Research Article
No access
Published Online: 27 July 2022

Control of Forelimb and Hindlimb Movements and Their Coordination during Quadrupedal Locomotion across Speeds in Adult Spinal Cats

Publication: Journal of Neurotrauma
Volume 39, Issue Number 15-16


Coordinating the four limbs is critical for terrestrial mammalian locomotion. Thoracic spinal transection abolishes neural communication between the brain and spinal networks controlling hindlimb/leg movements. Several studies have shown that animal models of spinal transection (spinalization), such as mice, rats, cats, and dogs recover hindlimb locomotion with the forelimbs stationary or suspended. We know less on the ability to generate quadrupedal locomotion after spinal transection, however. We collected kinematic and electromyography data in four adult cats during quadrupedal locomotion at five treadmill speeds before (intact cats) and after low-thoracic spinal transection (spinal cats). We show that adult spinal cats performed quadrupedal treadmill locomotion and modulated their speed from 0.4 m/sec to 0.8 m/sec but required perineal stimulation. During quadrupedal locomotion, several compensatory strategies occurred, such as postural adjustments of the head and neck and the appearance of new coordination patterns between the forelimbs and hindlimbs, where the hindlimbs took more steps than the forelimbs. We also observed temporal changes, such as shorter forelimb cycle/swing durations and shorter hindlimb cycle/stance durations in the spinal state. Forelimb double support periods occupied a greater proportion of the cycle in the spinal state, and hindlimb stride length was shorter. Coordination between the forelimbs and hindlimbs was weakened and more variable in the spinal state. Changes in muscle activity reflected spatiotemporal changes in the locomotor pattern. Despite important changes in the pattern, our results indicate that biomechanical properties of the musculoskeletal system play an important role in quadrupedal locomotion and offset some of the loss in neural communication between networks controlling the forelimbs and hindlimbs after spinal transection.

Get full access to this article

View all available purchase options and get full access to this article.


