (2014). The current state-of-the-art of spinal cord imaging: applications. Neuroimage 84, 1082–1093.
20. Cohen, Y., Anaby, D., and Morozov, D. (2017). Diffusion MRI of the spinal cord: from structural studies to pathology. NMR Biomed. 30.
21. Vedantam, A., Rao, A., Kurpad, S.N., Jirjis, M.B., Eckardt, G., Schmit, B.D., and Wang, M.C. (2017). Diffusion tensor imaging correlates with short-term myelopathy outcome in patients with cervical spondylotic myelopathy. World Neurosurg. 97, 489–494.
22. Wen, C.Y., Cui, J.L., Liu, H.S., Mak, K.C., Cheung, W.Y., Luk, K.D.K., and Hu, Y. (2014). Is diffusion anisotropy a biomarker for disease severity and surgical prognosis of cervical spondylotic myelopathy. Radiology 270, 197–204.
23. Martin, A.R., De Leener, B., Cohen-Adad, J., Cadotte, D.W., Nouri, A., Wilson, J.R., Tetreault, L., Crawley, A.P., Mikulis, D.J., Ginsberg, H., and Fehlings, M.G. (2018). Can microstructural MRI detect subclinical tissue injury in subjects with asymptomatic cervical spinal cord compression? A prospective cohort study. BMJ Open 8, 1–11.
24. Martin, A.R., De Leener, B., Cohen-Adad, J., Cadotte, D.W., Kalsi-Ryan, S., Lange, S.F., Tetreault, L., Nouri, A., Crawley, A., Mikulis, D.J., Ginsberg, H., and Fehlings, M.G. (2017). Clinically feasible microstructural MRI to quantify cervical spinal cord tissue injury using DTI, MT, and T2∗-weighted imaging: assessment of normative data and reliability. Am. J. Neuroradiol. 38, 1257–1265.
25. Valošek, J., Labounek, R., Horák, T., Horáková, M., Bednařík, P., Keřkovský, M., Kočica, J., Rohan, T., Lenglet, C., Cohen-Adad, J., Hluštík, P., Vlčková, E., Kadaňka, Z., Bednařík, J., and Svatkova, A. (2021). Diffusion magnetic resonance imaging reveals tract-specific microstructural correlates of electrophysiological impairments in non-myelopathic and myelopathic spinal cord compression. Eur. J. Neurol. 28, 3784–3797.
26. Cohen-Adad, J., El Mendili, M.M., Lehéricy, S., Pradat, P.F., Blancho, S., Rossignol, S., and Benali, H. (2011). Demyelination and degeneration in the injured human spinal cord detected with diffusion and magnetization transfer MRI. Neuroimage 55, 1024–1033.
27. Petersen, J.A., Wilm, B.J., von Meyenburg, J., Schubert, M., Seifert, B., Najafi, Y., Dietz, V., and Kollias, S. (2012). Chronic cervical spinal cord injury: DTI correlates with clinical and electrophysiological measures. J. Neurotrauma 29, 1556–1566.
28. David, G., Seif, M., Huber, E., Hupp, M., Rosner, J., Dietz, V., Weiskopf, N., Mohammadi, S., and Freund, P. (2019). In vivo evidence of remote neural degeneration in the lumbar enlargement after cervical injury. Neurology 92, E1367–E1377.
29. Seif, M., David, G., Huber, E., Vallotton, K., Curt, A., and Freund, P. (2020). Cervical cord neurodegeneration in traumatic and non-traumatic spinal cord injury. J. Neurotrauma 37, 860–867.
30. Toossi, A., Everaert, D.G., Perlmutter, S.I., and Mushahwar, V.K. (2019). Functional organization of motor networks in the lumbosacral spinal cord of non-human primates. Sci. Rep. 9, 13539.
31. Yoshimura, N., and Chancellor, M.B. (2003). Neurophysiology of lower urinary tract function and dysfunction. Rev. Urol. Suppl 8, S3–S10.
