Research Article
No access
Published Online: 16 September 2010

Human Induced Pluripotent Stem Cells Derived from Fetal Neural Stem Cells Successfully Undergo Directed Differentiation into Cartilage

Publication: Stem Cells and Development
Volume 20, Issue Number 6

Abstract

Induced pluripotent stem (iPS) cells can be derived from a wide range of somatic cells via overexpression of a set of specific genes. With respect to their properties, iPS cells closely resemble embryonic stem cells. Because of their main property, pluripotency, iPS cells have excellent prospects for use in substitutive cell therapy; however, the methods of directed differentiation of iPS cells have not been yet sufficiently elaborated. In this work, we derived human iPS cells from fetal neural stem (FNS) cells by transfection with a polycistronic plasmid vector carrying the mouse Oct4, Sox2, Klf4, and c-Myc genes or a plasmid expressing the human OCT4 gene. We have shown that human FNS cells can be effectively reprogrammed despite a low transfection level (10%–15%) and that the use of 2-propylvaleric (valproic) acid and BIX-01294 increases the yield of iPS cell clones to ∼7-fold. Further, transient expression of OCT4 alone is sufficient for reprogramming. The iPS cells obtained express all the major markers of embryonic stem cells and are able to differentiate in vitro into ectodermal, mesodermal, and endodermal derivatives. In addition, we have found that the human iPS cells derived from FNS cells can be successfully subjected to in vitro directed chondrogenic differentiation to form functional cartilaginous tissue.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Takahashi KS Yamanaka2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factorsCell126663-676. 1. Takahashi K and S Yamanaka. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676.
2.
Takahashi KK TanabeM OhnukiM NaritaT IchisakaK TomodaS Yamanaka2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factorsCell131861-872. 2. Takahashi K, K Tanabe, M Ohnuki, M Narita, T Ichisaka, K Tomoda and S Yamanaka. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872.
3.
Yu JK HuK Smuga-OttoS TianR StewartII SlukvinJA Thomson2009. Human induced pluripotent stem cells free of vector and transgene sequencesScience324797-801. 3. Yu J, K Hu, K Smuga-Otto, S Tian, R Stewart, II Slukvin and JA Thomson. (2009). Human induced pluripotent stem cells free of vector and transgene sequences. Science 324:797–801.
4.
Yu JMA VodyanikK Smuga-OttoJ Antosiewicz-BourgetJL FraneS TianJ NieGA JonsdottirV RuottiR StewartII SlukvinJA Thomson2007. Induced pluripotent stem cell lines derived from human somatic cellsScience3181917-1920. 4. Yu J, MA Vodyanik, K Smuga-Otto, J Antosiewicz-Bourget, JL Frane, S Tian, J Nie, GA Jonsdottir, V Ruotti, R Stewart, II Slukvin and JA Thomson. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920.
5.
Park IHN AroraH HuoN MaheraliT AhfeldtA ShimamuraMW LenschC CowanK HochedlingerGQ Daley2008. Disease-specific induced pluripotent stem cellsCell134877-886. 5. Park IH, N Arora, H Huo, N Maherali, T Ahfeldt, A Shimamura, MW Lensch, C Cowan, K Hochedlinger and GQ Daley. (2008). Disease-specific induced pluripotent stem cells. Cell 134:877–886.
6.
Karumbayaram SBG NovitchM PattersonJA UmbachL RichterA LindgrenAE ConwayAT ClarkSA GoldmanK PlathM Wiedau-PazosHI KornblumWE Lowry2009. Directed differentiation of human-induced pluripotent stem cells generates active motor neuronsStem Cells27806-811. 6. Karumbayaram S, BG Novitch, M Patterson, JA Umbach, L Richter, A Lindgren, AE Conway, AT Clark, SA Goldman, K Plath, M Wiedau-Pazos, HI Kornblum and WE Lowry. (2009). Directed differentiation of human-induced pluripotent stem cells generates active motor neurons. Stem Cells 27:806–811.