1. Dietz, V. (2002). Do human bipeds use quadrupedal coordination? Trends Neurosci. 25, 462–467.
2. Dietz, V., and Michel, J. (2009). Human bipeds use quadrupedal coordination during locomotion. Ann. N. Y. Acad. Sci. 1164, 97–103.
3. Zehr, E.P., Barss, T.S., Dragert, K., Frigon, A., Vasudevan, E.V., Haridas, C., Hundza, S., Kaupp, C., Klarner, T., Klimstra, M., Komiyama, T., Loadman, P.M., Mezzarane, R.A., Nakajima, T., Pearcey, G.E.P., and Sun, Y. (2016). Neuromechanical interactions between the limbs during human locomotion: an evolutionary perspective with translation to rehabilitation. Exp. Brain Res. 234, 3059–3081.
4. Frigon, A. (2017). The neural control of interlimb coordination during mammalian locomotion. J. Neurophysiol. 117, 2224–2241.
5. Rossignol, S., Dubuc, R., and Gossard, J.-P. (2006). Dynamic sensorimotor interactions in locomotion. Physiol. Rev. 86, 89–154.
6. Frigon, A., Akay, T., and Prilutsky, B.I. (2021). Control of mammalian locomotion by somatosensory feedback. Compr. Physiol. 12, 2877–2947.
7. Shurrager, P.S., and Dykman, R.A. (1951). Walking spinal carnivores. J. Comp. Physiol. Psychol. 44, 252–262.
8. Lovely, R.G., Gregor, R.J., Roy, R.R., and Edgerton, V.R. (1986). Effects of training on the recovery of full-weight-bearing stepping in the adult spinal cat. Exp. Neurol. 92, 421–435.
9. Barbeau, H., and Rossignol, S. (1987). Recovery of locomotion after chronic spinalization in the adult cat. Brain Res. 412, 84–95.
10. Lovely, R.G., Gregor, R.J., Roy, R.R., and Edgerton, V.R. (1990). Weight-bearing hindlimb stepping in treadmill-exercised adult spinal cats. Brain Res. 514, 206–218.
11. Bélanger, M., Drew, T., Provencher, J., and Rossignol, S. (1996). A comparison of treadmill locomotion in adult cats before and after spinal transection. J. Neurophysiol. 76, 471–491.
12. De Leon, R.D., Hodgson, J.A., Roy, R.R., and Edgerton, V.R. (1998). Full weight-bearing hindlimb standing following stand training in the adult spinal cat. J. Neurophysiol. 80, 83–91.
13. De Leon, R.D., Hodgson, J.A., Roy, R.R., and Edgerton, V.R. (1999). Retention of hindlimb stepping ability in adult spinal cats after the cessation of step training. J. Neurophysiol. 81, 85–94.
14. Leblond, H., L'Esperance, M., Orsal, D., and Rossignol, S. (2003). Treadmill locomotion in the intact and spinal mouse. J. Neurosci. 23, 11411–11419.
15. Cha, J., Heng, C., Reinkensmeyer, D.J., Roy, R.R., Edgerton, V.R., and De Leon, R.D. (2007). Locomotor ability in spinal rats is dependent on the amount of activity imposed on the hindlimbs during treadmill training. J. Neurotrauma 24, 1000–1012.
16. Harnie, J., Doelman, A., de Vette, E., Audet, J., Desrochers, E., Gaudreault, N., and Frigon, A. (2019). The recovery of standing and locomotion after spinal cord injury does not require task-specific training. Elife 8, e50134.
17. Brown, T.G., and Sherrington, C.S. (1911). The intrinsic factors in the act of progression in the mammal. Proc. R. Soc. Lond. B. Biol. 84, 308–319.
18. Grillner, S., McClellan, A., Sigvardt, K., Wallén, P., and Wilén, M. (1981). Activation of NMDA-receptors elicits “fictive locomotion” in lamprey spinal cord in vitro. Acta Physiol. Scand. 113, 549–551.
19. Grillner, S., and El Manira, A. (2020). Current principles of motor control, with special reference to vertebrate locomotion. Physiol. Rev. 100, 271–320.
20. McCrea, D.A., and Rybak, I.A. (2008). Organization of mammalian locomotor rhythm and pattern generation. Brain Res. Rev. 57, 134–146.
21. Rossignol, S., and Frigon, A. (2011). Recovery of locomotion after spinal cord injury: some facts and mechanisms. Annu. Rev. Neurosci. 34, 413–440.
22. Kiehn, O. (2016). Decoding the organization of spinal circuits that control locomotion. Nat. Rev. Neurosci. 17, 224–238.
23. Hurteau, M.F., Thibaudier, Y., Dambreville, C., Chraibi, A., Desrochers, E., Telonio, A., and Frigon, A. (2017). Nonlinear modulation of cutaneous reflexes with increasing speed of locomotion in spinal cats. J. Neurosci. 37, 3896–3912.
