Review Article
No access
Published Online: 29 September 2022

Epigenetic Modifications and Their Potential Contribution to Traumatic Brain Injury Pathobiology and Outcome

Publication: Journal of Neurotrauma
Volume 39, Issue Number 19-20

Abstract

Epigenetic information is not permanently encoded in the DNA sequence, but rather consists of reversible, heritable modifications that regulate the gene expression profile of a cell. Epigenetic modifications can result in cellular changes that can be long lasting and include DNA methylation, histone methylation, histone acetylation, and RNA methylation. As epigenetic modifications are reversible, the enzymes that add (epigenetic writers), the proteins that decode (epigenetic readers), and the enzymes that remove (epigenetic erasers) these modifications can be targeted to alter cellular function and disease biology. While epigenetic modifications and their contributions are intense topics of current research in the context of a number of diseases, including cancer, inflammatory diseases, and Alzheimer disease, the study of epigenetics in the context of traumatic brain injury (TBI) is in its infancy. In this review, we will summarize the experimental and clinical findings demonstrating that TBI triggers epigenetic modifications, with a focus on changes in DNA methylation, histone methylation, and the translational utility of the universal methyl donor S-adenosylmethionine (SAM). Finally, we will review the evidence for using methyl donors as possible treatments for TBI-associated pathology and outcome.

Get full access to this article

View all available purchase options and get full access to this article.