7.
Chambers SMCA FasanoEP PapapetrouM TomishimaM SadelainL Studer2009. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signalingNat Biotechnol27275-280. 7. Chambers SM, CA Fasano, EP Papapetrou, M Tomishima, M Sadelain and L Studer. (2009). Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27:275–280.
8.
Carr AJAA VuglerST HikitaJM LawrenceC GiasLL ChenDE BuchholzA AhmadoM SemoMJ SmartS HasanL da CruzLV JohnsonDO CleggPJ Coffey2009. Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic ratPLoS ONE4e8152. 8. Carr AJ, AA Vugler, ST Hikita, JM Lawrence, C Gias, LL Chen, DE Buchholz, A Ahmado, M Semo, MJ Smart, S Hasan, L da Cruz, LV Johnson, DO Clegg and PJ Coffey. (2009). Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat. PLoS ONE 4:e8152.
9.
Maehr RS ChenM SnitowT LudwigL YagasakiR GolandRL LeibelDA Melton2009. Generation of pluripotent stem cells from patients with type 1 diabetesProc Natl Acad Sci U S A10615768-15773. 9. Maehr R, S Chen, M Snitow, T Ludwig, L Yagasaki, R Goland, RL Leibel and DA Melton. (2009). Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci U S A 106:15768–15773.
10.
Raya AI Rodriguez-PizaG GuenecheaR VassenaS NavarroMJ BarreroA ConsiglioM CastellaP RioE SleepF GonzalezG TiscorniaE GarretaT AasenA VeigaIM VermaJ SurrallesJ BuerenJC Izpisua Belmonte2009. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cellsNature46053-59. 10. Raya A, I Rodriguez-Piza, G Guenechea, R Vassena, S Navarro, MJ Barrero, A Consiglio, M Castella, P Rio, E Sleep, F Gonzalez, G Tiscornia, E Garreta, T Aasen, A Veiga, IM Verma, J Surralles, J Bueren and JC Izpisua Belmonte. (2009). Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460:53–59.
11.
Ebert ADJ YuFF Rose Jr.VB MattisCL LorsonJA ThomsonCN Svendsen2009. Induced pluripotent stem cells from a spinal muscular atrophy patientNature457277-280. 11. Ebert AD, J Yu, FF Rose, Jr., VB Mattis, CL Lorson, JA Thomson and CN Svendsen. (2009). Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457:277–280.
12.
Lee GEP PapapetrouH KimSM ChambersMJ TomishimaCA FasanoYM GanatJ MenonF ShimizuA VialeV TabarM SadelainL Studer2009. Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCsNature461402-406. 12. Lee G, EP Papapetrou, H Kim, SM Chambers, MJ Tomishima, CA Fasano, YM Ganat, J Menon, F Shimizu, A Viale, V Tabar, M Sadelain and L Studer. (2009). Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461:402–406.
13.
Okita KT IchisakaS Yamanaka2007. Generation of germline-competent induced pluripotent stem cellsNature448313-317. 13. Okita K, T Ichisaka and S Yamanaka. (2007). Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317.
14.
Okita KM NakagawaH HyenjongT IchisakaS Yamanaka2008. Generation of mouse induced pluripotent stem cells without viral vectorsScience322949-953. 14. Okita K, M Nakagawa, H Hyenjong, T Ichisaka and S Yamanaka. (2008). Generation of mouse induced pluripotent stem cells without viral vectors. Science 322:949–953.
15.
Stadtfeld MM NagayaJ UtikalG WeirK Hochedlinger2008. Induced pluripotent stem cells generated without viral integrationScience322945-949. 15. Stadtfeld M, M Nagaya, J Utikal, G Weir and K Hochedlinger. (2008). Induced pluripotent stem cells generated without viral integration. Science 322:945–949.
16.
