Research Article
No access
Published Online: 30 January 2013

Vascular Endothelial Growth Factor and Fibroblast Growth Factor-2 Incorporation in Starch-Based Bone Tissue-Engineered Constructs Promote the In Vivo Expression of Neovascularization Mediators

Publication: Tissue Engineering Part A
Volume 19, Issue Number 7-8

Abstract

The ideal bone tissue-engineered (TE) construct remains to be found, although daily discoveries significantly contribute to improvements in the field and certainly have valuable long-term outcomes. In this work, different TE elements, aiming at bone TE applications, were assembled and its effect on the expression of several vascularization/angiogenesis mediators analyzed. Starch/polycaprolactone (SPCL) scaffolds, obtained by two different methodologies, were combined with fibrin sealant (Baxter®), human adipose-derived stem cells (hASCs), and growth factors (vascular endothelial growth factor [VEGF] or fibroblast growth factor-2 [FGF-2]), and implanted in vascular endothelial growth factor receptor-2 (VEGFR2)-luc transgenic mice. The expression of VEGFR2 along the implantation of the designed constructs was followed using a luminescence device (Xenogen®) and after 2 weeks, the explants were retrieved to perform histological analysis and reverse transcriptase–polymerase chain reaction for vascularization (VEGF and VEGFR1) and inflammatory (tumor necrosis factor-alpha, interleukin-4, and interferon-gamma) markers. It was showed that SPCL scaffolds obtained by wet spinning and by fiber bonding constitute an adequate support for hASCs. The assembled TE constructs composed by fibrin sealant, hASCs, VEGF, and FGF-2 induce only a mild inflammatory reaction after 2 weeks of implantation. Additionally, the release of VEGF and FGF-2 from the constructs enhanced the expression of VEGFR2 and other important mediators in neovascularization (VEGF and VEGFR1). These results indicate the potential of VEGF or FGF-2 within a bone TE construct composed by wet-spun SPCL, fibrin sealant, and hASCs in promoting the vascularization of newly formed tissue.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Mikos A.G.Herring S.W.Ochareon P.Elisseeff J.Lu H.H.Kandel R. et al. Engineering complex tissuesTissue Eng1233072006. 1. Mikos, A.G., Herring, S.W., Ochareon, P., Elisseeff, J., Lu, H.H., Kandel, R., et al. Engineering complex tissues. Tissue Eng 12, 3307, 2006.
2.
Langer R.Vacanti J.P. Tissue engineeringScience2609201993. 2. Langer, R., and Vacanti, J.P. Tissue engineering. Science 260, 920, 1993.
3.
Gomes M.E.Azevedo H.S.Moreira A.R.Ella V.Kellomaki M.Reis R.L. Starch-poly(epsilon-caprolactone) and starch-poly(lactic acid) fibre-mesh scaffolds for bone tissue engineering applications: structure, mechanical properties and degradation behaviourJ Tissue Eng Regen Med22432008. 3. Gomes, M.E., Azevedo, H.S., Moreira, A.R., Ella, V., Kellomaki, M., and Reis, R.L. Starch-poly(epsilon-caprolactone) and starch-poly(lactic acid) fibre-mesh scaffolds for bone tissue engineering applications: structure, mechanical properties and degradation behaviour. J Tissue Eng Regen Med 2, 243, 2008.
4.
Huang Y.C.Kaigler D.Rice K.G.Krebsbach P.H.Mooney D.J. Combined angiogenic and osteogenic factor delivery enhances bone marrow stromal cell-driven bone regenerationJ Bone Miner Res208482005. 4. Huang, Y.C., Kaigler, D., Rice, K.G., Krebsbach, P.H., and Mooney, D.J. Combined angiogenic and osteogenic factor delivery enhances bone marrow stromal cell-driven bone regeneration. J Bone Miner Res 20, 848, 2005.
5.
Peters M.C.Polverini P.J.Mooney D.J. Engineering vascular networks in porous polymer matricesJ Biomed Mater Res606682002. 5. Peters, M.C., Polverini, P.J., and Mooney, D.J. Engineering vascular networks in porous polymer matrices. J Biomed Mater Res 60, 668, 2002.