24. Harnie, J., Côté-Sarrazin, C., Hurteau, M.-F., Desrochers, E., Doelman, A., Amhis, N., and Frigon, A. (2018). The modulation of locomotor speed is maintained following partial denervation of ankle extensors in spinal cats. J. Neurophysiol. 120, 1274–1285.
25. Forssberg, H., Grillner, S., Halbertsma, J., and Rossignol, S. (1980). The locomotion of the low spinal cat. II. Interlimb coordination. Acta Physiol. Scand. 108, 283–295.
26. Frigon, A., Hurteau, M.F., Thibaudier, Y., Leblond, H., Telonio, A., and D'Angelo, G. (2013). Split-belt walking alters the relationship between locomotor phases and cycle duration across speeds in intact and chronic spinalized adult cats. J. Neurosci. 33, 8559–8566.
27. Kuczynski, V., Telonio, A., Thibaudier, Y., Hurteau, M.F., Dambreville, C., Desrochers, E., Doelman, A., Ross, D., and Frigon, A. (2017). Lack of adaptation during prolonged split-belt locomotion in the intact and spinal cat. J. Physiol. 595, 5987–6006.
28. Desrochers, E., Harnie, J., Doelman, A., Hurteau, M.F., and Frigon, A. (2019). Spinal control of muscle synergies for adult mammalian locomotion. J. Physiol. 597, 333–350.
29. Higgin, D., Krupka, A., Maghsoudi, O.H., Klishko, A.N., Nichols, T.R., Lyle, M.A., Prilutsky, B.I., and Lemay, M.A. (2020). Adaptation to slope in locomotor-trained spinal cats with intact and self-reinnervated lateral gastrocnemius and soleus muscles. J. Neurophysiol. 123, 70–89.
30. Harnie, J., Audet, J., Klishko, A.N., Doelman, A., Prilutsky, B.I., and Frigon, A. (2021). The spinal control of backward locomotion. J. Neurosci. 41, 630–647.
31. Ballion, B., Morin, D., and Viala, D. (2001). Forelimb locomotor generators and quadrupedal locomotion in the neonatal rat. Eur. J. Neurosci. 14, 1727–1738.
32. Yamaguchi, T. (2004). The central pattern generator for forelimb locomotion in the cat. Progress in Brain Research. 143, 115–122.
33. Cazalets, J.R., Borde, M., and Clarac, F. (1995). Localization and organization of the central pattern generator for hindlimb locomotion in newborn rat. J. Neurosci. 15, 4943–4951.
34. Langlet, C., Leblond, H., and Rossignol, S. (2005). Mid-lumbar segments are needed for the expression of locomotion in chronic spinal cats. J. Neurophysiol. 93, 2474–2488.
35. Marcoux, J., and Rossignol, S. (2000). Initiating or blocking locomotion in spinal cats by applying noradrenergic drugs to restricted lumbar spinal segments. J. Neurosci. 20, 8577–8585.
36. Kiehn, O., and Butt, S.J.B. (2003). Physiological, anatomical and genetic identification of CPG neurons in the developing mammalian spinal cord. Prog. Neurobiol. 70, 347–361.
37. Kiehn, O., and Kjaerulff, O. (1998). Distribution of central pattern generators for rhythmic motor outputs in the spinal cord of limbed vertebrates. Ann. N. Y. Acad. Sci. 860, 110–129.
38. Chiel, H.J., and Beer, R.D. (1997). The brain has a body: adaptive behavior emerges from interactions of nervous system, body and environment. Trends Neurosci. 20, 553–557.
39. Kubow, T.M. (1999). The role of the mechanical system in control: a hypothesis of self-stabilization in hexapedal runners. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 354, 849–861.
40. Dürr, V., Arena, P.P., Cruse, H., Dallmann, C.J., Drimus, A., Hoinville, T., Krause, T., Mátéfi-Tempfli, S., Paskarbeit, J., Patanè, L., Schäffersmann, M., Schilling, M., Schmitz, J., Strauss, R., Theunissen, L., Vitanza, A., and Schneider, A. (2019). Integrative biomimetics of autonomous hexapedal locomotion. Front. Neurorobot. 13, 88.
41. Dickinson, M.H., Farley, C.T., Full, R.J., Koehl, M.A., Kram, R., and Lehman, S. (2000). How animals move: an integrative view. Science 288, 100–106.
42. Kimura, H., Fukuoka, Y., and Cohen, A.H. (2007). Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts. Int. J. Robot. Res. 26, 475–490.
43. Semini, C., Tsagarakis, N.G., Guglielmino, E., Focchi, M., Cannella, F., and Caldwell, D.G. (2011). Design of HyQ – a hydraulically and electrically actuated quadruped robot. Proc.Inst. Mech. Eng., Part I: Journal of Systems and Control Engineering 225, 831–849.
