Research Article
No access
Published Online: 22 June 2012

FGF Inhibition Directs BMP4-Mediated Differentiation of Human Embryonic Stem Cells to Syncytiotrophoblast

Publication: Stem Cells and Development
Volume 21, Issue Number 16

Abstract

Bone morphogenetic protein (BMP) signaling is known to support differentiation of human embryonic stem cells (hESCs) into mesoderm and extraembryonic lineages, whereas other signaling pathways can largely influence this lineage specification. Here, we set out to reinvestigate the influence of ACTIVIN/NODAL and fibroblast growth factor (FGF) pathways on the lineage choices made by hESCs during BMP4-driven differentiation. We show that BMP activation, coupled with inhibition of both ACTIVIN/NODAL and FGF signaling, induces differentiation of hESCs, specifically to βhCG hormone-secreting multinucleated syncytiotrophoblast and does not support induction of embryonic and extraembryonic lineages, extravillous trophoblast, and primitive endoderm. It has been previously reported that FGF2 can switch BMP4-induced hESC differentiation outcome to mesendoderm. Here, we show that FGF inhibition alone, or in combination with either ACTIVIN/NODAL inhibition or BMP activation, supports hESC differentiation to hCG-secreting syncytiotrophoblast. We show that the inhibition of the FGF pathway acts as a key in directing BMP4-mediated hESC differentiation to syncytiotrophoblast.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Thomson JAJ Itskovitz-EldorSS ShapiroMA WaknitzJJ SwiergielVS MarshallJM Jones1998. Embryonic stem cell lines derived from human blastocystsScience2821145-1147. 1. Thomson JA, J Itskovitz-Eldor, SS Shapiro, MA Waknitz, JJ Swiergiel, VS Marshall and JM Jones. (1998). Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147.
2.
Xu RHX ChenDS LiR LiGC AddicksC GlennonTP ZwakaJA Thomson2002. BMP4 initiates human embryonic stem cell differentiation to trophoblastNat Biotechnol201261-1264. 2. Xu RH, X Chen, DS Li, R Li, GC Addicks, C Glennon, TP Zwaka and JA Thomson. (2002). BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol 20:1261–1264.
3.
Amit MC SharikiV MarguletsJ Itskovitz-Eldor2004. Feeder layer- and serum-free culture of human embryonic stem cellsBiol Reprod70837-845. 3. Amit M, C Shariki, V Margulets and J Itskovitz-Eldor. (2004). Feeder layer- and serum-free culture of human embryonic stem cells. Biol Reprod 70:837–845.
4.
Beattie GMAD LopezN BucayA HintonMT FirpoCC KingA Hayek2005. Activin A maintains pluripotency of human embryonic stem cells in the absence of feeder layersStem Cells23489-495. 4. Beattie GM, AD Lopez, N Bucay, A Hinton, MT Firpo, CC King and A Hayek. (2005). Activin A maintains pluripotency of human embryonic stem cells in the absence of feeder layers. Stem Cells 23:489–495.
5.
Greber BH LehrachJ Adjaye2008. Control of early fate decisions in human ES cells by distinct states of TGFbeta pathway activityStem Cells Dev171065-1077. 5. Greber B, H Lehrach and J Adjaye. (2008). Control of early fate decisions in human ES cells by distinct states of TGFbeta pathway activity. Stem Cells Dev 17:1065–1077.
6.
James DAJ LevineD BesserA Hemmati-Brivanlou2005. TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cellsDevelopment1321273-1282. 6. James D, AJ Levine, D Besser and A Hemmati-Brivanlou. (2005). TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development 132:1273–1282.
7.
Vallier LD ReynoldsRA Pedersen2004. Nodal inhibits differentiation of human embryonic stem cells along the neuroectodermal default pathwayDev Biol275403-421. 7. Vallier L, D Reynolds and RA Pedersen. (2004). Nodal inhibits differentiation of human embryonic stem cells along the neuroectodermal default pathway. Dev Biol 275:403–421.
8.
Xu RHRM PeckDS LiX FengT LudwigJA Thomson2005. Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cellsNat Methods2185-190. 8. Xu RH, RM Peck, DS Li, X Feng, T Ludwig and JA Thomson. (2005). Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat Methods 2:185–190.
