MicroRNA hsa-miR-135b Regulates Mineralization in Osteogenic Differentiation of Human Unrestricted Somatic Stem Cells
Publication: Stem Cells and Development
Volume 19, Issue Number 6
Abstract
Unrestricted somatic stem cells (USSCs) have been recently identified in human umbilical cord blood and have been shown to differentiate into lineages representing all 3 germ layers. To characterize microRNAs that may regulate osteogenic differentiation of USSCs, we carried out expression analysis for 157 microRNAs using quantitative RT-PCR before and after osteogenic induction (t = 0.5, 24, 72, 168, 216 h). Three microRNAs, hsa-miR-135b, hsa-miR-224, and hsa-miR-31, were consistently down-regulated during osteogenesis of USSC line 1. Hsa-miR-135b was shown to be the most profoundly down-regulated in osteogenesis of USSC line 1 and further confirmed to be down-regulated in the osteogenic differentiation of 2 additional USSC lines. Function of hsa-miR-135b in osteogenesis of USSCs was examined by retroviral overexpression, which resulted in an evident decreased mineralization, indicating that hsa-miR-135b down-regulation is functionally important for full osteogenic differentiation of USSCs. MicroRNAs have been shown to regulate negatively expression of their target gene(s). To identify putative targets of hsa-miR-135b, we performed cDNA microarray expression analysis. We selected in total 10 transcripts that were down-regulated (≥2-fold) in response to hsa-miR-135b overexpression at day 7 and day 9 of osteogenic differentiation. The function of most of these targets in human osteogenesis is unknown and requires further investigation. Markedly, quantitative RT-PCR data showed decreased expression of osteogenic markers IBSP and Osterix, both known to be involved in bone mineralization, in osteogenesis of USSCs that overexpress hsa-miR-135b. This finding suggests that hsa-miR-135b may control osteoblastic differentiation of USSCs by regulating expression of bone-related genes.
Get full access to this article
View all available purchase options and get full access to this article.
References
1.
Lee Y.K JeonJT LeeS KimVN Kim2002. MicroRNA maturation: stepwise processing and subcellular localizationEMBO J214663-4670. 1. Lee Y, K Jeon, JT Lee, S Kim and VN Kim. (2002). MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21:4663–4670.
2.
Kim VN2005a. MicroRNA biogenesis: coordinated cropping and dicingNat Rev Mol Cell Biol6376-385. 2. Kim VN. (2005a). MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6:376–385.
3.
Kim VN2005b. Small RNAs: classification, biogenesis, and functionMol Cells191-15. 3. Kim VN. (2005b). Small RNAs: classification, biogenesis, and function. Mol Cells 19:1–15.
4.
Song L.RS Tuan2006. MicroRNAs and cell differentiation in mammalian developmentBirth Defects Res C Embryo Today78140-149. 4. Song L and RS Tuan. (2006). MicroRNAs and cell differentiation in mammalian development. Birth Defects Res C Embryo Today 78:140–149.
5.
Jovanovic M.MO Hengartner2006. miRNAs and apoptosis: RNAs to die forOncogene256176-6187. 5. Jovanovic M and MO Hengartner. (2006). miRNAs and apoptosis: RNAs to die for. Oncogene 25:6176–6187.
6.
Zhang BQ WangX Pan2007. MicroRNAs and their regulatory roles in animals and plantsJ Cell Physiol210279-289. 6. Zhang B, Q Wang and X Pan. (2007). MicroRNAs and their regulatory roles in animals and plants. J Cell Physiol 210:279–289.
7.
Yekta SIH ShihDP Bartel2004. MicroRNA-directed cleavage of HOXB8 mRNAScience304594-596. 7. Yekta S, IH Shih and DP Bartel. (2004). MicroRNA-directed cleavage of HOXB8 mRNA. Science 304:594–596.
8.
Yoon SG De Micheli2006. Computational identification of microRNAs and their targetsBirth Defects Res C Embryo Today78118-128. 8. Yoon S and G De Micheli. (2006). Computational identification of microRNAs and their targets. Birth Defects Res C Embryo Today 78:118–128.