44. Ijspeert, A.J. (2014). Biorobotics: using robots to emulate and investigate agile locomotion. Science 346, 196–203.
45. Eichhorst, H., and Naunyn, B. (1874). Uber die Regeneration and Veranderungen im Ruckenmarke nach Streckenweiser totaler Zerstorung desselben. Naunyn Schmiedebergs Arch. Pharmacol. 2, 225–253.
46. Freusberg, A. (1874). Reflexbewegungen beim Hunde. Pflueger Archiv. fuer die gesamte Physiologie 9, 358–391.
47. Goltz, Fr., and Freusberg, A. (1874). Ueber gefässerweiternde Nerven. Pflüger Archiv. 9, 174–197.
48. Philippson, M. (1905). L'autonomie et la centralisation dans le système nerveux des animaux: étude de physiologie expérimentale et comparée. Falk: Bruxelles, 258 p.
49. Magnus, R. (1924). The experimental basis for theories on vestibular function. J. Laryngol. Otol. 39, 677–685.
50. Cate, J. (1940). Quelques observations sur la locomotion des chiens dont la moelle épinière est sectionnée transversalement. Arch. néerl Physiol. 24, 476–485.
51. Howland, D.R., Bregman, B.S., Tessler, A., and Goldberger, M.E. (1995). Development of locomotor behavior in the spinal kitten. Exp. Neurol. 135, 108–122.
52. Eidelberg, E., Story, J.L., Meyer, B.L., and Nystel, J. (1980). Stepping by chronic spinal cats. Exp. Brain Res. 40, 241–246.
53. Stelzner, D.J., Ershler, W.B., and Weber, E.D. (1975). Effects of spinal transection in neonatal and weanling rats: survival of function. Exp Neurol 46, 156–177.
54. Weber, E.D., and Stelzner, D.J. (1977). Behavioral effects of spinal cord transection in the developing rat. Brain Res. 125, 241–255.
55. Percie du Sert, N., Hurst, V., Ahluwalia A., et al. (2020). The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. Br. J. Pharmacol. 177, 3617–3624.
56. Harnie, J., Audet, J., Mari, S., Lecomte, C.G., Merlet, A.N., Genois, G., Rybak, I.A., Prilutsky, B.I., and Frigon, A. (2022). State-and condition-dependent modulation of the hindlimb locomotor pattern in intact and spinal cats across speeds. Front. Syst. Neurosci. 16, 814028.
57. Merlet, A.N., Harnie, J., Macovei, M., Doelman, A., Gaudreault, N., and Frigon, A. (2020). Mechanically stimulating the lumbar region inhibits locomotor-like activity and increases the gain of cutaneous reflexes from the paws in spinal cats. J. Neurophysiol 123, 1026–1041.
58. Merlet, A.N., Harnie, J., and Frigon, A. (2021). Inhibition and facilitation of the spinal locomotor central pattern generator and reflex circuits by somatosensory feedback from the lumbar and perineal regions after spinal cord injury. Front. Neurosci. 15, 720542.
59. Caron, G., Bilchak, J.N., and Côté, M.P. (2020). Direct evidence for decreased presynaptic inhibition evoked by PBSt group I muscle afferents after chronic SCI and recovery with step-training in rats. J. Physiol. 598, 4621–4642.
60. Lecomte, C.G., Audet, J., Harnie, J., and Frigon, A. (2021). A validation of supervised deep learning for gait analysis in the cat. Front. Neuroinform. 15, 712623.
61. Halbertsma, J.M. (1983). The stride cycle of the cat: the modelling of locomotion by computerized analysis of automatic recordings. Acta Physiol. Scand. Suppl 521, 1–75.
62. Thibaudier, Y., Hurteau, M.F., Dambreville, C., Chraibi, A., Goetz, L., and Frigon, A. (2017). Interlimb coordination during tied-belt and transverse split-belt locomotion before and after an incomplete spinal cord injury. J. Neurotrauma 34, 1751–1765.
63. Thibaudier, Y., and Frigon, A. (2014). Spatiotemporal control of interlimb coordination during transverse split-belt locomotion with 1:1 or 2:1 coupling patterns in intact adult cats. J. Neurophysiol. 112, 2006–2018.
64. Frigon, A., D'Angelo, G., Thibaudier, Y., Hurteau, M.-F., Telonio, A., Kuczynski, V., and Dambreville, C. (2014). Speed-dependent modulation of phase variations on a step-by-step basis and its impact on the consistency of interlimb coordination during quadrupedal locomotion in intact adult cats. J. Neurophysiol. 111, 1885–1902.
