Research Article
No access
Published Online: 21 December 2011

Comparative Analysis of Paracrine Factor Expression in Human Adult Mesenchymal Stem Cells Derived from Bone Marrow, Adipose, and Dermal Tissue

Publication: Stem Cells and Development
Volume 21, Issue Number 12

Abstract

Human adult mesenchymal stem cells (MSCs) support the engineering of functional tissue constructs by secreting angiogenic and cytoprotective factors, which act in a paracrine fashion to influence cell survival and vascularization. MSCs have been isolated from many different tissue sources, but little is known about how paracrine factor secretion varies between different MSC populations. We evaluated paracrine factor expression patterns in MSCs isolated from adipose tissue (ASCs), bone marrow (BMSCs), and dermal tissues [dermal sheath cells (DSCs) and dermal papilla cells (DPCs)]. Specifically, mRNA expression analysis identified insulin-like growth factor-1 (IGF-1), vascular endothelial growth factor-D (VEGF-D), and interleukin-8 (IL-8) to be expressed at higher levels in ASCs compared with other MSC populations whereas VEGF-A, angiogenin, basic fibroblast growth factor (bFGF), and nerve growth factor (NGF) were expressed at comparable levels among the MSC populations examined. Analysis of conditioned media (CM) protein confirmed the comparable level of angiogenin and VEGF-A secretion in all MSC populations and showed that DSCs and DPCs produced significantly higher concentrations of leptin. Functional assays examining in vitro angiogenic paracrine activity showed that incubation of endothelial cells in ASCCM resulted in increased tubulogenic efficiency compared with that observed in DPCCM. Using neutralizing antibodies we concluded that VEGF-A and VEGF-D were 2 of the major growth factors secreted by ASCs that supported endothelial tubulogenesis. The variation in paracrine factors of different MSC populations contributes to different levels of angiogenic activity and ASCs maybe preferred over other MSC populations for augmenting therapeutic approaches dependent upon angiogenesis.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Johnston IA1982. Capillarisation, oxygen diffusion distances and mitochondrial content of carp muscles following acclimation to summer and winter temperaturesCell Tissue Res222325-337. 1. Johnston IA. (1982). Capillarisation, oxygen diffusion distances and mitochondrial content of carp muscles following acclimation to summer and winter temperatures. Cell Tissue Res 222:325–337.
2.
Zuk PAM ZhuP AshjianDA De UgarteJI HuangH MizunoZC AlfonsoJK FraserP BenhaimMH Hedrick2002. Human adipose tissue is a source of multipotent stem cellsMol Biol Cell134279-4295. 2. Zuk PA, M Zhu, P Ashjian, DA De Ugarte, JI Huang, H Mizuno, ZC Alfonso, JK Fraser, P Benhaim and MH Hedrick. (2002). Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295.
3.
Haynesworth SEJ GoshimaVM GoldbergAI Caplan1992. Characterization of cells with osteogenic potential from human marrowBone1381-88. 3. Haynesworth SE, J Goshima, VM Goldberg and AI Caplan. (1992). Characterization of cells with osteogenic potential from human marrow. Bone 13:81–88.
4.
Yoo JUTS BarthelK NishimuraL SolchagaAI CaplanVM GoldbergB Johnstone1998. The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cellsJ Bone Joint Surg Am801745-1757. 4. Yoo JU, TS Barthel, K Nishimura, L Solchaga, AI Caplan, VM Goldberg and B Johnstone. (1998). The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells. J Bone Joint Surg Am 80:1745–1757.
5.
Choi YSGJ DustingS StubbsS ArunothayarajXL HanP CollasWA MorrisonRJ Dilley2010. Differentiation of human adipose-derived stem cells into beating cardiomyocytesJ Cell Mol Med14878-889. 5. Choi YS, GJ Dusting, S Stubbs, S Arunothayaraj, XL Han, P Collas, WA Morrison and RJ Dilley. (2010). Differentiation of human adipose-derived stem cells into beating cardiomyocytes. J Cell Mol Med 14:878–889.
6.
Narita YA YamawakiH KagamiM UedaY Ueda2008. Effects of transforming growth factor-beta 1 and ascorbic acid on differentiation of human bone-marrow-derived mesenchymal stem cells into smooth muscle cell lineageCell Tissue Res333449-459. 6. Narita Y, A Yamawaki, H Kagami, M Ueda and Y Ueda. (2008). Effects of transforming growth factor-beta 1 and ascorbic acid on differentiation of human bone-marrow-derived mesenchymal stem cells into smooth muscle cell lineage. Cell Tissue Res 333:449–459.
7.