References

1. Zhang, L., Lu, Q. and Chang, C. (2020). Epigenetics in health and disease. Adv. Exp. Med. Biol. 1253, 3–55.
2. Kanherkar, R.R., Bhatia-Dey, N. and Csoka, A.B. (2014). Epigenetics across the human lifespan. Front. Cell Dev. Biol. 2, 49.
3. Waddington, C., H. (1953). Epigenetics and evolution. Symp. Soc. Exp. Biol. 7, 186–199.
4. Nanney, D.L. (1958). Epigenetic control systems. Proc. Natl. Acad. Sci. U. S. A. 44, 712–717.
6. Lardenoije, R., Pishva, E., Lunnon, K., and van den Hove, D.L. (2018). Neuroepigenetics of aging and age-related neurodegenerative disorders. Prog. Mol. Biol. Transl. Sci. 158, 49–82.
7. Bertogliat, M.J., Morris-Blanco, K.C., and Vemuganti, R. (2020). Epigenetic mechanisms of neurodegenerative diseases and acute brain injury. Neurochem. Int. 133, 104642.
8. Cavalli, G., and Heard, E. (2019). Advances in epigenetics link genetics to the environment and disease. Nature 571, 489–499.
9. Bellver-Sanchis, A., Pallas, M., and Grinan-Ferre, C. (2021). The contribution of epigenetic inheritance processes on age-related cognitive decline and Alzheimer's disease. Epigenomes 5, 15.
10. Jarome, T.J., and Lubin, F.D. (2014). Epigenetic mechanisms of memory formation and reconsolidation. Neurobiol. Learn. Mem. 115, 116–127.
11. Sweatt, J.D. (2009). Experience-dependent epigenetic modifications in the central nervous system. Biol. Psychiatry 65, 191–197.
12. Zhang, B., West, E.J., Van, K.C., Gurkoff, G.G., Zhou, J., Zhang, X.M., Kozikowski, A.P,. and Lyeth, B.G. (2008). HDAC inhibitor increases histone H3 acetylation and reduces microglia inflammatory response following traumatic brain injury in rats. Brain Res. 1226, 181–191.
13. Gao, W.M., Chadha, M.S., Kline, A.E., Clark, R.S., Kochanek, P.M., Dixon, C.E., and Jenkins, L.W. (2006). Immunohistochemical analysis of histone H3 acetylation and methylation—evidence for altered epigenetic signaling following traumatic brain injury in immature rats. Brain Res. 1070, 31–34.
14. Bartke, T., and Kouzarides, T. (2011). Decoding the chromatin modification landscape. Cell Cycle 10, 182.
15. Cedar, H., and Bergman, Y. (2009). Linking DNA methylation and histone modification: patterns and paradigms. Nat. Rev. Genet. 10, 295–304.
16. Rauluseviciute, I., Drablos, F., and Rye, M.B. (2020). DNA hypermethylation associated with upregulated gene expression in prostate cancer demonstrates the diversity of epigenetic regulation. BMC Med. Genomicharris 13, 6.
17. Harris, C.J., Scheibe, M., Wongpalee, S.P., Liu, W., Cornett, E.M., Vaughan, R.M., Li, X., Chen, W., Xue, Y., Zhong, Z., Yen, L., Barshop, W.D., Rayatpisheh, S., Gallego-Bartolome, J., Groth, M., Wang, Z., Wohlschlegel, J.A., Du, J., Rothbart, S.B., Butter, F., and Jacobsen, S.E. (2018). A DNA methylation reader complex that enhances gene transcription. Science 362, 1182–1186.
18. Saxonov, S., Berg, P., and Brutlag, D.L. (2006). A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc. Natl. Acad. Sci. U. S. A. 103, 1412–1417.
19. Bennett, R.L., and Licht, J.D. (2018). Targeting epigenetics in cancer. Annu. Rev. Pharmacol. Toxicol. 58, 187–207.
20. Illingworth, R.S., Gruenewald-Schneider, U., Webb, S., Kerr, A.R., James, K.D., Turner, D.J., Smith, C., Harrison, D.J., Andrews, R., and Bird, A.P. (2010). Orphan CpG islands identify numerous conserved promoters in the mammalian genome. PLoS Genet. 6, e1001134.
21. Ziller, M.J., Gu, H., Muller, F., Donaghey, J., Tsai, L.T., Kohlbacher, O., De Jager, P.L., Rosen, E.D., Bennett, D.A., Bernstein, B.E., Gnirke, A., and Meissner, A. (2013). Charting a dynamic DNA methylation landscape of the human genome. Nature 500, 477–481.
22. Jin, B., and Robertson, K.D. (2013). DNA methyltransferases, DNA damage repair, and cancer. Adv. Exp. Med. Biol. 754, 3–29.