6.
Kaigler D.Krebsbach P.H.Polverini P.J.Mooney D.J. Role of vascular endothelial growth factor in bone marrow stromal cell modulation of endothelial cellsTissue Eng9952003. 6. Kaigler, D., Krebsbach, P.H., Polverini, P.J., and Mooney, D.J. Role of vascular endothelial growth factor in bone marrow stromal cell modulation of endothelial cells. Tissue Eng 9, 95, 2003.
7.
Martins A.M.Pham Q.P.Malafaya P.B.Sousa R.A.Gomes M.E.Raphael R.M. et al. The role of lipase and alpha-amylase in the degradation of starch/poly(epsilon-caprolactone) fiber meshes and the osteogenic differentiation of cultured marrow stromal cellsTissue Eng Part A152952009. 7. Martins, A.M., Pham, Q.P., Malafaya, P.B., Sousa, R.A., Gomes, M.E., Raphael, R.M., et al. The role of lipase and alpha-amylase in the degradation of starch/poly(epsilon-caprolactone) fiber meshes and the osteogenic differentiation of cultured marrow stromal cells. Tissue Eng Part A 15, 295, 2009.
8.
Tuzlakoglu K.Pashkuleva I.Rodrigues M.T.Gomes M.E.van Lenthe G.H.Muller R. et al. A new route to produce starch-based fiber mesh scaffolds by wet spinning and subsequent surface modification as a way to improve cell attachment and proliferationJ Biomed Mater Res A923692010. 8. Tuzlakoglu, K., Pashkuleva, I., Rodrigues, M.T., Gomes, M.E., van Lenthe, G.H., Muller, R., et al. A new route to produce starch-based fiber mesh scaffolds by wet spinning and subsequent surface modification as a way to improve cell attachment and proliferation. J Biomed Mater Res A 92, 369, 2010.
9.
Gerber H.P.Ferrara N. Angiogenesis and bone growthTrends Cardiovasc Med102232000. 9. Gerber, H.P., and Ferrara, N. Angiogenesis and bone growth. Trends Cardiovasc Med 10, 223, 2000.
10.
Hausman M.R.Schaffler M.B.Majeska R.J. Prevention of fracture healing in rats by an inhibitor of angiogenesisBone295602001. 10. Hausman, M.R., Schaffler, M.B., and Majeska, R.J. Prevention of fracture healing in rats by an inhibitor of angiogenesis. Bone 29, 560, 2001.
11.
Fuchs S.Ghanaati S.Orth C.Barbeck M.Kolbe M.Hofmann A. et al. Contribution of outgrowth endothelial cells from human peripheral blood on in vivo vascularization of bone tissue engineered constructs based on starch polycaprolactone scaffoldsBiomaterials305262009. 11. Fuchs, S., Ghanaati, S., Orth, C., Barbeck, M., Kolbe, M., Hofmann, A., et al. Contribution of outgrowth endothelial cells from human peripheral blood on in vivo vascularization of bone tissue engineered constructs based on starch polycaprolactone scaffolds. Biomaterials 30, 526, 2009.
12.
Gomes M.E.Sikavitsas V.I.Behravesh E.Reis R.L.Mikos A.G. Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffoldsJ Biomed Mater Res A67872003. 12. Gomes, M.E., Sikavitsas, V.I., Behravesh, E., Reis, R.L., and Mikos, A.G. Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds. J Biomed Mater Res A 67, 87, 2003.
13.
Jabbarzadeh E.Starnes T.Khan Y.M.Jiang T.Wirtel A.J.Deng M. et al. Induction of angiogenesis in tissue-engineered scaffolds designed for bone repair: a combined gene therapy-cell transplantation approachProc Natl Acad Sci U S A105110992008. 13. Jabbarzadeh, E., Starnes, T., Khan, Y.M., Jiang, T., Wirtel, A.J., Deng, M., et al. Induction of angiogenesis in tissue-engineered scaffolds designed for bone repair: a combined gene therapy-cell transplantation approach. Proc Natl Acad Sci U S A 105, 11099, 2008.
14.