32. Krassioukov, A., and Elliott, S. (2017). Neural control and physiology of sexual function: Effect of spinal cord injury. Top. Spinal Cord Inj. Rehabil. 23, 1–10.
33. de Oliveira Vilaça, C., Orsini, M., Leite, M.A.A., de Freitas, M.R.G., Davidovich, E., Fiorelli, R., Fiorelli, S., Fiorelli, C., Oliveira, A.B., and Pessoa, B.L. (2016). Cervical spondylotic myelopathy: what the neurologist should know. Neurol. Int. 8, 69–73.
34. Vallotton, K., David, G., Hupp, M., Pfender, N., Cohen-Adad, J., Fehlings, M.G., Samson, R.S., Wheeler-Kingshott, C.A.M.G., Curt, A., Freund, P., and Seif, M. (2021). Tracking white and gray matter degeneration along the spinal cord axis in degenerative cervical myelopathy. J. Neurotrauma 38, 2978–2987.
35. Yiannakas, M.C., Kearney, H., Samson, R.S., Chard, D.T., Ciccarelli, O., Miller, D.H., and Wheeler-Kingshott, C.A.M. (2012). Feasibility of grey matter and white matter segmentation of the upper cervical cord in vivo: a pilot study with application to magnetisation transfer measurements. Neuroimage 63, 1054–1059.
36. Yiannakas, M.C., Kakar, P., Hoy, L.R., Miller, D.H., and Wheeler-Kingshott, C.A.M. (2014). The use of the lumbosacral enlargement as an intrinsic imaging biomarker: Feasibility of grey matter and white matter cross-sectional area measurements using MRI at 3T. PLoS One 9, e105544.
37. Mohammadi, S., Freund, P., Feiweier, T., Curt, A., and Weiskopf, N. (2013). The impact of post-processing on spinal cord diffusion tensor imaging. Neuroimage 70, 377–385.
38. David, G., Freund, P., and Mohammadi, S. (2017). The efficiency of retrospective artifact correction methods in improving the statistical power of between-group differences in spinal cord DTI. Neuroimage 158, 296–307.
39. Leener, B. De, Kadoury, S., and Cohen-adad, J. (2014). Robust, accurate and fast automatic segmentation of the spinal cord. Neuroimage 98, 528–536.
40. De Leener, B., Lévy, S., Dupont, S.M., Fonov, V.S., Stikov, N., Louis Collins, D., Callot, V., and Cohen-Adad, J. (2017). SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. Neuroimage 145, 24–43.
41. Ashburner, J., and Ridgway, G.R. (2012). Symmetric diffeomorphic modeling of longitudinal structural MRI. Front. Neurosci. 6, 197.
42. Horsfield, M.A., Sala, S., Neema, M., Absinta, M., Bakshi, A., Sormani, M.P., Rocca, M.A., Bakshi, R., and Filippi, M. (2010). Rapid semi-automatic segmentation of the spinal cord from magnetic resonance images: application in multiple sclerosis. Neuroimage 50, 446–455.
43. Kirshblum, S., and Waring, W. (2014). Updates for the International Standards for Neurological Classification of Spinal Cord Injury. Phys. Med. Rehabil. Clin. N. Am. 25, 505–517.
44. Wang, H., Wu, M., Zhan, C., Ma, E., Yang, M., Yang, X., and Li, Y. (2012). Neurofilament proteins in axonal regeneration and neurodegenerative diseases. Neural Regen. Res. 7, 620–626.
45. Grabher, P., Mohammadi, S., Trachsler, A., Friedl, S., David, G., Sutter, R., Weiskopf, N., Thompson, A.J., Curt, A., and Freund, P. (2016). Voxel-based analysis of grey and white matter degeneration in cervical spondylotic myelopathy. Sci. Rep. 6, 1–10.
46. Grabher, P., Mohammadi, S., David, G., and Freund, P. (2017). Neurodegeneration in the spinal ventral horn prior to motor impairment in cervical spondylotic myelopathy. J. Neurotrauma 34, 2329–2334.