9.
Griffiths-Jones SRJ GrocockS van DongenA BatemanAJ Enright2006. miRBase: microRNA sequences, targets and gene nomenclatureNucleic Acids Res34Database issueD140-D144. 9. Griffiths-Jones S, RJ Grocock, S van Dongen, A Bateman and AJ Enright. (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34(Database issue):D140–D144.
10.
Krek AD GrünMN PoyR WolfL RosenbergEJ EpsteinP MacMenaminI da PiedadeKC GunsalusM StoffelN Rajewsky2005. Combinatorial microRNA target predictionsNat Genet37495-500. 10. Krek A, D Grün, MN Poy, R Wolf, L Rosenberg, EJ Epstein, P MacMenamin, I da Piedade, KC Gunsalus, M Stoffel and N Rajewsky. (2005). Combinatorial microRNA target predictions. Nat Genet 37:495–500.
11.
Kiriakidou MPT NelsonA KouranovP FitzievC BouyioukosZ MourelatosA Hatzigeorgiou2004. A combined computational-experimental approach predicts human microRNA targetsGenes Dev181165-1178. 11. Kiriakidou M, PT Nelson, A Kouranov, P Fitziev, C Bouyioukos, Z Mourelatos and A Hatzigeorgiou. (2004). A combined computational-experimental approach predicts human microRNA targets. Genes Dev 18:1165–1178.
12.
Lewis BPCB BurgeDP Bartel2005. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targetsCell12015-20. 12. Lewis BP, CB Burge and DP Bartel. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20.
13.
Kögler GS SenskenJA AireyT TrappM MüschenN FeldhahnS LiedtkeRV SorgJ FischerC RosenbaumS GreschatA KnipperJ BenderO DegistiriciJ GaoAI CaplanEJ CollettiG Almeida-PoradaHW MüllerE ZanjaniP Wernet2004. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potentialJ Exp Med200123-135. 13. Kögler G, S Sensken, JA Airey, T Trapp, M Müschen, N Feldhahn, S Liedtke, RV Sorg, J Fischer, C Rosenbaum, S Greschat, A Knipper, J Bender, O Degistirici, J Gao, AI Caplan, EJ Colletti, G Almeida-Porada, HW Müller, E Zanjani and P Wernet. (2004). A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 200:123–135.
14.
Sensken SS WaclawczykAS KnauppT TrappJ EnczmannP WernetG Kogler2007. In vitro differentiation of human cord blood-derived unrestricted somatic stem cells towards an endodermal pathwayCytotherapy9362-378. 14. Sensken S, S Waclawczyk, AS Knaupp, T Trapp, J Enczmann, P Wernet and G Kogler. (2007). In vitro differentiation of human cord blood-derived unrestricted somatic stem cells towards an endodermal pathway. Cytotherapy 9:362–378.
15.
Greschat SJ SchiraP KüryC RosenbaumMA de Souza SilvaG KöglerP WernetHW Müller2008. Unrestricted somatic stem cells from human umbilical cord blood can be differentiated into neurons with a dopaminergic phenotypeStem Cells Dev17221-232. 15. Greschat S, J Schira, P Küry, C Rosenbaum, MA de Souza Silva, G Kögler, P Wernet and HW Müller. (2008). Unrestricted somatic stem cells from human umbilical cord blood can be differentiated into neurons with a dopaminergic phenotype. Stem Cells Dev 17:221–232.
16.
Rodan GA1992. Introduction to bone biologyBone13Suppl 1S3-S6. 16. Rodan GA. (1992). Introduction to bone biology. Bone 13(Suppl 1):S3–S6.
17.
Olsen BRAM ReginatoW Wang2000. Bone developmentAnnu Rev Cell Dev Biol16191-220. 17. Olsen BR, AM Reginato and W Wang. (2000). Bone development. Annu Rev Cell Dev Biol 16:191–220.
18.
Gregory CAWG GunnA PeisterDJ Prockop2004. An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extractionAnal Biochem32977-84. 18. Gregory CA, WG Gunn, A Peister and DJ Prockop. (2004). An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal Biochem 329:77–84.