65. English, A.W. (1979). Interlimb coordination during stepping in the cat: an electromyographic analysis. J. Neurophysiol. 42, 229–243.
66. English, A.W., and Lennard, P.R. (1982). Interlimb coordination during stepping in the cat: in-phase stepping and gait transitions. Brain Res. 245, 353–364.
67. Orsal, D., Cabelguen, J.M., and Perret, C. (1990). Interlimb coordination during fictive locomotion in the thalamic cat. Exp. Brain Res. 82, 536–546.
68. Mathis, A., Mamidanna, P., Cury, K.M., Abe, T., Murthy, V.N., Mathis, M.W., and Bethge, M. (2018). DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289.
69. Hoogkamer, W., Meyns, P., and Duysens, J. (2014). Steps forward in understanding backward gait: from basic circuits to rehabilitation. Exerc. Sport Sci. Rev. 42, 23–29.
70. Courtine, G., Roy, R.R., Raven, J., Hodgson, J., McKay, H., Yang, H., Zhong, H., Tuszynski, M.H., and Edgerton, V.R. (2005). Performance of locomotion and foot grasping following a unilateral thoracic corticospinal tract lesion in monkeys (Macaca mulatta). Brain 128, 2338–2358.
71. Goetz, L., Piallat, B., Thibaudier, Y., Montigon, O., David, O., and Chabardès, S. (2012). A non-human primate model of bipedal locomotion under restrained condition allowing gait studies and single unit brain recordings. J. Neurosci. Methods 204, 306–317.
72. Dambreville, C., Labarre, A., Thibaudier, Y., Hurteau, M.F., and Frigon, A. (2015). The spinal control of locomotion and step-to-step variability in left-right symmetry from slow to moderate speeds. J. Neurophysiol. 114, 1119–1128.
73. Kjaerulff, O., and Kiehn, O. (1996). Distribution of networks generating and coordinating locomotor activity in the neonatal rat spinal cord in vitro: a lesion study. J. Neurosci. 16, 5777–5794.
74. Zar, J.H. (1974). Probabilities of rayleigh's test statistics for circular data. Behav. Res. Methods Instrument. 6, 450.
75. Górska, T., Chojnicka-Gittins, B., Majczyński, H., and Zmysłowski, W. (2013). Changes in forelimb-hindlimb coordination after partial spinal lesions of different extent in the rat. Behav. Brain Res. 239, 121–138.
76. Cartmill, M., Lemelin, P., and Schmitt, D. (2002). Support polygons and symmetrical gaits in mammals. Zoologic. J. Linnean Soc. 136, 401–420.
77. Blaszczyk, J., and Loeb, G.E. (1993). Why cats pace on the treadmill. Physiol. Behav. 53, 501–507.
78. Wheeler, J.S., Walter, J.S., and Zaszczurynski, P.J. (1992). Bladder inhibition by penile nerve stimulation in spinal cord injury patients. J. Urol. 147, 100–103.
79. Prévinaire, J.G., Soler, J.M., Perrigot, M., Boileau, G., Delahaye, H., Schumacker, P., Vanvelcenaher, J., and Vanhée, J.L. (1996). Short-term effect of pudendal nerve electrical stimulation on detrusor hyperreflexia in spinal cord injury patients: importance of current strength. Paraplegia 34, 95–99.
80. Prévinaire, J.G., Soler, J.M., and Perrigot, M. (1998). Is there a place for pudendal nerve maximal electrical stimulation for the treatment of detrusor hyperreflexia in spinal cord injury patients? Spinal Cord 36, 100–103.
81. Kirkham, A.P., Shah, N.C., Knight, S.L., Shah, P.J., and Craggs, M.D. (2001). The acute effects of continuous and conditional neuromodulation on the bladder in spinal cord injury. Spinal Cord 39, 420–428.
82. Dalmose, A.L., Rijkhoff, N.J.M., Kirkeby, H.J., Nohr, M., Sinkjaer, T., and Djurhuus, J.C. (2003). Conditional stimulation of the dorsal penile/clitoral nerve may increase cystometric capacity in patients with spinal cord injury. Neurourol. Urodyn. 22, 130–137.
83. Hansen, J., Media, S., Nøhr, M., Biering-Sørensen, F., Sinkjær, T., and Rijkhoff, N.J.M. (2005). Treatment of neurogenic detrusor overactivity in spinal cord injured patients by conditional electrical stimulation. J. Urol. 173, 2035–2039.
84. Yoo, P.B., Klein, S.M., Grafstein, N.H., Horvath, E.E., Amundsen, C.L., Webster, G.D., and Grill, W.M. (2007). Pudendal nerve stimulation evokes reflex bladder contractions in persons with chronic spinal cord injury. Neurourol. Urodyn. 26, 1020–1023.