Fusaki NH BanA NishiyamaK SaekiM Hasegawa2009. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genomeProc Jpn Acad Ser B Phys Biol Sci85348-362. 16. Fusaki N, H Ban, A Nishiyama, K Saeki and M Hasegawa. (2009). Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 85:348–362.
17.
Nakagawa MM KoyanagiK TanabeK TakahashiT IchisakaT AoiK OkitaY MochidukiN TakizawaS Yamanaka2008. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblastsNat Biotechnol26101-106. 17. Nakagawa M, M Koyanagi, K Tanabe, K Takahashi, T Ichisaka, T Aoi, K Okita, Y Mochiduki, N Takizawa and S Yamanaka. (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26:101–106.
18.
Wernig MA MeissnerJP CassadyR Jaenisch2008. c-Myc is dispensable for direct reprogramming of mouse fibroblastsCell Stem Cell210-12. 18. Wernig M, A Meissner, JP Cassady and R Jaenisch. (2008). c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell 2:10–12.
19.
Kim JBH ZaehresG WuL GentileK KoV SebastianoMJ Arauzo-BravoD RuauDW HanM ZenkeHR Scholer2008. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factorsNature454646-650. 19. Kim JB, H Zaehres, G Wu, L Gentile, K Ko, V Sebastiano, MJ Arauzo-Bravo, D Ruau, DW Han, M Zenke and HR Scholer. (2008). Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454:646–650.
20.
Kim JBV SebastianoG WuMJ Arauzo-BravoP SasseL GentileK KoD RuauM EhrichD van den BoomJ MeyerK HubnerC BernemannC OrtmeierM ZenkeBK FleischmannH ZaehresHR Scholer2009. Oct4-induced pluripotency in adult neural stem cellsCell136411-419. 20. Kim JB, V Sebastiano, G Wu, MJ Arauzo-Bravo, P Sasse, L Gentile, K Ko, D Ruau, M Ehrich, D van den Boom, J Meyer, K Hubner, C Bernemann, C Ortmeier, M Zenke, BK Fleischmann, H Zaehres and HR Scholer. (2009). Oct4-induced pluripotency in adult neural stem cells. Cell 136:411–419.
21.
Kim JBB GreberMJ Arauzo-BravoJ MeyerKI ParkH ZaehresHR Scholer2009. Direct reprogramming of human neural stem cells by OCT4Nature461649-653. 21. Kim JB, B Greber, MJ Arauzo-Bravo, J Meyer, KI Park, H Zaehres and HR Scholer. (2009). Direct reprogramming of human neural stem cells by OCT4. Nature 461:649–653.
22.
Kaji KK NorrbyA PacaM MileikovskyP MohseniK Woltjen2009. Virus-free induction of pluripotency and subsequent excision of reprogramming factorsNature458771-775. 22. Kaji K, K Norrby, A Paca, M Mileikovsky, P Mohseni and K Woltjen. (2009). Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458:771–775.
23.
Shi YC DespontsJT DoHS HahmHR ScholerS Ding2008. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compoundsCell Stem Cell3568-574. 23. Shi Y, C Desponts, JT Do, HS Hahm, HR Scholer and S Ding. (2008). Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell 3:568–574.
24.
Shi YJT DoC DespontsHS HahmHR ScholerS Ding2008. A combined chemical and genetic approach for the generation of induced pluripotent stem cellsCell Stem Cell2525-528. 24. Shi Y, JT Do, C Desponts, HS Hahm, HR Scholer and S Ding. (2008). A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell 2:525–528.
25.
Huangfu DR MaehrW GuoA EijkelenboomM SnitowAE ChenDA Melton2008. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compoundsNat Biotechnol26795-797. 25. Huangfu D, R Maehr, W Guo, A Eijkelenboom, M Snitow, AE Chen and DA Melton. (2008). Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol 26:795–797.
26.
Huangfu DK OsafuneR MaehrW GuoA EijkelenboomS ChenW MuhlesteinDA Melton2008. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2Nat Biotechnol261269-1275. 26. Huangfu D, K Osafune, R Maehr, W Guo, A Eijkelenboom, S Chen, W Muhlestein and DA Melton. (2008). Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 26:1269–1275.