19.
Voorhoeve PMC le SageM SchrierAJ GillisH StoopR NagelYP LiuJ van DuijseJ DrostA GriekspoorE ZlotorynskiN YabutaG De VitaH NojimaLH LooijengaR Agami2006. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumorsCell1241169-1181. 19. Voorhoeve PM, C le Sage, M Schrier, AJ Gillis, H Stoop, R Nagel, YP Liu, J van Duijse, J Drost, A Griekspoor, E Zlotorynski, N Yabuta, G De Vita, H Nojima, LH Looijenga and R Agami. (2006). A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124:1169–1181.
20.
Chen CDA RidzonAJ BroomerZ ZhouDH LeeJT NguyenM BarbisinNL XuVR MahuvakarMR AndersenKQ LaoKJ LivakKJ Guegler2005. Real-time quantification of microRNAs by stem-loop RT-PCRNucleic Acids Res33e179. 20. Chen C, DA Ridzon, AJ Broomer, Z Zhou, DH Lee, JT Nguyen, M Barbisin, NL Xu, VR Mahuvakar, MR Andersen, KQ Lao, KJ Livak and KJ Guegler. (2005). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179.
21.
Huang WS YangJ ShaoYP Li2007. Signaling and transcriptional regulation in osteoblast commitment and differentiationFront Biosci123068-3092. 21. Huang W, S Yang, J Shao and YP Li. (2007). Signaling and transcriptional regulation in osteoblast commitment and differentiation. Front Biosci 12:3068–3092.
22.
Li ZMQ HassanS VoliniaAJ van WijnenJL SteinCM CroceJB LianGS Stein2008. A microRNA signature for a BMP2-induced osteoblast lineage commitment programProc Natl Acad Sci USA10513906-13911. 22. Li Z, MQ Hassan, S Volinia, AJ van Wijnen, JL Stein, CM Croce, JB Lian and GS Stein. (2008). A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc Natl Acad Sci USA 105:13906–13911.
23.
Landgraf PM RusuR SheridanA SewerN IovinoA AravinS PfefferA RiceAO KamphorstM LandthalerC LinND SocciL HermidaV FulciS ChiarettiR FoàJ SchliwkaU FuchsA NovoselRU MüllerB SchermerU BisselsJ InmanQ PhanM ChienDB WeirR ChoksiG De VitaD FrezzettiHI TrompeterV HornungG TengG HartmannM PalkovitsR Di LauroP WernetG MacinoCE RoglerJW NagleJ JuFN PapavasiliouT BenzingP LichterW TamMJ BrownsteinA BosioA BorkhardtJJ RussoC SanderM ZavolanT Tuschl2007. A mammalian microRNA expression atlas based on small RNA library sequencingCell1291401-1414. 23. Landgraf P, M Rusu, R Sheridan, A Sewer, N Iovino, A Aravin, S Pfeffer, A Rice, AO Kamphorst, M Landthaler, C Lin, ND Socci, L Hermida, V Fulci, S Chiaretti, R Foà, J Schliwka, U Fuchs, A Novosel, RU Müller, B Schermer, U Bissels, J Inman, Q Phan, M Chien, DB Weir, R Choksi, G De Vita, D Frezzetti, HI Trompeter, V Hornung, G Teng, G Hartmann, M Palkovits, R Di Lauro, P Wernet, G Macino, CE Rogler, JW Nagle, J Ju, FN Papavasiliou, T Benzing, P Lichter, W Tam, MJ Brownstein, A Bosio, A Borkhardt, JJ Russo, C Sander, M Zavolan and T Tuschl. (2007). A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414.
24.
Oskowitz AZJ LuP PenfornisJ YlostaloJ McBrideEK FlemingtonDJ ProckopR Pochampally2008. Human multipotent stromal cells from bone marrow and microRNA: regulation of differentiation and leukemia inhibitory factor expressionProc Natl Acad Sci USA10518372-18377. 24. Oskowitz AZ, J Lu, P Penfornis, J Ylostalo, J McBride, EK Flemington, DJ Prockop and R Pochampally. (2008). Human multipotent stromal cells from bone marrow and microRNA: regulation of differentiation and leukemia inhibitory factor expression. Proc Natl Acad Sci USA 105:18372–18377.