23. Goyal, R., Rathert, P., Laser, H., Gowher, H., and Jeltsch, A. (2007). Phosphorylation of serine-515 activates the Mammalian maintenance methyltransferase Dnmt1. Epigenetics 2, 155–160.
24. Niiranen, L., Leciej, D., Edlund, H., Bernhardsson, C., Fraser, M., Quinto, F.S., Herzig, K.H., Jakobsson, M., Walkowiak, J., and Thalmann, O. (2022). Epigenomic modifications in modern and ancient genomes. Genes (Basel) 13, 178.
25. Armstrong, M.J., Jin, Y., Allen, E.G., and Jin, P. (2019). Diverse and dynamic DNA modifications in brain and diseases. Hum. Mol. Genet. 28, R241–R253.
26. Wang, Q., Liang, Y., Luo, X., Liu, Y., Zhang, X., and Gao, L. (2021). N6-methyladenosine RNA modification: A promising regulator in central nervous system injury. Exp. Neurol. 345, 113829.
27. Yen, Y.P., and Chen, J.A. (2021). The m(6)A epitranscriptome on neural development and degeneration. J. Biomed. Sci. 28, 40.
28. Radford, E.J. (2018). An introduction to epigenetic mechanisms. Prog. Mol. Biol. Transl. Sci. 158, 29–48.
29. Sadakierska-Chudy, A., Kostrzewa, R.M., and Filip, M. (2015). A comprehensive view of the epigenetic landscape part I: DNA methylation, passive and active DNA demethylation pathways and histone variants. Neurotox. Res. 27, 84–97.
30. Yamaguchi, S., Shen, L., Liu, Y., Sendler, D., and Zhang, Y. (2013). Role of Tet1 in erasure of genomic imprinting. Nature 504, 460–464.
31. Li, X., Yao, B., Chen, L., Kang, Y., Li, Y., Cheng, Y., Li, L., Lin, L., Wang, Z., Wang, M., Pan, F., Dai, Q., Zhang, W., Wu, H., Shu, Q., Qin, Z., He, C., Xu, M., and Jin, P. (2017). Ten-eleven translocation 2 interacts with forkhead box O3 and regulates adult neurogenesis. Nat. Commun. 8, 15903.
32. Gu, T.P., Guo, F., Yang, H., Wu, H.P., Xu, G.F., Liu, W., Xie, Z.G., Shi, L., He, X., Jin, S.G., Iqbal, K., Shi, Y.G., Deng, Z., Szabo, P.E., Pfeifer, G.P., Li, J., and Xu, G.L. (2011). The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477, 606–610.
33. Poulard, C., Noureddine, L.M., Pruvost, L., and Le Romancer, M. (2021). Structure, activity, and function of the protein lysine methyltransferase G9a. Life (Basel) 11, 1082.
34. Cura, V., and Cavarelli, J. (2021). Structure, activity and function of the PRMT2 protein arginine methyltransferase. Life (Basel) 11, 1263.
35. Shi, Y,. and Whetstine, J.R. (2007). Dynamic regulation of histone lysine methylation by demethylases. Mol. Cell 25, 1-14.
36. Desrosiers, R., Friderici, K., and Rottman, F. (1974). Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc. Natl. Acad. Sci. U. S. A. 71, 3971–3975.
37. Sledz, P., and Jinek, M. (2016). Structural insights into the molecular mechanism of the m(6)A writer complex. Elife 5, e18434.
38. Liu, J., Yue, Y., Han, D., Wang, X., Fu, Y., Zhang, L., Jia, G., Yu, M., Lu, Z., Deng, X., Dai, Q., Chen, W., and He, C. (2014). A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. 10, 93–95.
39. Theler, D., Dominguez, C., Blatter, M., Boudet, J., and Allain, F.H. (2014). Solution structure of the YTH domain in complex with N6-methyladenosine RNA: a reader of methylated RNA. Nucleic Acids Res. 42, 13911–13919.
40. Brown, J.A., Kinzig, C.G., DeGregorio, S.J., and Steitz, J.A. (2016). Methyltransferase-like protein 16 binds the 3'-terminal triple helix of MALAT1 long noncoding RNA. Proc. Natl. Acad. Sci. U. S. A. 113, 14013–14018.
41. Warda, A.S., Kretschmer, J., Hackert, P., Lenz, C., Urlaub, H., Hobartner, C., Sloan, K.E., and Bohnsack, M.T. (2017). Human METTL16 is a N(6)-methyladenosine (m(6)A) methyltransferase that targets pre-mRNAs and various non-coding RNAs. EMBO Rep. 18, 2004–2014.
42. Doxtader, K.A., Wang, P., Scarborough, A.M., Seo, D., Conrad, N.K,. and Nam, Y. (2018). Structural basis for regulation of METTL16, an S-adenosylmethionine homeostasis factor. Mol. Cell 71, 1001–1011 e4.