Studeny MFC MariniJL DembinskiC ZompettaM Cabreira-HansenBN BekeleRE ChamplinM Andreeff2004. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agentsJ Natl Cancer Inst961593-1603. 7. Studeny M, FC Marini, JL Dembinski, C Zompetta, M Cabreira-Hansen, BN Bekele, RE Champlin and M Andreeff. (2004). Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst 96:1593–1603.
8.
Wang QB SunD WangY JiQ KongG WangJ WangW ZhaoL JinH Li2008. Murine bone marrow mesenchymal stem cells cause mature dendritic cells to promote T-cell toleranceScand J Immunol68607-615. 8. Wang Q, B Sun, D Wang, Y Ji, Q Kong, G Wang, J Wang, W Zhao, L Jin and H Li. (2008). Murine bone marrow mesenchymal stem cells cause mature dendritic cells to promote T-cell tolerance. Scand J Immunol 68:607–615.
9.
Kofidis TJL de BruinT YamaneM TanakaDR LeblRJ SwijnenburgIL WeissmanRC Robbins2005. Stimulation of paracrine pathways with growth factors enhances embryonic stem cell engraftment and host-specific differentiation in the heart after ischemic myocardial injuryCirculation1112486-2493. 9. Kofidis T, JL de Bruin, T Yamane, M Tanaka, DR Lebl, RJ Swijnenburg, IL Weissman and RC Robbins. (2005). Stimulation of paracrine pathways with growth factors enhances embryonic stem cell engraftment and host-specific differentiation in the heart after ischemic myocardial injury. Circulation 111:2486–2493.
10.
Li LS ZhangY ZhangB YuY XuZ Guan2009. Paracrine action mediate the antifibrotic effect of transplanted mesenchymal stem cells in a rat model of global heart failureMol Biol Rep36725-731. 10. Li L, S Zhang, Y Zhang, B Yu, Y Xu and Z Guan. (2009). Paracrine action mediate the antifibrotic effect of transplanted mesenchymal stem cells in a rat model of global heart failure. Mol Biol Rep 36:725–731.
11.
Shabbir AD ZisaH LinM MastriG RoloffG SuzukiT Lee2010. Activation of host tissue trophic factors through JAK-STAT3 signaling: a mechanism of mesenchymal stem cell-mediated cardiac repairAm J Physiol Heart Circ Physiol299H1428-H1438. 11. Shabbir A, D Zisa, H Lin, M Mastri, G Roloff, G Suzuki and T Lee. (2010). Activation of host tissue trophic factors through JAK-STAT3 signaling: a mechanism of mesenchymal stem cell-mediated cardiac repair. Am J Physiol Heart Circ Physiol 299:H1428– H1438.
12.
Kinnaird TE StabileMS BurnettCW LeeS BarrS FuchsSE Epstein2004. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanismsCirc Res94678-685. 12. Kinnaird T, E Stabile, MS Burnett, CW Lee, S Barr, S Fuchs and SE Epstein. (2004). Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 94:678–685.
13.
Hoffmann JAJ GlassfordTC DoyleRC RobbinsS SchrepferMP Pelletier2010. Angiogenic effects despite limited cell survival of bone marrow-derived mesenchymal stem cells under ischemiaThorac Cardiovasc Surg58136-142. 13. Hoffmann J, AJ Glassford, TC Doyle, RC Robbins, S Schrepfer and MP Pelletier. (2010). Angiogenic effects despite limited cell survival of bone marrow-derived mesenchymal stem cells under ischemia. Thorac Cardiovasc Surg 58:136–142.
14.
Nguyen BKS MaltaisLP PerraultJF TanguayJC TardifLM StevensM BorieF HarelS MansourN Noiseux2010. Improved function and myocardial repair of infarcted heart by intracoronary injection of mesenchymal stem cell-derived growth factorsJ Cardiovasc Transl Res3547-558. 14. Nguyen BK, S Maltais, LP Perrault, JF Tanguay, JC Tardif, LM Stevens, M Borie, F Harel, S Mansour and N Noiseux. (2010). Improved function and myocardial repair of infarcted heart by intracoronary injection of mesenchymal stem cell-derived growth factors. J Cardiovasc Transl Res 3:547–558.
15.
Caplan AI1991. Mesenchymal stem cellsJ Orthop Res9641-650. 15. Caplan AI. (1991). Mesenchymal stem cells. J Orthop Res 9:641–650.
16.
Pittenger MFAM MackaySC BeckRK JaiswalR DouglasJD MoscaMA MoormanDW SimonettiS CraigDR Marshak1999. Multilineage potential of adult human mesenchymal stem cellsScience284143-147. 16. Pittenger MF, AM Mackay, SC Beck, RK Jaiswal, R Douglas, JD Mosca, MA Moorman, DW Simonetti, S Craig and DR Marshak. (1999). Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147.
17.
Zhang XM HiraiS CanteroR CiubotariuL DobrilaA HirshK IguraH SatohI Yokomi et al.2011. Isolation and characterization of mesenchymal stem cells from human umbilical cord blood: reevaluation of critical factors for successful isolation and high ability to proliferate and differentiate to chondrocytes as compared to mesenchymal stem cells from bone marrow and adipose tissueJ Cell Biochem1121206-1218. 17. Zhang X, M Hirai, S Cantero, R Ciubotariu, L Dobrila, A Hirsh, K Igura, H Satoh, I Yokomi, et al. (2011). Isolation and characterization of mesenchymal stem cells from human umbilical cord blood: reevaluation of critical factors for successful isolation and high ability to proliferate and differentiate to chondrocytes as compared to mesenchymal stem cells from bone marrow and adipose tissue. J Cell Biochem 112:1206–1218.