85. Horvath, E.E., Yoo, P.B., Amundsen, C.L., Webster, G.D., and Grill, W.M. (2010). Conditional and continuous electrical stimulation increase cystometric capacity in persons with spinal cord injury. Neurourol. Urodyn. 29, 401–407.
86. Herman, R., He, J., D'Luzansky, S., Willis, W., and Dilli, S. (2002). Spinal cord stimulation facilitates functional walking in a chronic, incomplete spinal cord injured. Spinal Cord 40, 65–68.
87. Carhart, M.R., He, J., Herman, R., D'Luzansky, S., and Willis, W.T. (2004). Epidural spinal-cord stimulation facilitates recovery of functional walking following incomplete spinal-cord injury. IEEE Trans. Neural Syst. Rehabil. Eng. 12, 32–42.
88. Harkema, S., Gerasimenko, Y., Hodes, J., Burdick, J., Angeli, C., Chen, Y., Ferreira, C., Willhite, A., Rejc, E., Grossman, R.G., and Edgerton, V.R. (2011). Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet 377, 1938–1947.
89. Angeli, C.A., Edgerton, V.R., Gerasimenko, Y.P., and Harkema, S.J. (2014). Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain 137, 1394–1409.
90. Rejc, E., Angeli, C.A., Atkinson, D., and Harkema, S.J. (2017). Motor recovery after activity-based training with spinal cord epidural stimulation in a chronic motor complete paraplegic. Sci. Rep. 7, 13476.
91. Rejc, E., Angeli, C., and Harkema, S. (2015). Effects of lumbosacral spinal cord epidural stimulation for standing after chronic complete paralysis in humans. PLoS One 10, e0133998.
92. Grahn, P.J., Lavrov, I.A., Sayenko, D.G., Van Straaten, M.G., Gill, M.L., Strommen, J.A., Calvert, J.S., Drubach, D.I., Beck, L.A., Linde, M.B., Thoreson, A.R., Lopez, C., Mendez, A.A., Gad, P.N., Gerasimenko, Y.P., Edgerton, V.R., Zhao, K.D., and Lee, K.H. (2017). Enabling task-specific volitional motor functions via spinal cord neuromodulation in a human with paraplegia. Mayo Clin. Proc. 92, 544–554.
93. Gill, M.L., Grahn, P.J., Calvert, J.S., Linde, M.B., Lavrov, I.A., Strommen, J.A., Beck, L.A., Sayenko, D.G., Van Straaten, M.G., Drubach, D.I., Veith, D.D., Thoreson, A.R., Lopez, C., Gerasimenko, Y.P., Edgerton, V.R., Lee, K.H., and Zhao, K.D. (2018). Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia. Nat. Med. 24, 1677–1682.
94. Smith, J.L., Smith, L.A., Zernicke, R.F., and Hoy, M. (1982). Locomotion in exercised and nonexercised cats cordotomized at two or twelve weeks of age. Exp. Neurol. 76, 393–413.
95. Commissiong, J.W., and Toffano, G. (1989). Complete spinal cord transection at different postnatal ages: recovery of motor coordination correlated with spinal cord catecholamines. Exp. Brain Res. 78, 597–603.
96. Visintin, M., and Barbeau, H. (1994). The effects of parallel bars, body weight support and speed on the modulation of the locomotor pattern of spastic paretic gait. A preliminary communication. Paraplegia 32, 540–553.
97. Wernig, A., Müller, S., Nanassy, A., and Cagol, E. (1995). Laufband therapy based on “rules of spinal locomotion” is effective in spinal cord injured persons. Eur. J. Neurosci. 7, 823–829.
98. Harkema, S.J., Hurley, S.L., Patel, U.K., Requejo, P.S., Dobkin, B.H., and Edgerton, V.R. (1997). Human lumbosacral spinal cord interprets loading during stepping. J. Neurophysiol. 77, 797–811.
99. Colombo, G., Joerg, M., Schreier, R., and Dietz, V. (2000). Treadmill training of paraplegic patients using a robotic orthosis. J. Rehabil. Res. Dev. 37, 693–700.
100. Dobkin, B., Apple, D., Barbeau, H., Basso, M., Behrman, A., Deforge, D., Ditunno, J., Dudley, G., Elashoff, R., Fugate, L., Harkema, S., Saulino, M., Scott, M., and Spinal Cord Injury Locomotor Trial Group. (2006). Weight-supported treadmill vs over-ground training for walking after acute incomplete SCI. Neurology 66, 484–493.
101. Bethe, A., and Fischer, E. (1931). Die Anpassungsfähigkeit (Plastizität) des Nervensystems., in: Arbeitsphysiologie II Orientierung · Plastizität Stimme und Sprache. Springer: Berlin, Heidelberg, pps. 1045–1130.