43. Mendel, M., Chen, K.M., Homolka, D., Gos, P., Pandey, R.R., McCarthy, A.A., and Pillai, R.S. (2018). Methylation of structured RNA by the m(6)A writer METTL16 is essential for mouse embryonic development. Mol. Cell 71, 986–1000 e11.
44. Pendleton, K.E., Chen, B., Liu, K., Hunter, O.V., Xie, Y., Tu, B.P., and Conrad, N.K. (2017). The U6 snRNA m(6)A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell 169, 824–835 e14.
45. Landgraf, B.J., McCarthy, E.L., and Booker, S.J. (2016). Radical S-adenosylmethionine enzymes in human health and disease. Annu. Rev. Biochem. 85, 485–514.
46. Cantoni, G.L. (1975). Biological methylation: selected aspects. Annu. Rev. Biochem. 44, 435–451.
47. Hirata, F., and Axelrod, J. (1980). Phospholipid methylation and biological signal transmission. Science 209, 1082–1090.
48. Bhaumik, S.R., Smith, E., and Shilatifard, A. (2007). Covalent modifications of histones during development and disease pathogenesis. Nat. Struct. Mol. Biol. 14, 1008–1016.
49. Bird, A. (2007). Perceptions of epigenetics. Nature 447, 396–398.
50. Abdul, Q.A., Yu, B.P., Chung, H.Y., Jung, H.A., and Choi, J.S. (2017). Epigenetic modifications of gene expression by lifestyle and environment. Arch. Pharm. Res. 40, 1219–1237.
51. Shin, W., Yan, J., Abratte, C.M., Vermeylen, F. and Caudill, M.A. (2010). Choline intake exceeding current dietary recommendations preserves markers of cellular methylation in a genetic subgroup of folate-compromised men. J. Nutr. 140, 975–980.
52. Nazki, F.H., Sameer, A.S. and Ganaie, B.A. (2014). Folate: metabolism, genes, polymorphisms and the associated diseases. Gene 533, 11–20.
53. Hamdane, D., Grosjean, H., and Fontecave, M. (2016). Flavin-dependent methylation of RNAs: complex chemistry for a simple modification. J. Mol. Biol. 428, 4867-4881.
54. Masel, B.E., and Dewitt, D.S. (2010). Traumatic brain injury: a disease process, not an event. J. Neurotrauma 27, 1529–1540.
55. Schober, M.E., Ke, X., Xing, B., Block, B.P., Requena, D.F., McKnight, R., and Lane, R.H. (2012). Traumatic brain injury increased IGF-1B mRNA and altered IGF-1 exon 5 and promoter region epigenetic characteristics in the rat pup hippocampus. J. Neurotrauma 29, 2075–2085.
56. Bailey, Z.S., Grinter, M.B., De La Torre Campos, D., and VandeVord, P.J. (2015). Blast induced neurotrauma causes overpressure dependent changes to the DNA methylation equilibrium. Neurosci. Lett. 604, 119–123.
57. Haghighi, F., Ge, Y., Chen, S., Xin, Y., Umali, M.U., De Gasperi, R., Gama Sosa, M.A., Ahlers, S.T., and Elder, G.A. (2015). Neuronal DNA methylation profiling of blast-related traumatic brain injury. J. Neurotrauma 32, 1200–1209.
58. Soria, V., Martinez-Amoros, E., Escaramis, G., Valero, J., Crespo, J.M., Gutierrez-Zotes, A., Bayes, M., Martorell, L., Vilella, E., Estivill, X., Menchon, J.M., Gratacos, M., and Urretavizcaya, M. (2010). Resequencing and association analysis of arylalkylamine N-acetyltransferase (AANAT) gene and its contribution to major depression susceptibility. J. Pineal Res. 49, 35–44.
59. Meng, Q., Zhuang, Y., Ying, Z., Agrawal, R., Yang, X., and Gomez-Pinilla, F. (2017). Traumatic brain injury induces genome-wide transcriptomic, methylomic, and network perturbations in brain and blood predicting neurological disorders. EBioMedicine 16, 184–194.
60. Hehar, H., Ma, I., and Mychasiuk, R. (2017). Intergenerational transmission of paternal epigenetic marks: mechanisms influencing susceptibility to post-concussion symptomology in a rodent model. Sci. Rep. 7, 7171.
61. Basu, U., Bostwick, A.M., Das, K., Dittenhafer-Reed, K.E., and Patel, S.S. (2020). Structure, mechanism, and regulation of mitochondrial DNA transcription initiation. J. Biol. Chem. 295, 18406–18425.