27.
Pain BME ClarkM ShenH NakazawaM SakuraiJ SamarutRJ Etches1996. Long-term in vitro culture and characterisation of avian embryonic stem cells with multiple morphogenetic potentialitiesDevelopment1222339-2348. 27. Pain B, ME Clark, M Shen, H Nakazawa, M Sakurai, J Samarut and RJ Etches. (1996). Long-term in vitro culture and characterisation of avian embryonic stem cells with multiple morphogenetic potentialities. Development 122:2339–2348.
28.
Kumaki YM OdaM Okano2008. QUMA: quantification tool for methylation analysisNucleic Acids Res36W170-W175. 28. Kumaki Y, M Oda and M Okano. (2008). QUMA: quantification tool for methylation analysis. Nucleic Acids Res 36:W170–W175.
29.
Medvedev SPAI ShevchenkoEA ElisaphenkoTB NesterovaN BrockdorffSM Zakian2008. Structure and expression pattern of Oct4 gene are conserved in vole Microtus rossiaemeridionalisBMC Genomics9162. 29. Medvedev SP, AI Shevchenko, EA Elisaphenko, TB Nesterova, N Brockdorff and SM Zakian. (2008). Structure and expression pattern of Oct4 gene are conserved in vole Microtus rossiaemeridionalis. BMC Genomics 9:162.
30.
Mali PZ YeHH HommondX YuJ LinG ChenJ ZouL Cheng2008. Improved efficiency and pace of generating induced pluripotent stem cells from human adult and fetal fibroblastsStem Cells261998-2005. 30. Mali P, Z Ye, HH Hommond, X Yu, J Lin, G Chen, J Zou and L Cheng. (2008). Improved efficiency and pace of generating induced pluripotent stem cells from human adult and fetal fibroblasts. Stem Cells 26:1998–2005.
31.
Loh YHQ WuJL ChewVB VegaW ZhangX ChenG BourqueJ GeorgeB LeongJ LiuKY WongKW SungCW LeeXD ZhaoKP ChiuL LipovichVA KuznetsovP RobsonLW StantonCL WeiY RuanB LimHH Ng2006. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cellsNat Genet38431-440. 31. Loh YH, Q Wu, JL Chew, VB Vega, W Zhang, X Chen, G Bourque, J George, B Leong, J Liu, KY Wong, KW Sung, CW Lee, XD Zhao, KP Chiu, L Lipovich, VA Kuznetsov, P Robson, LW Stanton, CL Wei, Y Ruan, B Lim and HH Ng. (2006). The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 38:431–440.
32.
Boyer LATI LeeMF ColeSE JohnstoneSS LevineJP ZuckerMG GuentherRM KumarHL MurrayRG JennerDK GiffordDA MeltonR JaenischRA Young2005. Core transcriptional regulatory circuitry in human embryonic stem cellsCell122947-956. 32. Boyer LA, TI Lee, MF Cole, SE Johnstone, SS Levine, JP Zucker, MG Guenther, RM Kumar, HL Murray, RG Jenner, DK Gifford, DA Melton, R Jaenisch and RA Young. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:947–956.
33.
Chan EMS RatanasirintrawootIH ParkPD ManosYH LohH HuoJD MillerO HartungJ RhoTA InceGQ DaleyTM Schlaeger2009. Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cellsNat Biotechnol271033-1037. 33. Chan EM, S Ratanasirintrawoot, IH Park, PD Manos, YH Loh, H Huo, JD Miller, O Hartung, J Rho, TA Ince, GQ Daley and TM Schlaeger. (2009). Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells. Nat Biotechnol 27:1033–1037.
34.
Cowan CAI KlimanskayaJ McMahonJ AtienzaJ WitmyerJP ZuckerS WangCC MortonAP McMahonD PowersDA Melton2004. Derivation of embryonic stem-cell lines from human blastocystsN Engl J Med3501353-1356. 34. Cowan CA, I Klimanskaya, J McMahon, J Atienza, J Witmyer, JP Zucker, S Wang, CC Morton, AP McMahon, D Powers and DA Melton. (2004). Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med 350:1353–1356.
35.