25.
Whyte MP1994. Hypophosphatasia and the role of alkaline phosphatase in skeletal mineralizationEndocr Rev15439-461. 25. Whyte MP. (1994). Hypophosphatasia and the role of alkaline phosphatase in skeletal mineralization. Endocr Rev 15:439–461.
26.
Anderson HCHH HsuDC MorrisKN FeddeMP Whyte1997. Matrix vesicles in osteomalacic hypophosphatasia bone contain apatite-like mineral crystalsAm J Pathol1511555-1561. 26. Anderson HC, HH Hsu, DC Morris, KN Fedde and MP Whyte. (1997). Matrix vesicles in osteomalacic hypophosphatasia bone contain apatite-like mineral crystals. Am J Pathol 151:1555–1561.
27.
Narisawa SN FröhlanderJL Millán1997. Inactivation of two mouse alkaline phosphatase genes and establishment of a model of infantile hypophosphatasiaDev Dyn208432-446. 27. Narisawa S, N Fröhlander and JL Millán. (1997). Inactivation of two mouse alkaline phosphatase genes and establishment of a model of infantile hypophosphatasia. Dev Dyn 208:432–446.
28.
Wennberg CL HessleP LundbergS MauroS NarisawaUH LernerJL Millán2000. Functional characterization of osteoblasts and osteoclasts from alkaline phosphatase knockout miceJ Bone Miner Res151879-1888. 28. Wennberg C, L Hessle, P Lundberg, S Mauro, S Narisawa, UH Lerner and JL Millán. (2000). Functional characterization of osteoblasts and osteoclasts from alkaline phosphatase knockout mice. J Bone Miner Res 15:1879–1888.
29.
Anderson HCJB SipeL HessleR DhanyamrajuE AttiNP CamachoJL MillánR Dhamyamraju2004. Impaired calcification around matrix vesicles of growth plate and bone in alkaline phosphatase-deficient miceAm J Pathol164841-847. 29. Anderson HC, JB Sipe, L Hessle, R Dhanyamraju, E Atti, NP Camacho, JL Millán and R Dhamyamraju. (2004). Impaired calcification around matrix vesicles of growth plate and bone in alkaline phosphatase-deficient mice. Am J Pathol 164:841–847.
30.
Orimo HT Shimada2008. The role of tissue-nonspecific alkaline phosphatase in the phosphate-induced activation of alkaline phosphatase and mineralization in SaOS-2 human osteoblast-like cellsMol Cell Biochem31551-60. 30. Orimo H and T Shimada. (2008). The role of tissue-nonspecific alkaline phosphatase in the phosphate-induced activation of alkaline phosphatase and mineralization in SaOS-2 human osteoblast-like cells. Mol Cell Biochem 315:51–60.
31.
Waymire KGJD MahurenJM JajeTR GuilarteSP CoburnGR MacGregor1995. Mice lacking tissue non-specific alkaline phosphatase die from seizures due to defective metabolism of vitamin B-6Nat Genet1145-51. 31. Waymire KG, JD Mahuren, JM Jaje, TR Guilarte, SP Coburn and GR MacGregor. (1995). Mice lacking tissue non-specific alkaline phosphatase die from seizures due to defective metabolism of vitamin B-6. Nat Genet 11:45–51.
32.
Malaval LNM Wade-GuéyeM BoudiffaJ FeiR ZirngiblF ChenN LarocheJP RouxB Burt-PichatF DuboeufG BoivinP JurdicMH Lafage-ProustJ AmédéeL VicoJ RossantJE Aubin2008. Bone sialoprotein plays a functional role in bone formation and osteoclastogenesisJ Exp Med2051145-1153. 32. Malaval L, NM Wade-Guéye, M Boudiffa, J Fei, R Zirngibl, F Chen, N Laroche, JP Roux, B Burt-Pichat, F Duboeuf, G Boivin, P Jurdic, MH Lafage-Proust, J Amédée, L Vico, J Rossant and JE Aubin. (2008). Bone sialoprotein plays a functional role in bone formation and osteoclastogenesis. J Exp Med 205:1145–1153.