62. Bogenhagen, D.F., Applegate, E.F., and Yoza, B.K. (1984). Identification of a promoter for transcription of the heavy strand of human mtDNA: in vitro transcription and deletion mutagenesis. Cell 36, 1105–1113.
63. Cantatore, P., and Attardi, G. (1980). Mapping of nascent light and heavy strand transcripts on the physical map of HeLa cell mitochondrial DNA. Nucleic Acids Res. 8, 2605–2625.
64. Chang, D.D., and Clayton, D.A. (1984). Precise identification of individual promoters for transcription of each strand of human mitochondrial DNA. Cell 36, 635–643.
65. Balasubramanian, N., Jadhav, G., and Sakharkar, A.J. (2021). Repeated mild traumatic brain injuries perturb the mitochondrial biogenesis via DNA methylation in the hippocampus of rat. Mitochondrion 61, 11–24.
66. Dostal, V., and Churchill, M.E.A. (2019). Cytosine methylation of mitochondrial DNA at CpG sequences impacts transcription factor A DNA binding and transcription. Biochim. Biophy.s Acta Gene Regul. Mech. 1862, 598–607.
67. Wu, A., Ying, Z., and Gomez-Pinilla, F. (2013). Exercise facilitates the action of dietary DHA on functional recovery after brain trauma. Neuroscience 248, 655–663.
68. Lim, U., and Song, M.A. (2012). Dietary and lifestyle factors of DNA methylation. Methods Mol. Biol. 863, 359–376.
69. Ruan, H.B., and Crawford, P.A. (2018). Ketone bodies as epigenetic modifiers. Curr. Opin. Clin. Nutr. Metab. Care 21, 260–266.
70. Gano, L.B., Patel, M., and Rho, J.M. (2014). Ketogenic diets, mitochondria, and neurological diseases. J. Lipid Res. 55, 2211–2228.
71. Thau-Zuchman, O., Svendsen, L., Dyall, S.C., Paredes-Esquivel, U., Rhodes, M., Priestley, J.V., Feichtinger, R.G., Kofler, B., Lotstra, S., Verkuyl, J.M., Hageman, R.J., Broersen, L.M., van Wijk, N., Silva, J.P., Tremoleda, J.L., and Michael-Titus, A.T. (2021). A new ketogenic formulation improves functional outcome and reduces tissue loss following traumatic brain injury in adult mice. Theranostics 11, 346–360.
72. Kuypers, N.J., and Hoane, M.R. (2010). Pyridoxine administration improves behavioral and anatomical outcome after unilateral contusion injury in the rat. J. Neurotrauma 27, 1275–1282.
73. Guseva, M.V., Hopkins, D.M., Scheff, S.W., and Pauly, J.R. (2008). Dietary choline supplementation improves behavioral, histological, and neurochemical outcomes in a rat model of traumatic brain injury. J. Neurotrauma 25, 975–983.
74. Hoane, M.R., Wolyniak, J.G., and Akstulewicz, S.L. (2005). Administration of riboflavin improves behavioral outcome and reduces edema formation and glial fibrillary acidic protein expression after traumatic brain injury. J. Neurotrauma 22, 1112–1122.
75. Li, M., D'Arcy, C., Li, X., Zhang, T., Joober, R., and Meng, X. (2019). What do DNA methylation studies tell us about depression? A systematic review. Transl. Psychiatry 9, 68.
76. Chen, D., Meng, L., Pei, F., Zheng, Y., and Leng, J. (2017). A review of DNA methylation in depression. J. Clin. Neurosci. 43, 39–46.
77. Dong, E., Nelson, M., Grayson, D.R., Costa, E., and Guidotti, A. (2008). Clozapine and sulpiride but not haloperidol or olanzapine activate brain DNA demethylation. Proc. Natl. Acad. Sci. U. S. A. 105, 13614–13619.
78. Huckriede, A., Fuchtbauer, A., Hinssen, H., Chaponnier, C., Weeds, A., and Jockusch, B.M. (1990). Differential effects of gelsolins on tissue culture cells. Cell Motil. Cytoskeleton 16, 229–238.
79. Toffoli, L.V., Rodrigues, G.M. Jr., Oliveira, J.F., Silva, A.S., Moreira, E.G., Pelosi, G.G. and Gomes, M.V. (2014). Maternal exposure to fluoxetine during gestation and lactation affects the DNA methylation programming of rat's offspring: modulation by folic acid supplementation. Behav. Brain Res. 265, 142–147.