47. Martin, A.R., De Leener, B., Cohen-Adad, J., Kalsi-Ryan, S., Cadotte, D.W., Wilson, J.R., Tetreault, L., Nouri, A., Crawley, A., Mikulis, D.J., Ginsberg, H., Massicotte, E.M., and Fehlings, M.G. (2018). Monitoring for myelopathic progression with multiparametric quantitative MRI. PLoS One 13.
48. Huber, E., David, G., Thompson, A.J., Weiskopf, N., Mohammadi, S., and Freund, P. (2018). Dorsal and ventral horn atrophy is associated with clinical outcome after spinal cord injury. Neurology 90, E1510–E1522.
49. Song, S., Sun, S., Ramsbottom, M.J., Chang, C., Russell, J., and Cross, A.H. (2002). Dysmyelination revealed through MRI as increased radial (but unchanged axial ) diffusion of water. Neuroimage 1436, 1429–1436.
50. Song, S.K., Sun, S.W., Ju, W.K., Lin, S.J., Cross, A.H., and Neufeld, A.H. (2003). Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage 20, 1714–1722.
51. Sun, S.W., Liang, H.F., Trinkaus, K., Cross, A.H., Armstrong, R.C., and Song, S.K. (2006). Noninvasive detection of cuprizone induced axonal damage and demyelination in the mouse corpus callosum. Magn. Reson. Med. 55, 302–308.
52. Jeong, K.E., Lee, S.Y.J., Yeom, S.K., Carlson, N., Shah, L.M., Rose, J., and Jeong, E.K. (2021). Ultrahigh-b diffusion-weighted imaging for quantitative evaluation of myelination in shiverer mouse spinal cord. Magn. Reson. Med. 87, 179–192.
53. Georgiadis, M., Schroeter, A., Gao, Z., Guizar-Sicairos, M., Liebi, M., Leuze, C., McNab, J.A., Balolia, A., Veraart, J., Ades-Aron, B., Kim, S., Shepherd, T., Lee, C.H., Walczak, P., Chodankar, S., DiGiacomo, P., David, G., Augath, M., Zerbi, V., Sommer, S., Rajkovic, I., Weiss, T., Bunk, O., Yang, L., Zhang, J., Novikov, D.S., Zeineh, M., Fieremans, E., and Rudin, M. (2021). Nanostructure-specific X-ray tomography reveals myelin levels, integrity and axon orientations in mouse and human nervous tissue. Nat. Commun. 12, 2941
54. Brennan, F.H., Cowin, G.J., Kurniawan, N.D., and Ruitenberg, M.J. (2013). Longitudinal assessment of white matter pathology in the injured mouse spinal cord through ultra-high field (16.4T) in vivo diffusion tensor imaging. Neuroimage 82, 574–585.
55. Zhang, J., Jones, M., Deboy, C.A., Reich, D.S., Jonathan, A.D., Hoffman, P.N., Griffin, J.W., Sheikh, K.A., Miller, M.I., Mori, S., and Calabresi, P.A. (2009). Diffusion tensor magnetic resonance imaging of Wallerian degeneration in rat spinal cord after dorsal root axotomy. J. Neurosci. 29, 3160–3171.
56. Zhang, J., Aggarwal, M., and Mori, S. (2012). Structural insights into the rodent CNS via diffusion tensor imaging. Trends Neurosci. 35, 412–421.
57. Cheran, S., Shanmuganathan, K., Zhuo, J., Mirvis, S.E., Aarabi, B., Alexander, M.T., and Gullapalli, R.P. (2011). Correlation of MR diffusion tensor imaging parameters with ASIA motor scores in hemorrhagic and nonhemorrhagic acute spinal cord injury. J. Neurotrauma 28, 1881–1892.
58. Shanmuganathan, K., Gullapalli, R.P., Zhuo, J., and Mirvis, S.E. (2008). Diffusion tensor MR imaging in cervical spine trauma. Am. J. Neuroradiol. 29, 655–659.