102. Buchner, H.H., Savelberg, H.H., Schamhardt, H.C., and Barneveld, A. (1996). Head and trunk movement adaptations in horses with experimentally induced fore- or hindlimb lameness. Equine Vet. J. 28, 71–76.
103. Barrière, G., Frigon, A., Leblond, H., Provencher, J., and Rossignol, S. (2010). Dual spinal lesion paradigm in the cat: evolution of the kinematic locomotor pattern. J. Neurophysiol. 104, 1119–1133.
104. Alluin, O., Karimi-Abdolrezaee, S., Delivet-Mongrain, H., Leblond, H., Fehlings, M.G., and Rossignol, S. (2011). Kinematic study of locomotor recovery after spinal cord clip compression injury in rats. J. Neurotrauma 28, 1963–1981.
105. Brustein, E., and Rossignol, S. (1998). Recovery of locomotion after ventral and ventrolateral spinal lesions in the cat. I. Deficits and adaptive mechanisms. J. Neurophysiol. 80, 1245–1267.
106. Jiang, W., and Drew, T. (1996). Effects of bilateral lesions of the dorsolateral funiculi and dorsal columns at the level of the low thoracic spinal cord on the control of locomotion in the adult cat. I. Treadmill walking. J. Neurophysiol. 76, 849–866.
107. Sławińska, U., Majczyński, H., Kwaśniewska, A., Miazga, K., Cabaj, A.M., Bekisz, M., Jordan, L.M., and Zawadzka, M. (2021). Unusual quadrupedal locomotion in rat during recovery from lumbar spinal blockade of 5-HT7 receptors. Int. J. Mol. Sci. 22, 6007.
108. Gray, J. (1944). Studies in the mechanics of the tetrapod skeleton. J. Exp. Biol. 20, 88–116.
109. Ting, L.H., Blickhan, R., and Full, R.J. (1994). Dynamic and static stability in hexapedal runners. J. Exp. Biol. 197, 251–269.
110. Farrell, B.J., Bulgakova, M.A., Beloozerova, I.N., Sirota, M.G., and Prilutsky, B.I. (2014). Body stability and muscle and motor cortex activity during walking with wide stance. J. Neurophysiol. 112, 504–524.
111. Frigon, A., and Rossignol, S. (2008). Adaptive changes of the locomotor pattern and cutaneous reflexes during locomotion studied in the same cats before and after spinalization. J. Physiol. 586, 2927–2945.
112. Rossignol, S., Giroux, N., Chau, C., Marcoux, J., Brustein, E., and Reader, T.A. (2001). Pharmacological aids to locomotor training after spinal injury in the cat. J. Physiol. 533, 65–74.
113. Pocratsky, A.M., Shepard, C.T., Morehouse, J.R., Burke, D.A., Riegler, A.S., Hardin, J.T., Beare, J.E., Hainline, C., States, G.J., Brown, B.L., Whittemore, S.R., and Magnuson, D.S. (2020). Long ascending propriospinal neurons provide flexible, context-specific control of interlimb coordination. Elife 9, e53565.
114. Gottschall, J.S., and Nichols, T.R. (2007). Head pitch affects muscle activity in the decerebrate cat hindlimb during walking. Exp. Brain Res. 182, 131–135.
115. Smith, J.L., Carlson-Kuhta, P., and Trank, T.V. (1998). Forms of forward quadrupedal locomotion. III. A comparison of posture, hindlimb kinematics, and motor patterns for downslope and level walking. J. Neurophysiol. 79, 1702–1716.
116. Klishko, A.N., Akyildiz, A., Mehta-Desai, R., and Prilutsky, B.I. (2021). Common and distinct muscle synergies during level and slope locomotion in the cat. J. Neurophysiol. 126, 493–515.
117. Tester, N.J., Howland, D.R., Day, K.V., Suter, S.P., Cantrell, A., and Behrman, A.L. (2011). Device use, locomotor training and the presence of arm swing during treadmill walking after spinal cord injury. Spinal Cord 49, 451–456.
118. Tester, N.J., Barbeau, H., Howland, D.R., Cantrell, A., and Behrman, A.L. (2012). Arm and leg coordination during treadmill walking in individuals with motor incomplete spinal cord injury: a preliminary study. Gait Posture 36, 49–55.
119. Herr, H., and Popovic, M. (2008). Angular momentum in human walking. J. Exp. Biol. 211, 467–481.
120. Ferris, D.P., Huang, H.J., and Kao, P.C. (2006). Moving the arms to activate the legs. Exerc. Sport Sci. Rev. 34, 113–120.
121. Frigon, A., Collins, D.F., and Zehr, E.P. (2004). Effect of rhythmic arm movement on reflexes in the legs: modulation of soleus H-reflexes and somatosensory conditioning. J. Neurophysiol. 91, 1516–1523.