9.
Tam PPDA Loebel2007. Gene function in mouse embryogenesis: get set for gastrulationNat Rev Genet8368-381. 9. Tam PP and DA Loebel. (2007). Gene function in mouse embryogenesis: get set for gastrulation. Nat Rev Genet 8:368–381.
10.
Arnold SJEJ Robertson2009. Making a commitment: cell lineage allocation and axis patterning in the early mouse embryoNat Rev Mol Cell Biol1091-103. 10. Arnold SJ and EJ Robertson. (2009). Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat Rev Mol Cell Biol 10:91–103.
11.
Ciruna BJ Rossant2001. FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streakDev Cell137-49. 11. Ciruna B and J Rossant. (2001). FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak. Dev Cell 1:37–49.
12.
Kunath TMK Saba-El-LeilM AlmousailleakhJ WrayS MelocheA Smith2007. FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitmentDevelopment1342895-2902. 12. Kunath T, MK Saba-El-Leil, M Almousailleakh, J Wray, S Meloche and A Smith. (2007). FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development 134:2895–2902.
13.
Chai NY PatelK JacobsonJ McMahonA McMahonDA Rappolee1998. FGF is an essential regulator of the fifth cell division in preimplantation mouse embryosDev Biol198105-115. 13. Chai N, Y Patel, K Jacobson, J McMahon, A McMahon and DA Rappolee. (1998). FGF is an essential regulator of the fifth cell division in preimplantation mouse embryos. Dev Biol 198:105–115.
14.
Conlon FLKM LyonsN TakaesuKS BarthA KispertB HerrmannEJ Robertson1994. A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouseDevelopment1201919-1928. 14. Conlon FL, KM Lyons, N Takaesu, KS Barth, A Kispert, B Herrmann and EJ Robertson. (1994). A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development 120:1919–1928.
15.
D'Amour KAAD AgulnickS EliazerOG KellyE KroonEE Baetge2005. Efficient differentiation of human embryonic stem cells to definitive endodermNat Biotechnol231534-1541. 15. D'Amour KA, AD Agulnick, S Eliazer, OG Kelly, E Kroon and EE Baetge. (2005). Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 23:1534–1541.
16.
Arman ER Haffner-KrauszY ChenJK HeathP Lonai1998. Targeted disruption of fibroblast growth factor (FGF) receptor 2 suggests a role for FGF signaling in pregastrulation mammalian developmentProc Natl Acad Sci U S A955082-5087. 16. Arman E, R Haffner-Krausz, Y Chen, JK Heath and P Lonai. (1998). Targeted disruption of fibroblast growth factor (FGF) receptor 2 suggests a role for FGF signaling in pregastrulation mammalian development. Proc Natl Acad Sci U S A 95:5082–5087.
17.
Feldman BW PoueymirouVE PapaioannouTM DeChiaraM Goldfarb1995. Requirement of FGF-4 for postimplantation mouse developmentScience267246-249. 17. Feldman B, W Poueymirou, VE Papaioannou, TM DeChiara and M Goldfarb. (1995). Requirement of FGF-4 for postimplantation mouse development. Science 267:246–249.
18.
Wilder PJD KellyK BrigmanCL PetersonT NowlingQS GaoRD McCombMR CapecchiA Rizzino1997. Inactivation of the FGF-4 gene in embryonic stem cells alters the growth and/or the survival of their early differentiated progenyDev Biol192614-629. 18. Wilder PJ, D Kelly, K Brigman, CL Peterson, T Nowling, QS Gao, RD McComb, MR Capecchi and A Rizzino. (1997). Inactivation of the FGF-4 gene in embryonic stem cells alters the growth and/or the survival of their early differentiated progeny. Dev Biol 192:614–629.
19.
Yamanaka YF LannerJ Rossant2010. FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocystDevelopment137715-724. 19. Yamanaka Y, F Lanner and J Rossant. (2010). FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst. Development 137:715–724.
20.
Yu PG PanJ YuJA Thomson2011. FGF2 sustains NANOG and switches the outcome of BMP4-induced human embryonic stem cell differentiationCell Stem Cell8326-334. 20. Yu P, G Pan, J Yu and JA Thomson. (2011). FGF2 sustains NANOG and switches the outcome of BMP4-induced human embryonic stem cell differentiation. Cell Stem Cell 8:326–334.