18.
Jahoda CARF Oliver1984. Vibrissa dermal papilla cell aggregative behaviour in vivo and in vitroJ Embryol Exp Morphol79211-224. 18. Jahoda CA and RF Oliver. (1984). Vibrissa dermal papilla cell aggregative behaviour in vivo and in vitro. J Embryol Exp Morphol 79:211–224.
19.
Wagner WF WeinA SeckingerM FrankhauserU WirknerU KrauseJ BlakeC SchwagerV EcksteinW AnsorgeAD Ho2005. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord bloodExp Hematol331402-1416. 19. Wagner W, F Wein, A Seckinger, M Frankhauser, U Wirkner, U Krause, J Blake, C Schwager, V Eckstein, W Ansorge and AD Ho. (2005). Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 33:1402–1416.
20.
Niemeyer PM KornackerA MehlhornA SeckingerJ VohrerH SchmalP KastenV EcksteinNP SudkampU Krause2007. Comparison of immunological properties of bone marrow stromal cells and adipose tissue-derived stem cells before and after osteogenic differentiation in vitroTissue Eng13111-121. 20. Niemeyer P, M Kornacker, A Mehlhorn, A Seckinger, J Vohrer, H Schmal, P Kasten, V Eckstein, NP Sudkamp and U Krause. (2007). Comparison of immunological properties of bone marrow stromal cells and adipose tissue-derived stem cells before and after osteogenic differentiation in vitro. Tissue Eng 13:111–121.
21.
Puissant BC BarreauP BourinC ClavelJ CorreC BousquetC TaureauB CousinM Abbal et al.2005. Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cellsBr J Haematol129118-129. 21. Puissant B, C Barreau, P Bourin, C Clavel, J Corre, C Bousquet, C Taureau, B Cousin, M Abbal, et al. (2005). Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol 129:118–129.
22.
Liu TMM MartinaDW HutmacherJH HuiEH LeeB Lim2007. Identification of common pathways mediating differentiation of bone marrow- and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineagesStem Cells25750-760. 22. Liu TM, M Martina, DW Hutmacher, JH Hui, EH Lee and B Lim. (2007). Identification of common pathways mediating differentiation of bone marrow- and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. Stem Cells 25:750–760.
23.
Niemeyer PK FechnerS MilzW RichterNP SuedkampAT MehlhornS PearceP Kasten2010. Comparison of mesenchymal stem cells from bone marrow and adipose tissue for bone regeneration in a critical size defect of the sheep tibia and the influence of platelet-rich plasmaBiomaterials313572-3579. 23. Niemeyer P, K Fechner, S Milz, W Richter, NP Suedkamp, AT Mehlhorn, S Pearce and P Kasten. (2010). Comparison of mesenchymal stem cells from bone marrow and adipose tissue for bone regeneration in a critical size defect of the sheep tibia and the influence of platelet-rich plasma. Biomaterials 31:3572–3579.
24.
Ikegame YK YamashitaSI HayashiH MizunoM TawadaF YouK YamadaY TanakaY Egashira et al.2011. Comparison of mesenchymal stem cells from adipose tissue and bone marrow for ischemic stroke therapyCytotherapy1313. 24. Ikegame Y, K Yamashita, SI Hayashi, H Mizuno, M Tawada, F You, K Yamada, Y Tanaka, Y Egashira, et al. (2011). Comparison of mesenchymal stem cells from adipose tissue and bone marrow for ischemic stroke therapy. Cytotherapy 13:13.
25.
Kim YH KimH ChoY BaeK SuhJ Jung2007. Direct comparison of human mesenchymal stem cells derived from adipose tissues and bone marrow in mediating neovascularization in response to vascular ischemiaCell Physiol Biochem20867-876. 25. Kim Y, H Kim, H Cho, Y Bae, K Suh and J Jung. (2007). Direct comparison of human mesenchymal stem cells derived from adipose tissues and bone marrow in mediating neovascularization in response to vascular ischemia. Cell Physiol Biochem 20:867–876.
26.
Jahoda CRF Oliver1981. The growth of vibrissa dermal papilla cells in vitroBr J Dermatol105623-627. 26. Jahoda C and RF Oliver. (1981). The growth of vibrissa dermal papilla cells in vitro. Br J Dermatol 105:623–627.
27.
Magerl MS KauserR PausDJ Tobin2002. Simple and rapid method to isolate and culture follicular papillae from human scalp hair folliclesExp Dermatol11381-385. 27. Magerl M, S Kauser, R Paus and DJ Tobin. (2002). Simple and rapid method to isolate and culture follicular papillae from human scalp hair follicles. Exp Dermatol 11:381–385.