59. Shanmuganathan, K., Zhuo, J., Chen, H.H., Aarabi, B., Adams, J., Miller, C., Menakar, J., Gullapalli, R.P., and Mirvis, S.E. (2017). Diffusion tensor imaging parameter obtained during acute blunt cervical spinal cord injury in predicting long-term outcome. J. Neurotrauma 34, 2964–2971.
60. David, G., Pfyffer, D., Vallotton, K., Pfender, N., Thomspon, A.J., Weiskopf, N., Mohammadi, S., Curt, A., and Freund, P. (2021). Longitudinal changes of spinal cord grey and white matter following spinal cord injury. J. Neurol. Neurosurg. Psychiatry 92, 1222–1230.
61. Koskinen, E., Brander, A., Hakulinen, U., Luoto, T., Helminen, M., Ylinen, A., and Öhman, J. (2013). Assessing the state of chronic spinal cord injury using diffusion tensor imaging. J. Neurotrauma 30, 1587–1595.
62. Lunsford, L.D., Bissonette, D.J., and Zorub, D.S. (1980). Anterior surgery for cervical disc disease. Part 2: Treatment of cervical spondylotic myelopathy in 32 cases. J. Neurosurg. 53, 12–19.
63. Kanchiku, T., Taguchi, T., Kaneko, K., Yonemura, H., Kawai, S., and Gondo, T. (2001). A new rabbit model for the study on cervical compressive myelopathy. J. Orthop. Res. 19, 605–613.
64. Penny, C., Macrae, A., Hagen, R., Hahn, C., Sargison, N., Scott, P., Smith, S., Wilson, D., and Mayhew, J. (2007). Compressive cervical myelopathy in young Texel and Beltex sheep. J. Vet. Intern. Med. 21, 322–327.
65. Harkey, H.L., Al-Mefty, O., Marawi, I., Peeler, D.F., Haines, D.E., and Alexander, L.F. (1995). Experimental chronic compressive cervical myelopathy: effects of decompression. J. Neurosurg. 83, 336–341.
66. Ozawa, H., Wu, Z.J., Tanaka, Y., and Kokubun, S. (2004). Morphologic change and astrocyte response to unilateral spinal cord compression in rabbits. J. Neurotrauma 21, 944–955.
67. Lin, C.S.Y., Macefield, V.G., Elam, M., Gunnar Wallin, B., Engel, S., and Kiernan, M.C. (2007). Axonal changes in spinal cord injured patients distal to the site of injury. Brain 130, 985–994.
68. Dietz, V., Grillner, S., Trepp, A., Hubli, M., and Bolliger, M. (2009). Changes in spinal reflex and locomotor activity after a complete spinal cord injury: a common mechanism. Brain 132, 2196–2205.
69. Yokota, K., Kubota, K., Kobayakawa, K., Saito, T., Hara, M., Kijima, K., Maeda, T., Katoh, H., Ohkawa, Y., Nakashima, Y., and Okada, S. (2019). Pathological changes of distal motor neurons after complete spinal cord injury. Mol. Brain 12, 4.
70. Grumbles, R.M., and Thomas, C.K. (2017). Motoneuron death after human spinal cord injury. J. Neurotrauma 34, 581–590.
71. Yu, H., Li, L., Liu, R., Shu, B., Chen, H., Huang, H., Hua, R., Jiang, F., and An, Y. (2016). Autophagy in long propriospinal neurons is activated after spinal cord injury in adult rats. Neurosci. Lett. 634, 138–145.
72. Yu, Y.L., Leong, J.C.Y., Fang, D., Woo, E., Huang, C.Y., and Lau, H.K. (1988). Cervical myelopathy due to ossification of the posterior longitudinal ligament. A clinical, radiological and evoked potentials study in six Chinese patients. Brain 111 (Pt 4), 769–783.