21.
Greber BG WuC BernemannJY JooDW HanK KoN TapiaD SabourJ SterneckertP TesarHR Scholer2010. Conserved and divergent roles of FGF signaling in mouse epiblast stem cells and human embryonic stem cellsCell Stem Cell6215-226. 21. Greber B, G Wu, C Bernemann, JY Joo, DW Han, K Ko, N Tapia, D Sabour, J Sterneckert, P Tesar and HR Scholer. (2010). Conserved and divergent roles of FGF signaling in mouse epiblast stem cells and human embryonic stem cells. Cell Stem Cell 6:215–226.
22.
Schulz TCGM PalmariniSA NoggleDA WeilerMM MitalipovaBG Condie2003. Directed neuronal differentiation of human embryonic stem cellsBMC Neurosci427. 22. Schulz TC, GM Palmarini, SA Noggle, DA Weiler, MM Mitalipova and BG Condie. (2003). Directed neuronal differentiation of human embryonic stem cells. BMC Neurosci 4:27.
23.
Carpenter MKMS InokumaJ DenhamT MujtabaCP ChiuMS Rao2001. Enrichment of neurons and neural precursors from human embryonic stem cellsExp Neurol172383-397. 23. Carpenter MK, MS Inokuma, J Denham, T Mujtaba, CP Chiu and MS Rao. (2001). Enrichment of neurons and neural precursors from human embryonic stem cells. Exp Neurol 172:383–397.
24.
Reubinoff BEP ItsyksonT TuretskyMF PeraE ReinhartzA ItzikT Ben-Hur2001. Neural progenitors from human embryonic stem cellsNat Biotechnol191134-1140. 24. Reubinoff BE, P Itsykson, T Turetsky, MF Pera, E Reinhartz, A Itzik and T Ben-Hur. (2001). Neural progenitors from human embryonic stem cells. Nat Biotechnol 19:1134–1140.
25.
Greber BP CoulonM ZhangS MoritzS FrankAJ Muller-MolinaMJ Arauzo-BravoDW HanHC PapeHR Scholer. FGF signalling inhibits neural induction in human embryonic stem cellsEMBO J304874-4884. 25. Greber B, P Coulon, M Zhang, S Moritz, S Frank, AJ Muller-Molina, MJ Arauzo-Bravo, DW Han, HC Pape and HR Scholer. FGF signalling inhibits neural induction in human embryonic stem cells. EMBO J 30:4874–4884.
26.
Gaulden JJF Reiter2008. Neur-ons and neur-offs: regulators of neural induction in vertebrate embryos and embryonic stem cellsHum Mol Genet17R60-66. 26. Gaulden J and JF Reiter. (2008). Neur-ons and neur-offs: regulators of neural induction in vertebrate embryos and embryonic stem cells. Hum Mol Genet 17:R60–66.
27.
Munoz-Sanjuan IAH Brivanlou2002. Neural induction, the default model and embryonic stem cellsNat Rev Neurosci3271-280. 27. Munoz-Sanjuan I and AH Brivanlou. (2002). Neural induction, the default model and embryonic stem cells. Nat Rev Neurosci 3:271–280.
28.
Smith JRL VallierG LupoM AlexanderWA HarrisRA Pedersen2008. Inhibition of Activin/Nodal signaling promotes specification of human embryonic stem cells into neuroectodermDev Biol313107-117. 28. Smith JR, L Vallier, G Lupo, M Alexander, WA Harris and RA Pedersen. (2008). Inhibition of Activin/Nodal signaling promotes specification of human embryonic stem cells into neuroectoderm. Dev Biol 313:107–117.
29.
Zhang PJ LiZ TanC WangT LiuL ChenJ YongW JiangX Sun et al.2008. Short-term BMP-4 treatment initiates mesoderm induction in human embryonic stem cellsBlood1111933-1941. 29. Zhang P, J Li, Z Tan, C Wang, T Liu, L Chen, J Yong, W Jiang, X Sun, et al. (2008). Short-term BMP-4 treatment initiates mesoderm induction in human embryonic stem cells. Blood 111:1933–1941.
30.
Boyd NLSK DharaR RekayaEA GodbeyK HasneenRR RaoFD West 3rdBA GerweSL Stice2007. BMP4 promotes formation of primitive vascular networks in human embryonic stem cell-derived embryoid bodiesExp Biol Med (Maywood)232833-843. 30. Boyd NL, SK Dhara, R Rekaya, EA Godbey, K Hasneen, RR Rao, FD West, 3rd, BA Gerwe and SL Stice. (2007). BMP4 promotes formation of primitive vascular networks in human embryonic stem cell-derived embryoid bodies. Exp Biol Med (Maywood) 232:833–843.
31.
Chadwick KL WangL LiP MenendezB MurdochA RouleauM Bhatia2003. Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cellsBlood102906-915. 31. Chadwick K, L Wang, L Li, P Menendez, B Murdoch, A Rouleau and M Bhatia. (2003). Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood 102:906–915.