28.
Dominici MK Le BlancI MuellerI Slaper-CortenbachF MariniD KrauseR DeansA KeatingD ProckopE Horwitz2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statementCytotherapy8315-317. 28. Dominici M, K Le Blanc, I Mueller, I Slaper-Cortenbach, F Marini, D Krause, R Deans, A Keating, D Prockop and E Horwitz. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317.
29.
Cheung CY1997. Vascular endothelial growth factor: possible role in fetal development and placental functionJ Soc Gynecol Investig4169-177. 29. Cheung CY. (1997). Vascular endothelial growth factor: possible role in fetal development and placental function. J Soc Gynecol Investig 4:169–177.
30.
Ishizawa KH KuboM YamadaS KobayashiT SuzukiS MizunoT NakamuraH Sasaki2004. Hepatocyte growth factor induces angiogenesis in injured lungs through mobilizing endothelial progenitor cellsBiochem Biophys Res Commun324276-280. 30. Ishizawa K, H Kubo, M Yamada, S Kobayashi, T Suzuki, S Mizuno, T Nakamura and H Sasaki. (2004). Hepatocyte growth factor induces angiogenesis in injured lungs through mobilizing endothelial progenitor cells. Biochem Biophys Res Commun 324:276–280.
31.
Deuse TC PeterPW FedakT DoyleH ReichenspurnerWH ZimmermannT EschenhagenW SteinJC WuRC RobbinsS Schrepfer2009. Hepatocyte growth factor or vascular endothelial growth factor gene transfer maximizes mesenchymal stem cell-based myocardial salvage after acute myocardial infarctionCirculation120S247-S254. 31. Deuse T, C Peter, PW Fedak, T Doyle, H Reichenspurner, WH Zimmermann, T Eschenhagen, W Stein, JC Wu, RC Robbins and S Schrepfer. (2009). Hepatocyte growth factor or vascular endothelial growth factor gene transfer maximizes mesenchymal stem cell-based myocardial salvage after acute myocardial infarction. Circulation 120:S247–S254.
32.
Peng LZ JiaX YinX ZhangY LiuP ChenK MaC Zhou2008. Comparative analysis of mesenchymal stem cells from bone marrow, cartilage, and adipose tissueStem Cells Dev17761-773. 32. Peng L, Z Jia, X Yin, X Zhang, Y Liu, P Chen, K Ma and C Zhou. (2008). Comparative analysis of mesenchymal stem cells from bone marrow, cartilage, and adipose tissue. Stem Cells Dev 17:761–773.
33.
Maumus MPeyrafitte J-AD'Angelo RFournier-Wirth CBouloumie ACasteilla LSengene CBourin P2011. Native human adipose stromal cells: localization, morphology and phenotypeInt J Obesity351141-1153. 33. Maumus M, Peyrafitte J-A, D'Angelo R, Fournier-Wirth C, Bouloumie A, Casteilla L, Sengene C and Bourin P. (2011). Native human adipose stromal cells: localization, morphology and phenotype. Int J Obesity 35:1141–1153.
34.
Giordano FJHP GerberSP WilliamsN VanBruggenS BuntingP Ruiz-LozanoY GuAK NathY Huang et al.2001. A cardiac myocyte vascular endothelial growth factor paracrine pathway is required to maintain cardiac functionProc Natl Acad Sci U S A985780-5785. 34. Giordano FJ, HP Gerber, SP Williams, N VanBruggen, S Bunting, P Ruiz-Lozano, Y Gu, AK Nath, Y Huang, et al. (2001). A cardiac myocyte vascular endothelial growth factor paracrine pathway is required to maintain cardiac function. Proc Natl Acad Sci U S A 98:5780–5785.
35.
Liu YZ SongY ZhaoH QinJ CaiH ZhangT YuS JiangG WangM DingH Deng2006. A novel chemical-defined medium with bFGF and N2B27 supplements supports undifferentiated growth in human embryonic stem cellsBiochem Biophys Res Commun346131-139. 35. Liu Y, Z Song, Y Zhao, H Qin, J Cai, H Zhang, T Yu, S Jiang, G Wang, M Ding and H Deng. (2006). A novel chemical-defined medium with bFGF and N2B27 supplements supports undifferentiated growth in human embryonic stem cells. Biochem Biophys Res Commun 346:131–139.
36.
Song EJYS Yoo2011. Nerve growth factor-induced neurite outgrowth is potentiated by stabilization of TrkA receptorsBMB Rep44182-186. 36. Song EJ and YS Yoo. (2011). Nerve growth factor-induced neurite outgrowth is potentiated by stabilization of TrkA receptors. BMB Rep 44:182–186.
37.
Freeman RSRL BurchRJ CrowderDJ LombMC SchoellJA StraubL Xie2004. NGF deprivation-induced gene expression: after ten years, where do we stand?Prog Brain Res146111-126. 37. Freeman RS, RL Burch, RJ Crowder, DJ Lomb, MC Schoell, JA Straub and L Xie. (2004). NGF deprivation-induced gene expression: after ten years, where do we stand? Prog Brain Res 146:111–126.
38.
Lee RJML SpringerWE Blanco-BoseR ShawPC UrsellHM Blau2000. VEGF gene delivery to myocardium: deleterious effects of unregulated expressionCirculation102898-901. 38. Lee RJ, ML Springer, WE Blanco-Bose, R Shaw, PC Ursell and HM Blau. (2000). VEGF gene delivery to myocardium: deleterious effects of unregulated expression. Circulation 102:898–901.