Santos M.I.Unger R.E.Sousa R.A.Reis R.L.Kirkpatrick C.J. Crosstalk between osteoblasts and endothelial cells co-cultured on a polycaprolactone-starch scaffold and the in vitro development of vascularizationBiomaterials3044072009. 14. Santos, M.I., Unger, R.E., Sousa, R.A., Reis, R.L., and Kirkpatrick, C.J. Crosstalk between osteoblasts and endothelial cells co-cultured on a polycaprolactone-starch scaffold and the in vitro development of vascularization. Biomaterials 30, 4407, 2009.
15.
Unger R.E.Sartoris A.Peters K.Motta A.Migliaresi C.Kunkel M. et al. Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterialsBiomaterials2839652007. 15. Unger, R.E., Sartoris, A., Peters, K., Motta, A., Migliaresi, C., Kunkel, M., et al. Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials. Biomaterials 28, 3965, 2007.
16.
Tao J.Sun Y.Wang Q.G.Liu C.W. Induced endothelial cells enhance osteogenesis and vascularization of mesenchymal stem cellsCells Tissues Organs1901852009. 16. Tao, J., Sun, Y., Wang, Q.G., and Liu, C.W. Induced endothelial cells enhance osteogenesis and vascularization of mesenchymal stem cells. Cells Tissues Organs 190, 185, 2009.
17.
Yang P.Wang C.Shi Z.Huang X.Dang X.Xu S. et al. Prefabrication of vascularized porous three-dimensional scaffold induced from rhVEGF(165): a preliminary study in ratsCells Tissues Organs1893272009. 17. Yang, P., Wang, C., Shi, Z., Huang, X., Dang, X., Xu, S., et al. Prefabrication of vascularized porous three-dimensional scaffold induced from rhVEGF(165): a preliminary study in rats. Cells Tissues Organs 189, 327, 2009.
18.
Schumann P.Tavassol F.Lindhorst D.Stuehmer C.Bormann K.H.Kampmann A. et al. Consequences of seeded cell type on vascularization of tissue engineering constructs in vivoMicrovasc Res781802009. 18. Schumann, P., Tavassol, F., Lindhorst, D., Stuehmer, C., Bormann, K.H., Kampmann, A., et al. Consequences of seeded cell type on vascularization of tissue engineering constructs in vivo. Microvasc Res 78, 180, 2009.
19.
Gerber H.P.Vu T.H.Ryan A.M.Kowalski J.Werb Z.Ferrara N. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formationNat Med56231999. 19. Gerber, H.P., Vu, T.H., Ryan, A.M., Kowalski, J., Werb, Z., and Ferrara, N. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 5, 623, 1999.
20.
Elcin Y.M.Dixit V.Gitnick G. Extensive in vivo angiogenesis following controlled release of human vascular endothelial cell growth factor: implications for tissue engineering and wound healingArtif Organs255582001. 20. Elcin, Y.M., Dixit, V., and Gitnick, G. Extensive in vivo angiogenesis following controlled release of human vascular endothelial cell growth factor: implications for tissue engineering and wound healing. Artif Organs 25, 558, 2001.
21.
Fujita M.Ishihara M.Simizu M.Obara K.Ishizuka T.Saito Y. et al. Vascularization in vivo caused by the controlled release of fibroblast growth factor-2 from an injectable chitosan/non-anticoagulant heparin hydrogelBiomaterials256992004. 21. Fujita, M., Ishihara, M., Simizu, M., Obara, K., Ishizuka, T., Saito, Y., et al. Vascularization in vivo caused by the controlled release of fibroblast growth factor-2 from an injectable chitosan/non-anticoagulant heparin hydrogel. Biomaterials 25, 699, 2004.
22.
Nakamura S.Nambu M.Ishizuka T.Hattori H.Kanatani Y.Takase B. et al. Effect of controlled release of fibroblast growth factor-2 from chitosan/fucoidan micro complex-hydrogel on in vitro and in vivo vascularizationJ Biomed Mater Res A856192008. 22. Nakamura, S., Nambu, M., Ishizuka, T., Hattori, H., Kanatani, Y., Takase, B., et al. Effect of controlled release of fibroblast growth factor-2 from chitosan/fucoidan micro complex-hydrogel on in vitro and in vivo vascularization. J Biomed Mater Res A 85, 619, 2008.