32.
Pera MFJ AndradeS HoussamiB ReubinoffA TrounsonEG StanleyD Ward-van OostwaardC Mummery2004. Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist nogginJ Cell Sci1171269-1280. 32. Pera MF, J Andrade, S Houssami, B Reubinoff, A Trounson, EG Stanley, D Ward-van Oostwaard and C Mummery. (2004). Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin. J Cell Sci 117:1269–1280.
33.
Chen GZ YeX YuJ ZouP MaliRA BrodskyL Cheng2008. Trophoblast differentiation defect in human embryonic stem cells lacking PIG-A and GPI-anchored cell-surface proteinsCell Stem Cell2345-355. 33. Chen G, Z Ye, X Yu, J Zou, P Mali, RA Brodsky and L Cheng. (2008). Trophoblast differentiation defect in human embryonic stem cells lacking PIG-A and GPI-anchored cell-surface proteins. Cell Stem Cell 2:345–355.
34.
Das PT EzashiLC SchulzSD WestfallKA LivingstonRM Roberts2007. Effects of fgf2 and oxygen in the bmp4-driven differentiation of trophoblast from human embryonic stem cellsStem Cell Res161-74. 34. Das P, T Ezashi, LC Schulz, SD Westfall, KA Livingston and RM Roberts. (2007). Effects of fgf2 and oxygen in the bmp4-driven differentiation of trophoblast from human embryonic stem cells. Stem Cell Res 1:61–74.
35.
Vallier LT TouboulZ ChngM BrimpariN HannanE MillanLE SmithersM TrotterP Rugg-GunnA WeberRA Pedersen2009. Early cell fate decisions of human embryonic stem cells and mouse epiblast stem cells are controlled by the same signalling pathwaysPLoS One4e6082. 35. Vallier L, T Touboul, Z Chng, M Brimpari, N Hannan, E Millan, LE Smithers, M Trotter, P Rugg-Gunn, A Weber and RA Pedersen. (2009). Early cell fate decisions of human embryonic stem cells and mouse epiblast stem cells are controlled by the same signalling pathways. PLoS One 4:e6082.
36.
Bernardo AST FaialL GardnerKK NiakanD OrtmannCE SennerEM CalleryMW TrotterM Hemberger et al.2011. BRACHYURY and CDX2 mediate BMP-induced differentiation of human and mouse pluripotent stem cells into embryonic and extraembryonic lineagesCell Stem Cell9144-155. 36. Bernardo AS, T Faial, L Gardner, KK Niakan, D Ortmann, CE Senner, EM Callery, MW Trotter, M Hemberger, et al. (2011). BRACHYURY and CDX2 mediate BMP-induced differentiation of human and mouse pluripotent stem cells into embryonic and extraembryonic lineages. Cell Stem Cell 9:144–155.
37.
Yao SS ChenJ ClarkE HaoGM BeattieA HayekS Ding2006. Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditionsProc Natl Acad Sci U S A1036907-6912. 37. Yao S, S Chen, J Clark, E Hao, GM Beattie, A Hayek and S Ding. (2006). Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proc Natl Acad Sci U S A 103:6907–6912.
38.
Xu CMS InokumaJ DenhamK GoldsP KunduJD GoldMK Carpenter2001. Feeder-free growth of undifferentiated human embryonic stem cellsNat Biotechnol19971-974. 38. Xu C, MS Inokuma, J Denham, K Golds, P Kundu, JD Gold and MK Carpenter. (2001). Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 19:971–974.
39.
Wu ZW ZhangG ChenL ChengJ LiaoN JiaY GaoH DaiJ YuanL ChengL Xiao2008. Combinatorial signals of activin/nodal and bone morphogenic protein regulate the early lineage segregation of human embryonic stem cellsJ Biol Chem28324991-25002. 39. Wu Z, W Zhang, G Chen, L Cheng, J Liao, N Jia, Y Gao, H Dai, J Yuan, L Cheng and L Xiao. (2008). Combinatorial signals of activin/nodal and bone morphogenic protein regulate the early lineage segregation of human embryonic stem cells. J Biol Chem 283:24991–25002.
40.
Roode MK BlairP SnellK ElderS MarchantA SmithJ Nichols2012. Human hypoblast formation is not dependent on FGF signallingDev Biol361358-363. 40. Roode M, K Blair, P Snell, K Elder, S Marchant, A Smith and J Nichols. (2012). Human hypoblast formation is not dependent on FGF signalling. Dev Biol 361:358–363.
41.