39.
Thurston G2003. Role of angiopoietins and Tie receptor tyrosine kinases in angiogenesis and lymphangiogenesisCell Tissue Res31461-68. 39. Thurston G. (2003). Role of angiopoietins and Tie receptor tyrosine kinases in angiogenesis and lymphangiogenesis. Cell Tissue Res 314:61–68.
40.
Preissner KTJ Grulich-HennHJ EhrlichP DeclerckC JustusD CollenH PannekoekG Muller-Berghaus1990. Structural requirements for the extracellular interaction of plasminogen activator inhibitor 1 with endothelial cell matrix-associated vitronectinJ Biol Chem26518490-18498. 40. Preissner KT, J Grulich-Henn, HJ Ehrlich, P Declerck, C Justus, D Collen, H Pannekoek and G Muller-Berghaus. (1990). Structural requirements for the extracellular interaction of plasminogen activator inhibitor 1 with endothelial cell matrix-associated vitronectin. J Biol Chem 265:18490–18498.
41.
Xu JJ QuL CaoY SaiC ChenL HeL Yu2008. Mesenchymal stem cell-based angiopoietin-1 gene therapy for acute lung injury induced by lipopolysaccharide in miceJ Pathol214472-481. 41. Xu J, J Qu, L Cao, Y Sai, C Chen, L He and L Yu. (2008). Mesenchymal stem cell-based angiopoietin-1 gene therapy for acute lung injury induced by lipopolysaccharide in mice. J Pathol 214:472–481.
42.
Chen SLCC ZhuYQ LiuLJ TangL YiBJ YuDJ Wang2009. Mesenchymal stem cells genetically modified with the angiopoietin-1 gene enhanced arteriogenesis in a porcine model of chronic myocardial ischaemiaJ Int Med Res3768-78. 42. Chen SL, CC Zhu, YQ Liu, LJ Tang, L Yi, BJ Yu and DJ Wang. (2009). Mesenchymal stem cells genetically modified with the angiopoietin-1 gene enhanced arteriogenesis in a porcine model of chronic myocardial ischaemia. J Int Med Res 37:68–78.
43.
Conrad CH NiessR HussS HuberI von LuettichauPJ NelsonHC OttKW JauchCJ Bruns2009. Multipotent mesenchymal stem cells acquire a lymphendothelial phenotype and enhance lymphatic regeneration in vivoCirculation119281-289. 43. Conrad C, H Niess, R Huss, S Huber, I von Luettichau, PJ Nelson, HC Ott, KW Jauch and CJ Bruns. (2009). Multipotent mesenchymal stem cells acquire a lymphendothelial phenotype and enhance lymphatic regeneration in vivo. Circulation 119:281–289.
44.
Hwang JHIG KimJY LeeS PiaoDS LeeTS LeeJC Ra2011. Therapeutic lymphangiogenesis using stem cell and VEGF-C hydrogelBiomaterials324415-4423. 44. Hwang JH, IG Kim, JY Lee, S Piao, DS Lee, TS Lee and JC Ra. (2011). Therapeutic lymphangiogenesis using stem cell and VEGF-C hydrogel. Biomaterials 32:4415–4423.
45.
Veikkola TL JussilaT MakinenT KarpanenM JeltschTV PetrovaH KuboG ThurstonDM McDonald et al.2001. Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic miceEMBO J201223-1231. 45. Veikkola T, L Jussila, T Makinen, T Karpanen, M Jeltsch, TV Petrova, H Kubo, G Thurston, DM McDonald, et al. (2001). Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO J 20:1223–1231.
46.
Baldwin MEMM HalfordS RoufailRA WilliamsML HibbsD GrailH KuboSA StackerMG Achen2005. Vascular endothelial growth factor D is dispensable for development of the lymphatic systemMol Cell Biol252441-2449. 46. Baldwin ME, MM Halford, S Roufail, RA Williams, ML Hibbs, D Grail, H Kubo, SA Stacker and MG Achen. (2005). Vascular endothelial growth factor D is dispensable for development of the lymphatic system. Mol Cell Biol 25:2441–2449.
47.
Rissanen TTJE MarkkanenM GruchalaT HeikuraA PuranenMI KettunenI KholovaRA KauppinenMG Achen et al.2003. VEGF-D is the strongest angiogenic and lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenovirusesCirc Res921098-1106. 47. Rissanen TT, JE Markkanen, M Gruchala, T Heikura, A Puranen, MI Kettunen, I Kholova, RA Kauppinen, MG Achen, et al. (2003). VEGF-D is the strongest angiogenic and lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenoviruses. Circ Res 92:1098–1106.
48.
Ohnishi ST YasudaS KitamuraN Nagaya2007. Effect of hypoxia on gene expression of bone marrow-derived mesenchymal stem cells and mononuclear cellsStem Cells251166-1177. 48. Ohnishi S, T Yasuda, S Kitamura and N Nagaya. (2007). Effect of hypoxia on gene expression of bone marrow-derived mesenchymal stem cells and mononuclear cells. Stem Cells 25:1166–1177.
49.
Ferrara NK Carver-MooreH ChenM DowdL LuKS O'SheaL Powell-BraxtonKJ HillanMW Moore1996. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF geneNature380439-442. 49. Ferrara N, K Carver-Moore, H Chen, M Dowd, L Lu, KS O'Shea, L Powell-Braxton, KJ Hillan and MW Moore. (1996). Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439–442.