23.
Ishihara M.Obara K.Ishizuka T.Fujita M.Sato M.Masuoka K. et al. Controlled release of fibroblast growth factors and heparin from photocrosslinked chitosan hydrogels and subsequent effect on in vivo vascularizationJ Biomed Mater Res A645512003. 23. Ishihara, M., Obara, K., Ishizuka, T., Fujita, M., Sato, M., Masuoka, K., et al. Controlled release of fibroblast growth factors and heparin from photocrosslinked chitosan hydrogels and subsequent effect on in vivo vascularization. J Biomed Mater Res A 64, 551, 2003.
24.
Martins A.M.Pham Q.P.Malafaya P.B.Sousa R.A.Gomes M.E.Raphael R.M. et al. The role of lipase and alpha-amylase in the degradation of starch/poly(varepsilon-caprolactone) fiber meshes and the osteogenic differentiation of cultured marrow stromal cellsTissue Eng Part A152952009. 24. Martins, A.M., Pham, Q.P., Malafaya, P.B., Sousa, R.A., Gomes, M.E., Raphael, R.M., et al. The role of lipase and alpha-amylase in the degradation of starch/poly(varepsilon-caprolactone) fiber meshes and the osteogenic differentiation of cultured marrow stromal cells. Tissue Eng Part A 15, 295, 2009.
25.
Morton T.J.Furst W.van Griensven M.Redl H. Controlled release of substances bound to fibrin-anchors or of DNADrug Deliv161022009. 25. Morton, T.J., Furst, W., van Griensven, M., and Redl, H. Controlled release of substances bound to fibrin-anchors or of DNA. Drug Deliv 16, 102, 2009.
26.
Rada T.Reis R.L.Gomes M.E. Adipose tissue-derived stem cells and their application in bone and cartilage tissue engineeringTissue Eng Part B Rev151132009. 26. Rada, T., Reis, R.L., and Gomes, M.E. Adipose tissue-derived stem cells and their application in bone and cartilage tissue engineering. Tissue Eng Part B Rev 15, 113, 2009.
27.
Quarto N.Longaker M.T. FGF-2 inhibits osteogenesis in mouse adipose tissue-derived stromal cells and sustains their proliferative and osteogenic potential stateTissue Eng1214052006. 27. Quarto, N., and Longaker, M.T. FGF-2 inhibits osteogenesis in mouse adipose tissue-derived stromal cells and sustains their proliferative and osteogenic potential state. Tissue Eng 12, 1405, 2006.
28.
Ehrbar M.Zeisberger S.M.Raeber G.P.Hubbell J.A.Schnell C.Zisch A.H. The role of actively released fibrin-conjugated VEGF for VEGF receptor 2 gene activation and the enhancement of angiogenesisBiomaterials2917202008. 28. Ehrbar, M., Zeisberger, S.M., Raeber, G.P., Hubbell, J.A., Schnell, C., and Zisch, A.H. The role of actively released fibrin-conjugated VEGF for VEGF receptor 2 gene activation and the enhancement of angiogenesis. Biomaterials 29, 1720, 2008.
29.
Balmayor E.R.Tuzlakoglu K.Azevedo H.S.Reis R.L. Preparation and characterization of starch-poly-epsilon-caprolactone microparticles incorporating bioactive agents for drug delivery and tissue engineering applicationsActa Biomater510352009. 29. Balmayor, E.R., Tuzlakoglu, K., Azevedo, H.S., and Reis, R.L. Preparation and characterization of starch-poly-epsilon-caprolactone microparticles incorporating bioactive agents for drug delivery and tissue engineering applications. Acta Biomater 5, 1035, 2009.
30.
Balmayor E.R.Tuzlakoglu K.Marques A.P.Azevedo H.S.Reis R.L. A novel enzymatically-mediated drug delivery carrier for bone tissue engineering applications: combining biodegradable starch-based microparticles and differentiation agentsJ Mater Sci Mater Med1916172008. 30. Balmayor, E.R., Tuzlakoglu, K., Marques, A.P., Azevedo, H.S., and Reis, R.L. A novel enzymatically-mediated drug delivery carrier for bone tissue engineering applications: combining biodegradable starch-based microparticles and differentiation agents. J Mater Sci Mater Med 19, 1617, 2008.