Greber BH LehrachJ Adjaye2007. Fibroblast growth factor 2 modulates transforming growth factor beta signaling in mouse embryonic fibroblasts and human ESCs (hESCs) to support hESC self-renewalStem Cells25455-464. 41. Greber B, H Lehrach and J Adjaye. (2007). Fibroblast growth factor 2 modulates transforming growth factor beta signaling in mouse embryonic fibroblasts and human ESCs (hESCs) to support hESC self-renewal. Stem Cells 25:455–464.
42.
Vicovac LJD Aplin1996. Epithelial-mesenchymal transition during trophoblast differentiationActa Anat (Basel)156202-216. 42. Vicovac L and JD Aplin. (1996). Epithelial-mesenchymal transition during trophoblast differentiation. Acta Anat (Basel) 156:202–216.
43.
Tarrade AR Lai KuenA MalassineV TricottetP BlainM VidaudD Evain-Brion2001. Characterization of human villous and extravillous trophoblasts isolated from first trimester placentaLab Invest811199-1211. 43. Tarrade A, R Lai Kuen, A Malassine, V Tricottet, P Blain, M Vidaud and D Evain-Brion. (2001). Characterization of human villous and extravillous trophoblasts isolated from first trimester placenta. Lab Invest 81:1199–1211.
44.
Handschuh KJ GuibourdencheM CocquebertV TsatsarisM VidaudD Evain-BrionT Fournier2009. Expression and regulation by PPARgamma of hCG alpha- and beta-subunits: comparison between villous and invasive extravillous trophoblastic cellsPlacenta301016-1022. 44. Handschuh K, J Guibourdenche, M Cocquebert, V Tsatsaris, M Vidaud, D Evain-Brion and T Fournier. (2009). Expression and regulation by PPARgamma of hCG alpha- and beta-subunits: comparison between villous and invasive extravillous trophoblastic cells. Placenta 30:1016–1022.
45.
Loke YWA KingT BurrowsL GardnerM BowenS HibyS HowlettN HolmesD Jacobs1997. Evaluation of trophoblast HLA-G antigen with a specific monoclonal antibodyTissue Antigens50135-146. 45. Loke YW, A King, T Burrows, L Gardner, M Bowen, S Hiby, S Howlett, N Holmes and D Jacobs. (1997). Evaluation of trophoblast HLA-G antigen with a specific monoclonal antibody. Tissue Antigens 50:135–146.
46.
Jameson JLAN Hollenberg1993. Regulation of chorionic gonadotropin gene expressionEndocr Rev14203-221. 46. Jameson JL and AN Hollenberg. (1993). Regulation of chorionic gonadotropin gene expression. Endocr Rev 14:203–221.
47.
Muhlhauser JC CrescimannoM KasperD ZaccheoM Castellucci1995. Differentiation of human trophoblast populations involves alterations in cytokeratin patternsJ Histochem Cytochem43579-589. 47. Muhlhauser J, C Crescimanno, M Kasper, D Zaccheo and M Castellucci. (1995). Differentiation of human trophoblast populations involves alterations in cytokeratin patterns. J Histochem Cytochem 43:579–589.
48.
Babaie YR HerwigB GreberTC BrinkW WruckD GrothH LehrachT BurdonJ Adjaye2007. Analysis of Oct4-dependent transcriptional networks regulating self-renewal and pluripotency in human embryonic stem cellsStem Cells25500-510. 48. Babaie Y, R Herwig, B Greber, TC Brink, W Wruck, D Groth, H Lehrach, T Burdon and J Adjaye. (2007). Analysis of Oct4-dependent transcriptional networks regulating self-renewal and pluripotency in human embryonic stem cells. Stem Cells 25:500–510.
49.
Hay DCL SutherlandJ ClarkT Burdon2004. Oct-4 knockdown induces similar patterns of endoderm and trophoblast differentiation markers in human and mouse embryonic stem cellsStem Cells22225-235. 49. Hay DC, L Sutherland, J Clark and T Burdon. (2004). Oct-4 knockdown induces similar patterns of endoderm and trophoblast differentiation markers in human and mouse embryonic stem cells. Stem Cells 22:225–235.
50.
Matin MMJR WalshPJ GokhaleJS DraperAR BahramiI MortonHD MoorePW Andrews2004. Specific knockdown of Oct4 and beta2-microglobulin expression by RNA interference in human embryonic stem cells and embryonic carcinoma cellsStem Cells22659-668. 50. Matin MM, JR Walsh, PJ Gokhale, JS Draper, AR Bahrami, I Morton, HD Moore and PW Andrews. (2004). Specific knockdown of Oct4 and beta2-microglobulin expression by RNA interference in human embryonic stem cells and embryonic carcinoma cells. Stem Cells 22:659–668.
51.