80. Wang, Y., Neumann, M., Hansen, K., Hong, S.M., Kim, S., Noble-Haeusslein, L.J., and Liu, J. (2011). Fluoxetine increases hippocampal neurogenesis and induces epigenetic factors but does not improve functional recovery after traumatic brain injury. J. Neurotrauma 28, 259–268.
81. Treble-Barna, A., Heinsberg, L.W., Puccio, A.M., Shaffer, J.R., Okonkwo, D.O., Beers, S.R., Weeks, D.E., and Conley, Y.P. (2021). Acute brain-derived neurotrophic factor DNA methylation trajectories in cerebrospinal fluid and associations with outcomes following severe traumatic brain injury in adults. Neurorehabil. Neural Repair 35, 790–800.
82. Bahado-Singh, R.O., Vishweswaraiah, S., Er, A., Aydas, B., Turkoglu, O., Taskin, B.D., Duman, M., Yilmaz, D., and Radhakrishna, U. (2020). Artificial Intelligence and the detection of pediatric concussion using epigenomic analysis. Brain Res. 1726, 146510.
83. Henley, C.M., Wey, K., Takashima, A., Mills, C., Granmayeh, E., Krishnappa, I., and Robertson, C.S. (1997). S-adenosylmethionine decarboxylase activity is decreased in the rat cortex after traumatic brain injury. J. Neurochem. 69, 259–265.
84. Zhang, M., Shan, H., Wang, Y., Wang, T., Liu, W., Wang, L., Zhang, L., Chang, P., Dong, W., Chen, X., and Tao, L. (2013). The expression changes of cystathionine-beta-synthase in brain cortex after traumatic brain injury. J. Mol. Neurosci. 51, 57–67.
85. Jhee, K.H., and Kruger, W.D. (2005). The role of cystathionine beta-synthase in homocysteine metabolism. Antioxid. Redox Signal. 7, 813–822.
86. Dash, P.K., Hergenroeder, G.W., Jeter, C.B., Choi, H.A., Kobori, N., and Moore, A.N. (2016). Traumatic brain injury alters methionine metabolism: implications for pathophysiology. Front. Syst. Neurosci. 10, 36.
87. Schieffler, D.A., and Matta, S.E. (2021). Evidence to support the use of S-adenosylmethionine for treatment of post-concussive sequelae in the military. Mil. Med. Online ahead of print.
88. Bacci Ballerini, F., Lopez Anguera, A., Alcaraz, P., and Hernandez Reyes, N. (1983). [Treatment of postconcussion syndrome with S-adenosylmethionine (in Spanish)]. Med. Clin. (Barc) 80, 161–164.
89. Barbu, M.C., Harris, M., Shen, X., Aleks, S., Green, C., Amador, C., Walker, R., Morris, S., Adams, M., Sandu, A., McNeil, C., Waiter, G., Evans, K., Campbell, A., Wardlaw, J., Steele, D., Murray, A., Porteous, D., McIntosh, A., and Whalley, H. (2021). Epigenome-wide association study of global cortical volumes in generation Scotland: Scottish family health study. Epigenetics, 1–17.
90. Perkins, D.J., Patel, M.C., Blanco, J.C., and Vogel, S.N. (2016). Epigenetic mechanisms governing innate inflammatory responses. J. Interferon Cytokine Res. 36, 454–461.
91. Wierda, R.J., Geutskens, S.B., Jukema, J.W., Quax, P.H., and van den Elsen, P.J. (2010). Epigenetics in atherosclerosis and inflammation. J. Cell Mol. Med. 14, 1225–1240.
92. Gonzalez-Jaramillo, V., Portilla-Fernandez, E., Glisic, M., Voortman, T., Ghanbari, M., Bramer, W., Chowdhury, R., Nijsten, T., Dehghan, A., Franco, O.H., and Nano, J. (2019). Epigenetics and inflammatory markers: a systematic review of the current evidence. Int. J. Inflam. 2019, 6273680.
93. Lubin, F.D., Roth, T.L., and Sweatt, J.D. (2008). Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J. Neurosci. 28, 10576–10586.
94. Koshibu, K., Graff, J., and Mansuy, I.M. (2011). Nuclear protein phosphatase-1: an epigenetic regulator of fear memory and amygdala long-term potentiation. Neuroscience 173, 30–36.
95. Mizuno, K., Dempster, E., Mill, J., and Giese, K.P. (2012). Long-lasting regulation of hippocampal Bdnf gene transcription after contextual fear conditioning. Genes Brain Behav. 11, 651–659.
96. Maddox, S.A., Schafe, G.E., and Ressler, K.J. (2013). Exploring epigenetic regulation of fear memory and biomarkers associated with post-traumatic stress disorder. Front. Psychiatry 4, 62.