33.
Ogata Y2008. Bone sialoprotein and its transcriptional regulatory mechanismJ Periodont Res43127-135. 33. Ogata Y. (2008). Bone sialoprotein and its transcriptional regulatory mechanism. J Periodont Res 43:127–135.
34.
Marson ASS LevineMF ColeGM FramptonT BrambrinkS JohnstoneMG GuentherWK JohnstonM WernigJ NewmanJM CalabreseLM DennisTL VolkertS GuptaJ LoveN HannettPA SharpDP BartelR JaenischRA Young2008. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cellsCell134521-533. 34. Marson A, SS Levine, MF Cole, GM Frampton, T Brambrink, S Johnstone, MG Guenther, WK Johnston, M Wernig, J Newman, JM Calabrese, LM Dennis, TL Volkert, S Gupta, J Love, N Hannett, PA Sharp, DP Bartel, R Jaenisch and RA Young. (2008). Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134:521–533.
35.
Bartel DPCZ Chen2004. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAsNat Rev Genet5396-400. 35. Bartel DP and CZ Chen. (2004). Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 5:396–400.
36.
Krützfeldt JN RajewskyR BraichKG RajeevT TuschlM ManoharanM Stoffel2005. Silencing of microRNAs in vivo with “antagomirs.”Nature438685-689. 36. Krützfeldt J, N Rajewsky, R Braich, KG Rajeev, T Tuschl, M Manoharan and M Stoffel. (2005). Silencing of microRNAs in vivo with “antagomirs.” Nature 438:685–689.
37.
Jeon ESHY SongMR KimHJ MoonYC BaeJS JungJH Kim2006. Sphingosylphosphorylcholine induces proliferation of human adipose tissue-derived mesenchymal stem cells via activation of JNKJ Lipid Res47653-664. 37. Jeon ES, HY Song, MR Kim, HJ Moon, YC Bae, JS Jung and JH Kim. (2006). Sphingosylphosphorylcholine induces proliferation of human adipose tissue-derived mesenchymal stem cells via activation of JNK. J Lipid Res 47:653–664.
38.
Lisignoli GK CodeluppiK TodoertiC ManferdiniA PiacentiniN ZiniF GrassiL CattiniR PivaV RizzoliA FacchiniN GiulianiA Neri2009. Gene array profile identifies collagen type XV as a novel human osteoblast-secreted matrix proteinJ Cell Physiol220401-409. 38. Lisignoli G, K Codeluppi, K Todoerti, C Manferdini, A Piacentini, N Zini, F Grassi, L Cattini, R Piva, V Rizzoli, A Facchini, N Giuliani and A Neri. (2009). Gene array profile identifies collagen type XV as a novel human osteoblast-secreted matrix protein. J Cell Physiol 220:401–409.
39.
Dvorak MMA SiddiquaDT WardDH CarterSL DallasEF NemethD Riccardi2004. Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormonesProc Natl Acad Sci USA1015140-5145. 39. Dvorak MM, A Siddiqua, DT Ward, DH Carter, SL Dallas, EF Nemeth and D Riccardi. (2004). Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormones. Proc Natl Acad Sci USA 101:5140–5145.
Information & Authors
Information
Published In

Copyright
Copyright 2010, Mary Ann Liebert, Inc.
History
Published in print: June 2010
Published online: 1 October 2009
Accepted: 1 October 2009
Received: 1 April 2009
Topics
Authors
Author Disclosure Statement
All authors have no conflicts of interest.
Metrics & Citations
Metrics
Citations
Export Citation
Export citation
Select the format you want to export the citations of this publication.
View Options
Access content
To read the fulltext, please use one of the options below to sign in or purchase access.⚠ Society Access
If you are a member of a society that has access to this content please log in via your society website and then return to this publication.