Liu LRM Roberts1996. Silencing of the gene for the beta subunit of human chorionic gonadotropin by the embryonic transcription factor Oct-3/4J Biol Chem27116683-16689. 51. Liu L and RM Roberts. (1996). Silencing of the gene for the beta subunit of human chorionic gonadotropin by the embryonic transcription factor Oct-3/4. J Biol Chem 271:16683–16689.
52.
Murohashi MT NakamuraS TanakaT IchiseN YoshidaT YamamotoM ShibuyaJ SchlessingerN Gotoh2010. An FGF4-FRS2alpha-Cdx2 axis in trophoblast stem cells induces Bmp4 to regulate proper growth of early mouse embryosStem Cells28113-121. 52. Murohashi M, T Nakamura, S Tanaka, T Ichise, N Yoshida, T Yamamoto, M Shibuya, J Schlessinger and N Gotoh. (2010). An FGF4-FRS2alpha-Cdx2 axis in trophoblast stem cells induces Bmp4 to regulate proper growth of early mouse embryos. Stem Cells 28:113–121.
53.
Tanaka ST KunathAK HadjantonakisA NagyJ Rossant1998. Promotion of trophoblast stem cell proliferation by FGF4Science2822072-2075. 53. Tanaka S, T Kunath, AK Hadjantonakis, A Nagy and J Rossant. (1998). Promotion of trophoblast stem cell proliferation by FGF4. Science 282:2072–2075.
54.
Abell ANDA GrangerNL JohnsonN Vincent-JordanCF DibbleGL Johnson2009. Trophoblast stem cell maintenance by fibroblast growth factor 4 requires MEKK4 activation of Jun N-terminal kinaseMol Cell Biol292748-2761. 54. Abell AN, DA Granger, NL Johnson, N Vincent-Jordan, CF Dibble and GL Johnson. (2009). Trophoblast stem cell maintenance by fibroblast growth factor 4 requires MEKK4 activation of Jun N-terminal kinase. Mol Cell Biol 29:2748–2761.
55.
Mesiano S2001. Roles of estrogen and progesterone in human parturitionFront Horm Res2786-104. 55. Mesiano S. (2001). Roles of estrogen and progesterone in human parturition. Front Horm Res 27:86–104.
56.
Asanoma KT MatsudaH KondoK KatoT KishinoN NiikawaN WakeH Kato2003. NECC1, a candidate choriocarcinoma suppressor gene that encodes a homeodomain consensus motifGenomics8115-25. 56. Asanoma K, T Matsuda, H Kondo, K Kato, T Kishino, N Niikawa, N Wake and H Kato. (2003). NECC1, a candidate choriocarcinoma suppressor gene that encodes a homeodomain consensus motif. Genomics 81:15–25.
57.
Yu CK ShenM LinP ChenC LinGD ChangH Chen2002. GCMa regulates the syncytin-mediated trophoblastic fusionJ Biol Chem27750062-50068. 57. Yu C, K Shen, M Lin, P Chen, C Lin, GD Chang and H Chen. (2002). GCMa regulates the syncytin-mediated trophoblastic fusion. J Biol Chem 277:50062–50068.
58.
Yamada KH OgawaS HondaN HaradaT Okazaki1999. A GCM motif protein is involved in placenta-specific expression of human aromatase geneJ Biol Chem27432279-32286. 58. Yamada K, H Ogawa, S Honda, N Harada and T Okazaki. (1999). A GCM motif protein is involved in placenta-specific expression of human aromatase gene. J Biol Chem 274:32279–32286.
59.
Huppertz BM Borges2008. Placenta trophoblast fusionMethods Mol Biol475135-147. 59. Huppertz B and M Borges. (2008). Placenta trophoblast fusion. Methods Mol Biol 475:135–147.
60.
Crocker IPP ArthurAE HeazellPN Baker2007. The mitotic manipulation of cytotrophoblast differentiation in vitroPlacenta28408-411. 60. Crocker IP, P Arthur, AE Heazell and PN Baker. (2007). The mitotic manipulation of cytotrophoblast differentiation in vitro. Placenta 28:408–411.
61.
Ichikawa NYL ZhaiT ShiozawaT TokiH NoguchiT NikaidoS Fujii1998. Immunohistochemical analysis of cell cycle regulatory gene products in normal trophoblast and placental site trophoblastic tumorInt J Gynecol Pathol17235-240. 61. Ichikawa N, YL Zhai, T Shiozawa, T Toki, H Noguchi, T Nikaido and S Fujii. (1998). Immunohistochemical analysis of cell cycle regulatory gene products in normal trophoblast and placental site trophoblastic tumor. Int J Gynecol Pathol 17:235–240.
62.
Wakuda KY Yoshida1992. DNA ploidy and proliferative characteristics of human trophoblastsActa Obstet Gynecol Scand7112-16. 62. Wakuda K and Y Yoshida. (1992). DNA ploidy and proliferative characteristics of human trophoblasts. Acta Obstet Gynecol Scand 71:12–16.