Adewumi OB AflatoonianL Ahrlund-RichterM AmitPW AndrewsG BeightonPA BelloN BenvenistyLS BerryS BevanB BlumJ BrookingKG ChenAB ChooGA ChurchillM CorbelI DamjanovJS DraperP DvorakK EmanuelssonRA FleckA FordK GertowM GertsensteinPJ GokhaleRS HamiltonA HamplLE HealyO HovattaJ HyllnerMP ImrehJ Itskovitz-EldorJ JacksonJL JohnsonM JonesK KeeBL KingBB KnowlesM LakoF LebrinBS MallonD ManningY MaysharRD McKayAE MichalskaM MikkolaM MileikovskySL MingerHD MooreCL MummeryA NagyN NakatsujiCM O'BrienSK OhC OlssonT OtonkoskiKY ParkR PassierH PatelM PatelR PedersenMF PeraMS PiekarczykRA PeraBE ReubinoffAJ RobinsJ RossantP Rugg-GunnTC SchulzH SembES SherrerH SiemenGN StaceyM StojkovicH SuemoriJ SzatkiewiczT TuretskyT TuuriS van den BrinkK VinterstenS VuoristoD WardTA WeaverLA YoungW Zhang2007. Characterization of human embryonic stem cell lines by the International Stem Cell InitiativeNat Biotechnol25803-816. 35. Adewumi O, B Aflatoonian, L Ahrlund-Richter, M Amit, PW Andrews, G Beighton, PA Bello, N Benvenisty, LS Berry, S Bevan, B Blum, J Brooking, KG Chen, AB Choo, GA Churchill, M Corbel, I Damjanov, JS Draper, P Dvorak, K Emanuelsson, RA Fleck, A Ford, K Gertow, M Gertsenstein, PJ Gokhale, RS Hamilton, A Hampl, LE Healy, O Hovatta, J Hyllner, MP Imreh, J Itskovitz-Eldor, J Jackson, JL Johnson, M Jones, K Kee, BL King, BB Knowles, M Lako, F Lebrin, BS Mallon, D Manning, Y Mayshar, RD McKay, AE Michalska, M Mikkola, M Mileikovsky, SL Minger, HD Moore, CL Mummery, A Nagy, N Nakatsuji, CM O'Brien, SK Oh, C Olsson, T Otonkoski, KY Park, R Passier, H Patel, M Patel, R Pedersen, MF Pera, MS Piekarczyk, RA Pera, BE Reubinoff, AJ Robins, J Rossant, P Rugg-Gunn, TC Schulz, H Semb, ES Sherrer, H Siemen, GN Stacey, M Stojkovic, H Suemori, J Szatkiewicz, T Turetsky, T Tuuri, S van den Brink, K Vintersten, S Vuoristo, D Ward, TA Weaver, LA Young and W Zhang. (2007). Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotechnol 25:803–816.
36.
Toh WSEH LeeM RichardsT Cao2010. In vitro derivation of chondrogenic cells from human embryonic stem cellsMethods Mol Biol584317-331. 36. Toh WS, EH Lee, M Richards and T Cao. (2010). In vitro derivation of chondrogenic cells from human embryonic stem cells. Methods Mol Biol 584:317–331.
37.
Hwang NSS VargheseHJ LeeZ ZhangZ YeJ BaeL ChengJ Elisseeff2008. In vivo commitment and functional tissue regeneration using human embryonic stem cell-derived mesenchymal cellsProc Natl Acad Sci U S A10520641-20646. 37. Hwang NS, S Varghese, HJ Lee, Z Zhang, Z Ye, J Bae, L Cheng and J Elisseeff. (2008). In vivo commitment and functional tissue regeneration using human embryonic stem cell-derived mesenchymal cells. Proc Natl Acad Sci U S A 105:20641–20646.
38.
Koay EJGM HobenKA Athanasiou2007. Tissue engineering with chondrogenically differentiated human embryonic stem cellsStem Cells252183-2190. 38. Koay EJ, GM Hoben and KA Athanasiou. (2007). Tissue engineering with chondrogenically differentiated human embryonic stem cells. Stem Cells 25:2183–2190.
39.
Yamanaka S2007. Strategies and new developments in the generation of patient-specific pluripotent stem cellsCell Stem Cell139-49. 39. Yamanaka S. (2007). Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 1:39–49.
40.
Park IHR ZhaoJA WestA YabuuchiH HuoTA IncePH LerouMW LenschGQ Daley2008. Reprogramming of human somatic cells to pluripotency with defined factorsNature451141-146. 40. Park IH, R Zhao, JA West, A Yabuuchi, H Huo, TA Ince, PH Lerou, MW Lensch and GQ Daley. (2008). Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451:141–146.
41.
Utikal JN MaheraliW KulalertK Hochedlinger2009. Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cellsJ Cell Sci1223502-3510. 41. Utikal J, N Maherali, W Kulalert and K Hochedlinger. (2009). Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells. J Cell Sci 122:3502–3510.