50.
Achen MGM JeltschE KukkT MakinenA VitaliAF WilksK AlitaloSA Stacker1998. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4)Proc Natl Acad Sci U S A95548-553. 50. Achen MG, M Jeltsch, E Kukk, T Makinen, A Vitali, AF Wilks, K Alitalo and SA Stacker. (1998). Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci U S A 95:548–553.
51.
Jia HA BagherzadehR BicknellMR DuchenD LiuI Zachary2004. Vascular endothelial growth factor (VEGF)-D and VEGF-A differentially regulate KDR-mediated signaling and biological function in vascular endothelial cellsJ Biol Chem27936148-36157. 51. Jia H, A Bagherzadeh, R Bicknell, MR Duchen, D Liu and I Zachary. (2004). Vascular endothelial growth factor (VEGF)-D and VEGF-A differentially regulate KDR-mediated signaling and biological function in vascular endothelial cells. J Biol Chem 279:36148–36157.
52.
Vicennati VA VotteroC FriedmanDA Papanicolaou2002. Hormonal regulation of interleukin-6 production in human adipocytesInt J Obes Relat Metab Disord26905-911. 52. Vicennati V, A Vottero, C Friedman and DA Papanicolaou. (2002). Hormonal regulation of interleukin-6 production in human adipocytes. Int J Obes Relat Metab Disord 26:905–911.
53.
Qian HGJ HausmanMM ComptonMJ AzainDL HartzellCA Baile1998. Leptin regulation of peroxisome proliferator-activated receptor-gamma, tumor necrosis factor, and uncoupling protein-2 expression in adipose tissuesBiochem Biophys Res Commun246660-667. 53. Qian H, GJ Hausman, MM Compton, MJ Azain, DL Hartzell and CA Baile. (1998). Leptin regulation of peroxisome proliferator-activated receptor-gamma, tumor necrosis factor, and uncoupling protein-2 expression in adipose tissues. Biochem Biophys Res Commun 246:660–667.
54.
Mitchell SEWD ReesLJ HardieN HoggardM TadayyonJR ArchP Trayhurn1997. ob gene expression and secretion of leptin following differentiation of rat preadipocytes to adipocytes in primary cultureBiochem Biophys Res Commun230360-364. 54. Mitchell SE, WD Rees, LJ Hardie, N Hoggard, M Tadayyon, JR Arch and P Trayhurn. (1997). ob gene expression and secretion of leptin following differentiation of rat preadipocytes to adipocytes in primary culture. Biochem Biophys Res Commun 230:360–364.
55.
Iguchi MS AibaY YoshinoH Tagami2001. Human follicular papilla cells carry out nonadipose tissue production of leptinJ Invest Dermatol1171349-1356. 55. Iguchi M, S Aiba, Y Yoshino and H Tagami. (2001). Human follicular papilla cells carry out nonadipose tissue production of leptin. J Invest Dermatol 117:1349–1356.
56.
Hoggard NL HunterJS DuncanLM WilliamsP TrayhurnJG Mercer1997. Leptin and leptin receptor mRNA and protein expression in the murine fetus and placentaProc Natl Acad Sci U S A9411073-11078. 56. Hoggard N, L Hunter, JS Duncan, LM Williams, P Trayhurn and JG Mercer. (1997). Leptin and leptin receptor mRNA and protein expression in the murine fetus and placenta. Proc Natl Acad Sci U S A 94:11073–11078.
57.
Chen SCJJ CunninghamRJ Smeyne2000. Expression of OB receptor splice variants during prenatal development of the mouseJ Recept Signal Transduct Res2087-103. 57. Chen SC, JJ Cunningham and RJ Smeyne. (2000). Expression of OB receptor splice variants during prenatal development of the mouse. J Recept Signal Transduct Res 20:87–103.
58.
Sumikawa YT NakajimaS InuiS Itami2008. Leptin is a paracrine regulator of hair cycleJ Invest Dermatol128S146-S876. 58. Sumikawa Y, T Nakajima, S Inui and S Itami. (2008). Leptin is a paracrine regulator of hair cycle. J Invest Dermatol 128:S146–S876.
59.
Poeggeler BC SchulzMA PappollaE BodoS TiedeH LehnertR Paus2010. Leptin and the skin: a new frontierExp Dermatol1912-18. 59. Poeggeler B, C Schulz, MA Pappolla, E Bodo, S Tiede, H Lehnert and R Paus. (2010). Leptin and the skin: a new frontier. Exp Dermatol 19:12–18.
60.
Larcher FM Del RioF SerranoJC SegoviaA RamirezA MeanaA PageJL Abad et al.2001. A cutaneous gene therapy approach to human leptin deficiencies: correction of the murine ob/ob phenotype using leptin-targeted keratinocyte graftsFASEB J151529-1538. 60. Larcher F, M Del Rio, F Serrano, JC Segovia, A Ramirez, A Meana, A Page, JL Abad, et al. (2001). A cutaneous gene therapy approach to human leptin deficiencies: correction of the murine ob/ob phenotype using leptin-targeted keratinocyte grafts. FASEB J 15:1529–1538.
61.