63.
Juan GF TraganosWM JamesJM RayM RobergeDM SauveH AndersonZ Darzynkiewicz1998. Histone H3 phosphorylation and expression of cyclins A and B1 measured in individual cells during their progression through G2 and mitosisCytometry3271-77. 63. Juan G, F Traganos, WM James, JM Ray, M Roberge, DM Sauve, H Anderson and Z Darzynkiewicz. (1998). Histone H3 phosphorylation and expression of cyclins A and B1 measured in individual cells during their progression through G2 and mitosis. Cytometry 32:71–77.
64.
Ullah ZMJ KohnR YagiLT VassilevML DePamphilis2008. Differentiation of trophoblast stem cells into giant cells is triggered by p57/Kip2 inhibition of CDK1 activityGenes Dev223024-3036. 64. Ullah Z, MJ Kohn, R Yagi, LT Vassilev and ML DePamphilis. (2008). Differentiation of trophoblast stem cells into giant cells is triggered by p57/Kip2 inhibition of CDK1 activity. Genes Dev 22:3024–3036.
65.
Momand JGP ZambettiDC OlsonD GeorgeAJ Levine1992. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivationCell691237-1245. 65. Momand J, GP Zambetti, DC Olson, D George and AJ Levine. (1992). The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69:1237–1245.
66.
Ratts VSXJ TaoCB WebsterPE SwansonSD SmithP BrownbillS KrajewskiJC ReedJL TillyDM Nelson2000. Expression of BCL-2, BAX and BAK in the trophoblast layer of the term human placenta: a unique model of apoptosis within a syncytiumPlacenta21361-366. 66. Ratts VS, XJ Tao, CB Webster, PE Swanson, SD Smith, P Brownbill, S Krajewski, JC Reed, JL Tilly and DM Nelson. (2000). Expression of BCL-2, BAX and BAK in the trophoblast layer of the term human placenta: a unique model of apoptosis within a syncytium. Placenta 21:361–366.
67.
Sieber CJ KopfC HiepenP Knaus2009. Recent advances in BMP receptor signalingCytokine Growth Factor Rev20343-355. 67. Sieber C, J Kopf, C Hiepen and P Knaus. (2009). Recent advances in BMP receptor signaling. Cytokine Growth Factor Rev 20:343–355.
68.
Matsuura KT JigamiK TaniueY MorishitaS AdachiT SendaA NonakaH AburataniT NakamuraT Akiyama. Identification of a link between Wnt/beta-catenin signalling and the cell fusion pathwayNat Commun2548. 68. Matsuura K, T Jigami, K Taniue, Y Morishita, S Adachi, T Senda, A Nonaka, H Aburatani, T Nakamura and T Akiyama. Identification of a link between Wnt/beta-catenin signalling and the cell fusion pathway. Nat Commun 2:548.
69.
Na JMK FuruePW Andrews2010. Inhibition of ERK1/2 prevents neural and mesendodermal differentiation and promotes human embryonic stem cell self-renewalStem Cell Res5157-169. 69. Na J, MK Furue and PW Andrews. (2010). Inhibition of ERK1/2 prevents neural and mesendodermal differentiation and promotes human embryonic stem cell self-renewal. Stem Cell Res 5:157–169.
70.
Erlebacher AKA PriceLH Glimcher2004. Maintenance of mouse trophoblast stem cell proliferation by TGF-beta/activinDev Biol275158-169. 70. Erlebacher A, KA Price and LH Glimcher. (2004). Maintenance of mouse trophoblast stem cell proliferation by TGF-beta/activin. Dev Biol 275:158–169.
71.
Rossant JJC Cross2001. Placental development: lessons from mouse mutantsNat Rev Genet2538-548. 71. Rossant J and JC Cross. (2001). Placental development: lessons from mouse mutants. Nat Rev Genet 2:538–548.
72.
Chiu SYN AsaiF CostantiniW Hsu2008. SUMO-specific protease 2 is essential for modulating p53-Mdm2 in development of trophoblast stem cell niches and lineagesPLoS Biol6e310. 72. Chiu SY, N Asai, F Costantini and W Hsu. (2008). SUMO-specific protease 2 is essential for modulating p53-Mdm2 in development of trophoblast stem cell niches and lineages. PLoS Biol 6:e310.
73.
Chambard JCR LeflochJ PouyssegurP Lenormand2007. ERK implication in cell cycle regulationBiochimica et biophysica acta17731299-1310. 73. Chambard JC, R Lefloch, J Pouyssegur and P Lenormand. (2007). ERK implication in cell cycle regulation. Biochimica et biophysica acta 1773:1299–1310.