73. Cao, Y., Zhou, Y., Ni, S., Wu, T., Li, P., Liao, S., Hu, J., and Lu, H. (2017). Three dimensional quantification of microarchitecture and vessel regeneration by synchrotron radiation microcomputed tomography in a rat model of spinal cord injury. J. Neurotrauma 34, 1187–1199.
74. Koliatsos, V.E., Price, W.L., Pardo, C.A., and Price, D.L. (1994). Ventral root avulsion: an experimental model of death of adult motor neurons. J. Comp. Neurol. 342, 35–44.
75. Yu, W.R., Baptiste, D.C., Liu, T., Odrobina, E., Stanisz, G.J., and Fehlings, M.G. (2009). Molecular mechanisms of spinal cord dysfunction and cell death in the spinal hyperostotic mouse: implications for the pathophysiology of human cervical spondylotic myelopathy. Neurobiol. Dis. 33, 149–163.
76. Papinutto, N., Asteggiano, C., Bischof, A., Gundel, T.J., Caverzasi, E., Stern, W.A., Bastianello, S., Hauser, S.L., and Henry, R.G. (2020). Intersubject variability and normalization strategies for spinal cord total cross-sectional and gray matter areas. J. Neuroimaging 30, 110–118.
77. Prados, F., Ashburner, J., Blaiotta, C., Brosch, T., Carballido-Gamio, J., Cardoso, M.J., Conrad, B.N., Datta, E., Dávid, G., Leener, B. De, Dupont, S.M., Freund, P., Wheeler-Kingshott, C.A.M.G., Grussu, F., Henry, R., Landman, B.A., Ljungberg, E., Lyttle, B., Ourselin, S., Papinutto, N., Saporito, S., Schlaeger, R., Smith, S.A., Summers, P., Tam, R., Yiannakas, M.C., Zhu, A., and Cohen-Adad, J. (2017). Spinal cord grey matter segmentation challenge. Neuroimage 152, 312–329.
Information & Authors
Information
Published In
Copyright
Copyright 2022, Mary Ann Liebert, Inc., publishers.
History
Published in print: May 2022
Published online: 20 April 2022
Published ahead of print: 8 February 2022
Published ahead of production: 12 January 2022
Topics
Authors
Authors' Contributions
GD: study design, data analysis, interpretation of data, writing the manuscript. KV: recruiting participants, acquiring clinical data, critical revision of manuscript for intellectual content. MH: recruiting participants, acquiring clinical data, critical revision of manuscript for intellectual content. AC: study concept and design, critical revision of manuscript for intellectual content. PF: interpretation of data; writing the manuscript; critical revision of manuscript for intellectual content. MS: study design, data analysis, interpretation of data, writing the manuscript, critical revision of manuscript for intellectual content; study supervision.
Author Disclosure Statement
No competing financial interests exist for the individual authors.
The Wellcome Trust Centre for Neuroimaging and Max Planck Institute for Human Cognitive and Brain Sciences have an institutional research agreement with and receives support from Siemens Healthcare. JENNIFER
Funding Information
This study is funded by Wings for Life (WFL-CH-007/14), the International Foundation for Research in Paraplegia (IRP-P158 and IRP-P184), the European Union's Horizon 2020 (grant agreement no. 681094, “NISCI”), the framework of ERA-NET NEURON (hMRIofSCI no: 32NE30_173678), and the Swiss State Secretariat for Education, Research and Innovation (SERI) (contract number: 15.0137). PF is funded by an SNF Eccellenza Professorial Fellowship grant (PCEFP3_181362/1). MS is funded by Wings for Life (WFL-CH-19/20) and Balgrist-Stiftung 2021. Open access of this publication is supported by the Wellcome Trust (091593/Z/10/Z).
Metrics & Citations
Metrics
Citations
Export Citation
Export citation
Select the format you want to export the citations of this publication.
View Options
Get Access
Access content
To read the fulltext, please use one of the options below to sign in or purchase access.⚠ Society Access
If you are a member of a society that has access to this content please log in via your society website and then return to this publication.