42.
Sun NNJ PanettaDM GuptaKD WilsonA LeeF JiaS HuAM CherryRC RobbinsMT LongakerJC Wu2009. Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cellsProc Natl Acad Sci U S A10615720-15725. 42. Sun N, NJ Panetta, DM Gupta, KD Wilson, A Lee, F Jia, S Hu, AM Cherry, RC Robbins, MT Longaker and JC Wu. (2009). Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. Proc Natl Acad Sci U S A 106:15720–15725.
43.
Aasen TA RayaMJ BarreroE GarretaA ConsiglioF GonzalezR VassenaJ BilicV PekarikG TiscorniaM EdelS BoueJC Izpisua Belmonte2008. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytesNat Biotechnol261276-1284. 43. Aasen T, A Raya, MJ Barrero, E Garreta, A Consiglio, F Gonzalez, R Vassena, J Bilic, V Pekarik, G Tiscornia, M Edel, S Boue and JC Izpisua Belmonte. (2008). Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26:1276–1284.
44.
Buchholz DEST HikitaTJ RowlandAM FriedrichCR HinmanLV JohnsonDO Clegg2009. Derivation of functional retinal pigmented epithelium from induced pluripotent stem cellsStem Cells272427-2434. 44. Buchholz DE, ST Hikita, TJ Rowland, AM Friedrich, CR Hinman, LV Johnson and DO Clegg. (2009). Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Stem Cells 27:2427–2434.
45.
Hirami YF OsakadaK TakahashiK OkitaS YamanakaH IkedaN YoshimuraM Takahashi2009. Generation of retinal cells from mouse and human induced pluripotent stem cellsNeurosci Lett458126-131. 45. Hirami Y, F Osakada, K Takahashi, K Okita, S Yamanaka, H Ikeda, N Yoshimura and M Takahashi. (2009). Generation of retinal cells from mouse and human induced pluripotent stem cells. Neurosci Lett 458:126–131.
46.
Song ZJ CaiY LiuD ZhaoJ YongS DuoX SongY GuoY ZhaoH QinX YinC WuJ CheS LuM DingH Deng2009. Efficient generation of hepatocyte-like cells from human induced pluripotent stem cellsCell Res191233-1242. 46. Song Z, J Cai, Y Liu, D Zhao, J Yong, S Duo, X Song, Y Guo, Y Zhao, H Qin, X Yin, C Wu, J Che, S Lu, M Ding and H Deng. (2009). Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells. Cell Res 19:1233–1242.
47.
Gai HEL LeungPD CostantinoJR AguilaDM NguyenLM FinkDC WardY Ma2009. Generation and characterization of functional cardiomyocytes using induced pluripotent stem cells derived from human fibroblastsCell Biol Int331184-1193. 47. Gai H, EL Leung, PD Costantino, JR Aguila, DM Nguyen, LM Fink, DC Ward and Y Ma. (2009). Generation and characterization of functional cardiomyocytes using induced pluripotent stem cells derived from human fibroblasts. Cell Biol Int 33:1184–1193.
48.
Tanaka TS TohyamaM MurataF NomuraT KanekoH ChenF HattoriT EgashiraT SekiY OhnoU KoshimizuS YuasaS OgawaS YamanakaK YasudaK Fukuda2009. In vitro pharmacologic testing using human induced pluripotent stem cell-derived cardiomyocytesBiochem Biophys Res Commun385497-502. 48. Tanaka T, S Tohyama, M Murata, F Nomura, T Kaneko, H Chen, F Hattori, T Egashira, T Seki, Y Ohno, U Koshimizu, S Yuasa, S Ogawa, S Yamanaka, K Yasuda and K Fukuda. (2009). In vitro pharmacologic testing using human induced pluripotent stem cell-derived cardiomyocytes. Biochem Biophys Res Commun 385:497–502.
49.
Tateishi KJ HeO TaranovaG LiangAC D'AlessioY Zhang2008. Generation of insulin-secreting islet-like clusters from human skin fibroblastsJ Biol Chem28331601-31607. 49. Tateishi K, J He, O Taranova, G Liang, AC D'Alessio and Y Zhang. (2008). Generation of insulin-secreting islet-like clusters from human skin fibroblasts. J Biol Chem 283:31601–31607.