Information & Authors

Information

Published In

cover image Stem Cells and Development
Stem Cells and Development
Volume 21Issue Number 16November 1, 2012
Pages: 2987 - 3000
PubMed: 22724507

History

Published in print: November 1, 2012
Published ahead of print: 6 August 2012
Published online: 22 June 2012
Accepted: 20 June 2012
Received: 24 February 2012

Permissions

Request permissions for this article.

Authors

Affiliations

Smita Sudheer
*
Department of Vertebrate Genomics, Molecular Embryology and Aging group, Max Planck Institute for Molecular Genetics, Berlin, Germany.
Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany.
Raghu Bhushan
Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
Beatrix Fauler
Electron Microscopy Group, Max Planck Institute for Molecular Genetics, Berlin, Germany.
Hans Lehrach
Department of Vertebrate Genomics, Molecular Embryology and Aging group, Max Planck Institute for Molecular Genetics, Berlin, Germany.
James Adjaye
Department of Vertebrate Genomics, Molecular Embryology and Aging group, Max Planck Institute for Molecular Genetics, Berlin, Germany.
Institute for Stem Cell Research and Regenerative Medicine, Faculty of Medicine, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.

Notes

Address correspondence to:Dr. Smita SudheerDepartment of Vertebrate GenomicsMolecular Embryology and Aging groupMax Planck Institute for Molecular GeneticsIhnestrasse 63-7314195 BerlinGermany
E-mail: [email protected]
Prof. James AdjayeDepartment of Vertebrate GenomicsMolecular Embryology and Aging groupMax Planck Institute for Molecular GeneticsIhnestrasse 63-7314195 BerlinGermany
E-mail: [email protected]
[email protected]

Author Disclosure Statement

No competing financial interests exist.

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top