31.
Wolbank S.Peterbauer A.Fahrner M.Hennerbichler S.van Griensven M.Stadler G. et al. Dose-dependent immunomodulatory effect of human stem cells from amniotic membrane: a comparison with human mesenchymal stem cells from adipose tissueTissue Eng1311732007. 31. Wolbank, S., Peterbauer, A., Fahrner, M., Hennerbichler, S., van Griensven, M., Stadler, G., et al. Dose-dependent immunomodulatory effect of human stem cells from amniotic membrane: a comparison with human mesenchymal stem cells from adipose tissue. Tissue Eng 13, 1173, 2007.
32.
Suga H.Shigeura T.Matsumoto D.Inoue K.Kato H.Aoi N. et al. Rapid expansion of human adipose-derived stromal cells preserving multipotencyCytotherapy97382007. 32. Suga, H., Shigeura, T., Matsumoto, D., Inoue, K., Kato, H., Aoi, N., et al. Rapid expansion of human adipose-derived stromal cells preserving multipotency. Cytotherapy 9, 738, 2007.
33.
Wolbank S.Peterbauer A.Wassermann E.Hennerbichler S.Voglauer R.van Griensven M. et al. Labelling of human adipose-derived stem cells for non-invasive in vivo cell trackingCell Tissue Bank81632007. 33. Wolbank, S., Peterbauer, A., Wassermann, E., Hennerbichler, S., Voglauer, R., van Griensven, M., et al. Labelling of human adipose-derived stem cells for non-invasive in vivo cell tracking. Cell Tissue Bank 8, 163, 2007.
34.
Reis R.L.Mendes S.C.Cunha A.M.Bevis M.L. Processing and in vitro degradation of starch/EVOH thermoplastic blendsPolym Int433471997. 34. Reis, R.L., Mendes, S.C., Cunha, A.M., and Bevis, M.L. Processing and in vitro degradation of starch/EVOH thermoplastic blends. Polym Int 43, 347, 1997.
35.
Goessl A.Redl H. Optimized thrombin dilution protocol for a slowly setting fibrin sealant in surgeryEur Surg37432005. 35. Goessl, A., and Redl, H. Optimized thrombin dilution protocol for a slowly setting fibrin sealant in surgery. Eur Surg 37, 43, 2005.
36.
Zhang N.Fang Z.Contag P.R.Purchio A.F.West D.B. Tracking angiogenesis induced by skin wounding and contact hypersensitivity using a Vegfr2-luciferase transgenic mouseBlood1036172004. 36. Zhang, N., Fang, Z., Contag, P.R., Purchio, A.F., and West, D.B. Tracking angiogenesis induced by skin wounding and contact hypersensitivity using a Vegfr2-luciferase transgenic mouse. Blood 103, 617, 2004.
37.
Maeda K.Chung Y.S.Takatsuka S.Ogawa Y.Onoda N.Sawada T. et al. Tumour angiogenesis and tumour cell proliferation as prognostic indicators in gastric carcinomaBr J Cancer723191995. 37. Maeda, K., Chung, Y.S., Takatsuka, S., Ogawa, Y., Onoda, N., Sawada, T., et al. Tumour angiogenesis and tumour cell proliferation as prognostic indicators in gastric carcinoma. Br J Cancer 72, 319, 1995.
38.
Kirkwood B.Sterne J.Essential Medical StatisticssecondHoboken, NJWiley2003. 38. Kirkwood, B., and Sterne, J. Essential Medical Statistics, second edition. Hoboken, NJ: Wiley, 2003.
39.
Hofmann A.Ritz U.Verrier S.Eglin D.Alini M.Fuchs S. et al. The effect of human osteoblasts on proliferation and neo-vessel formation of human umbilical vein endothelial cells in a long-term 3D co-culture on polyurethane scaffoldsBiomaterials2942172008. 39. Hofmann, A., Ritz, U., Verrier, S., Eglin, D., Alini, M., Fuchs, S., et al. The effect of human osteoblasts on proliferation and neo-vessel formation of human umbilical vein endothelial cells in a long-term 3D co-culture on polyurethane scaffolds. Biomaterials 29, 4217, 2008.