Information & Authors

Information

Published In

cover image Journal of Neurotrauma
Journal of Neurotrauma
Volume 39Issue Number 19-20October 2022
Pages: 1279 - 1288
PubMed: 35481812

History

Published in print: October 2022
Published online: 29 September 2022
Published ahead of print: 14 June 2022
Published ahead of production: 28 April 2022

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Laura Zima
Department of Neurological Surgery, University of Texas Health Science Center McGovern Medical School, Houston, Texas, USA.
Rebecca West
Department of Neurobiology and Anatomy, University of Texas Health Science Center McGovern Medical School, Houston, Texas, USA.
Paul Smolen
Department of Neurobiology and Anatomy, University of Texas Health Science Center McGovern Medical School, Houston, Texas, USA.
Nobuhide Kobori
Department of Neurobiology and Anatomy, University of Texas Health Science Center McGovern Medical School, Houston, Texas, USA.
Georgene Hergenroeder
Department of Neurological Surgery, University of Texas Health Science Center McGovern Medical School, Houston, Texas, USA.
HuiMahn A. Choi
Department of Neurological Surgery, University of Texas Health Science Center McGovern Medical School, Houston, Texas, USA.
Anthony N. Moore
Department of Neurobiology and Anatomy, University of Texas Health Science Center McGovern Medical School, Houston, Texas, USA.
John B. Redell**
Department of Neurobiology and Anatomy, University of Texas Health Science Center McGovern Medical School, Houston, Texas, USA.
Pramod K. Dash**,* [email protected]
Department of Neurobiology and Anatomy, University of Texas Health Science Center McGovern Medical School, Houston, Texas, USA.

Notes

**
Co-senior authors.
*
Address correspondence to: Pramod Dash, PhD, Department of Neurobiology and Anatomy, UTHealth McGovern Medical School, 6431 Fannin Street, MSB 7.046, Houston, TX 77030, USA [email protected]

Authors' Contributions

LZ, RW, PS, NK, GH, HAC, ANM, JBR, and PKD all contributed to the review of relevant literature, writing, and/or editing of the article.

Author Disclosure Statement

No competing financial interests exist.

Funding Information

Research in authors' laboratories is supported by grants from the National Institutes of Health (R01NS118329, R01NS101686, R01NS121261, and R01NS109118).

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top