Murad AAK NathST ChaE DemirJ Flores-RiverosMR Sierra-Honigmann2003. Leptin is an autocrine/paracrine regulator of wound healingFASEB J171895-1897. 61. Murad A, AK Nath, ST Cha, E Demir, J Flores-Riveros and MR Sierra-Honigmann. (2003). Leptin is an autocrine/paracrine regulator of wound healing. FASEB J 17:1895–1897.
62.
Schindler RJ MancillaS EndresR GhorbaniSC ClarkCA Dinarello1990. Correlations and interactions in the production of interleukin-6 (IL-6), IL-1, and tumor necrosis factor (TNF) in human blood mononuclear cells: IL-6 suppresses IL-1 and TNFBlood7540-47. 62. Schindler R, J Mancilla, S Endres, R Ghorbani, SC Clark and CA Dinarello. (1990). Correlations and interactions in the production of interleukin-6 (IL-6), IL-1, and tumor necrosis factor (TNF) in human blood mononuclear cells: IL-6 suppresses IL-1 and TNF. Blood 75:40–47.
63.
Mukaida N2000. Interleukin-8: an expanding universe beyond neutrophil chemotaxis and activationInt J Hematol72391-398. 63. Mukaida N. (2000). Interleukin-8: an expanding universe beyond neutrophil chemotaxis and activation. Int J Hematol 72:391–398.
64.
Zhu YT LiuH YeK SongX MaZ Cui2010. Enhancement of adipose-derived stem cell differentiation in scaffolds with IGF-I gene impregnation under dynamic microenvironmentStem Cells Dev191547-1556. 64. Zhu Y, T Liu, H Ye, K Song, X Ma and Z Cui. (2010). Enhancement of adipose-derived stem cell differentiation in scaffolds with IGF-I gene impregnation under dynamic microenvironment. Stem Cells Dev 19:1547–1556.
65.
Wei HJCH ChenWY LeeI ChiuSM HwangWW LinCC HuangYC YehY ChangHW Sung2008. Bioengineered cardiac patch constructed from multilayered mesenchymal stem cells for myocardial repairBiomaterials293547-3556. 65. Wei HJ, CH Chen, WY Lee, I Chiu, SM Hwang, WW Lin, CC Huang, YC Yeh, Y Chang and HW Sung. (2008). Bioengineered cardiac patch constructed from multilayered mesenchymal stem cells for myocardial repair. Biomaterials 29:3547–3556.
66.
Vidal MAGE KilroyMJ LopezJR JohnsonRM MooreJM Gimble2007. Characterization of equine adipose tissue-derived stromal cells: adipogenic and osteogenic capacity and comparison with bone marrow-derived mesenchymal stromal cellsVet Surg36613-622. 66. Vidal MA, GE Kilroy, MJ Lopez, JR Johnson, RM Moore and JM Gimble. (2007). Characterization of equine adipose tissue-derived stromal cells: adipogenic and osteogenic capacity and comparison with bone marrow-derived mesenchymal stromal cells. Vet Surg 36:613–622.
67.
Moretti PT HatlapatkaD MartenA LavrentievaI MajoreR HassC Kasper2010. Mesenchymal stromal cells derived from human umbilical cord tissues: primitive cells with potential for clinical and tissue engineering applicationsAdv Biochem Eng Biotechnol12329-54. 67. Moretti P, T Hatlapatka, D Marten, A Lavrentieva, I Majore, R Hass and C Kasper. (2010). Mesenchymal stromal cells derived from human umbilical cord tissues: primitive cells with potential for clinical and tissue engineering applications. Adv Biochem Eng Biotechnol 123:29–54.
68.
Choi YSK MatsudaGJ DustingWA MorrisonRJ Dilley2010. Engineering cardiac tissue in vivo from human adipose-derived stem cellsBiomaterials312236-2242. 68. Choi YS, K Matsuda, GJ Dusting, WA Morrison and RJ Dilley. (2010). Engineering cardiac tissue in vivo from human adipose-derived stem cells. Biomaterials 31:2236–2242.
69.
Puxeddu ID RibattiE CrivellatoF Levi-Schaffer2005. Mast cells and eosinophils: a novel link between inflammation and angiogenesis in allergic diseasesJ Allergy Clin Immunol116531-536. 69. Puxeddu I, D Ribatti, E Crivellato and F Levi-Schaffer. (2005). Mast cells and eosinophils: a novel link between inflammation and angiogenesis in allergic diseases. J Allergy Clin Immunol 116:531–536.
70.
Koch AEPJ PolveriniSL KunkelLA HarlowLA DiPietroVM ElnerSG ElnerRM Strieter1992. Interleukin-8 as a macrophage-derived mediator of angiogenesisScience2581798-1801. 70. Koch AE, PJ Polverini, SL Kunkel, LA Harlow, LA DiPietro, VM Elner, SG Elner and RM Strieter. (1992). Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258:1798–1801.
71.
Kocher AAMD SchusterN BonarosK LietzG XiangTP MartensPA KurlanskyH SondermeijerP Witkowski et al.2006. Myocardial homing and neovascularization by human bone marrow angioblasts is regulated by IL-8/Gro CXC chemokinesJ Mol Cell Cardiol40455-464. 71. Kocher AA, MD Schuster, N Bonaros, K Lietz, G Xiang, TP Martens, PA Kurlansky, H Sondermeijer, P Witkowski, et al. (2006). Myocardial homing and neovascularization by human bone marrow angioblasts is regulated by IL-8/Gro CXC chemokines. J Mol Cell Cardiol 40:455–464.