Information & Authors

Information

Published In

cover image Stem Cells and Development
Stem Cells and Development
Volume 20Issue Number 6June 2011
Pages: 1099 - 1112
PubMed: 20846027

History

Published in print: June 2011
Published ahead of print: 17 October 2010
Published online: 16 September 2010
Accepted: 27 August 2010
Received: 22 June 2010

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Sergey P. Medvedev
Institute of Cytology and Genetics, Russian Academy of Sciences, Novosibirsk, Russia.
Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Novosibirsk, Russia.
Elena V. Grigor'eva
Institute of Cytology and Genetics, Russian Academy of Sciences, Novosibirsk, Russia.
Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Novosibirsk, Russia.
Alexander I. Shevchenko
Institute of Cytology and Genetics, Russian Academy of Sciences, Novosibirsk, Russia.
Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Novosibirsk, Russia.
Anastasia A. Malakhova
Institute of Cytology and Genetics, Russian Academy of Sciences, Novosibirsk, Russia.
Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Novosibirsk, Russia.
Elena V. Dementyeva
Institute of Cytology and Genetics, Russian Academy of Sciences, Novosibirsk, Russia.
Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Novosibirsk, Russia.
Alexander A. Shilov
Institute of Cytology and Genetics, Russian Academy of Sciences, Novosibirsk, Russia.
Evgeny A. Pokushalov
State Research Institute of Circulation Pathology, Novosibirsk, Russia.
Alla M. Zaidman
Novosibirsk Research Institute of Traumatology and Orthopaedics, Novosibirsk, Russia.
Maria A. Aleksandrova
Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia.
Egor Yu Plotnikov
Belozersky Institute of Physicochemical Biology, Moscow State University, Moscow, Russia.
Gennady T. Sukhikh
Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, Russia.
Suren M. Zakian
Institute of Cytology and Genetics, Russian Academy of Sciences, Novosibirsk, Russia.
Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Novosibirsk, Russia.
Research Center of Clinical and Experimental Medicine, Russian Academy of Medical Sciences, Novosibirsk, Russia.

Notes

Address correspondence to:Prof. Suren M. ZakianInstitute of Cytology and GeneticsRussian Academy of SciencesAcad. Lavrentiev Ave., 10Novosibirsk 630090Russia
E-mail: [email protected]

Author Disclosure Statement

No potential conflicts of interest exist.

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top