Information & Authors


Published In

cover image Journal of Neurotrauma
Journal of Neurotrauma
Volume 39Issue Number 15-16August 2022
Pages: 1113 - 1131
PubMed: 35343245


Published in print: August 2022
Published online: 27 July 2022
Published ahead of print: 6 May 2022
Published ahead of production: 27 March 2022


Request permissions for this article.




    Johannie Audet**
    Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada.
    Jonathan Harnie**
    Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada.
    Charly G. Lecomte
    Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada.
    Stephen Mari
    Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada.
    Angèle N. Merlet
    Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada.
    Boris I. Prilutsky
    School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.
    Ilya A. Rybak
    Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA.
    Alain Frigon* [email protected]
    Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada.


    Both authors contributed equally to this article.
    Address correspondence to : Alain Frigon, PhD, Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada [email protected]

    Author Disclosure Statement

    No competing financial interests exist.

    Funding Information

    This work was supported by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC RGPIN-2016-03790) to A.F., and the National Institutes of Health: R01 NS110550 to A.F, IAR and BIP. A.F. is a Fonds de Recherche-Santé Quebec (FRQS) Senior Research Scholar. J.H. and A.N.M. were supported by FRQS doctoral and postdoctoral scholarships, respectively. J.A. was supported by master's scholarships from NSERC and FRQS.

    Metrics & Citations



    Export citation

    Select the format you want to export the citations of this publication.

    View Options

    Get Access

    Access content

    To read the fulltext, please use one of the options below to sign in or purchase access.

    Society Access

    If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

    Restore your content access

    Enter your email address to restore your content access:

    Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

    View options


    View PDF/ePub

    Full Text

    View Full Text







    Copy the content Link

    Share on social media

    Back to Top