Information & Authors

Information

Published In

cover image Stem Cells and Development
Stem Cells and Development
Volume 21Issue Number 12August 10, 2012
Pages: 2189 - 2203
PubMed: 22188562

History

Published in print: August 10, 2012
Published ahead of print: 3 February 2012
Published online: 21 December 2011
Accepted: 20 December 2011
Received: 5 December 2011

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Sarah Tzu-Feng Hsiao
O'Brien Institute, Melbourne, Australia.
Department of Surgery (St. Vincent's), The University of Melbourne, Melbourne, Australia.
Azar Asgari
O'Brien Institute, Melbourne, Australia.
Department of Dermatology (St. Vincent's), The University of Melbourne, Melbourne, Australia.
Zerina Lokmic
O'Brien Institute, Melbourne, Australia.
Department of Surgery (St. Vincent's), The University of Melbourne, Melbourne, Australia.
Rodney Sinclair
Department of Dermatology (St. Vincent's), The University of Melbourne, Melbourne, Australia.
Gregory James Dusting
O'Brien Institute, Melbourne, Australia.
Department of Surgery (St. Vincent's), The University of Melbourne, Melbourne, Australia.
Center for Eye Research Australia, Melbourne, Australia.
Shiang Yong Lim
O'Brien Institute, Melbourne, Australia.
Department of Surgery (St. Vincent's), The University of Melbourne, Melbourne, Australia.
Rodney James Dilley
O'Brien Institute, Melbourne, Australia.
Department of Surgery (St. Vincent's), The University of Melbourne, Melbourne, Australia.
School of Surgery, Sir Charles Gairdner Hospital, University of Western Australia, Nedlands, Australia.

Notes

Address correspondence to:Dr. Rodney James DilleySchool of Surgery, M507University of Western Australia2nd Floor M-Block, Sir Charles Gairdner HospitalNedlands WA 6009Australia
E-mail: [email protected]

Author Disclosure Statement

No competing financial interest exists.

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top