40.
Egana J.T.Fierro F.A.Kruger S.Bornhauser M.Huss R.Lavandero S. et al. Use of human mesenchymal cells to improve vascularization in a mouse model for scaffold-based dermal regenerationTissue Eng Part A1511912009. 40. Egana, J.T., Fierro, F.A., Kruger, S., Bornhauser, M., Huss, R., Lavandero, S., et al. Use of human mesenchymal cells to improve vascularization in a mouse model for scaffold-based dermal regeneration. Tissue Eng Part A 15, 1191, 2009.
41.
Gomes M.E.Holtorf H.L.Reis R.L.Mikos A.G. Influence of the porosity of starch-based fiber mesh scaffolds on the proliferation and osteogenic differentiation of bone marrow stromal cells cultured in a flow perfusion bioreactorTissue Eng128012006. 41. Gomes, M.E., Holtorf, H.L., Reis, R.L., and Mikos, A.G. Influence of the porosity of starch-based fiber mesh scaffolds on the proliferation and osteogenic differentiation of bone marrow stromal cells cultured in a flow perfusion bioreactor. Tissue Eng 12, 801, 2006.
42.
Santos M.I.Fuchs S.Gomes M.E.Unger R.E.Reis R.L.Kirkpatrick C.J. Response of micro- and macrovascular endothelial cells to starch-based fiber meshes for bone tissue engineeringBiomaterials282402007. 42. Santos, M.I., Fuchs, S., Gomes, M.E., Unger, R.E., Reis, R.L., and Kirkpatrick, C.J. Response of micro- and macrovascular endothelial cells to starch-based fiber meshes for bone tissue engineering. Biomaterials 28, 240, 2007.
43.
Santos M.I.Tuzlakoglu K.Fuchs S.Gomes M.E.Peters K.Unger R.E. et al. Endothelial cell colonization and angiogenic potential of combined nano- and micro-fibrous scaffolds for bone tissue engineeringBiomaterials2943062008. 43. Santos, M.I., Tuzlakoglu, K., Fuchs, S., Gomes, M.E., Peters, K., Unger, R.E., et al. Endothelial cell colonization and angiogenic potential of combined nano- and micro-fibrous scaffolds for bone tissue engineering. Biomaterials 29, 4306, 2008.
44.
Byk T.Haddada H.Vainchenker W.Louache F. Lipofectamine and related cationic lipids strongly improve adenoviral infection efficiency of primitive human hematopoietic cellsHum Gene Ther924931998. 44. Byk, T., Haddada, H., Vainchenker, W., and Louache, F. Lipofectamine and related cationic lipids strongly improve adenoviral infection efficiency of primitive human hematopoietic cells. Hum Gene Ther 9, 2493, 1998.
45.
Marit G.Cao Y.Froussard P.Ripoche J.Dupouy M.Elandaloussi A. et al. Increased liposome-mediated gene transfer into haematopoietic cells grown in adhesion to stromal or fibroblast cell line monolayersEur J Haematol64222000. 45. Marit, G., Cao, Y., Froussard, P., Ripoche, J., Dupouy, M., Elandaloussi, A., et al. Increased liposome-mediated gene transfer into haematopoietic cells grown in adhesion to stromal or fibroblast cell line monolayers. Eur J Haematol 64, 22, 2000.
46.
Domashenko A.Gupta S.Cotsarelis G. Efficient delivery of transgenes to human hair follicle progenitor cells using topical lipoplexNat Biotechnol184202000. 46. Domashenko, A., Gupta, S., and Cotsarelis, G. Efficient delivery of transgenes to human hair follicle progenitor cells using topical lipoplex. Nat Biotechnol 18, 420, 2000.
47.
Daldrup-Link H.E.Rudelius M.Oostendorp R.A.Jacobs V.R.Simon G.H.Gooding C. et al. Comparison of iron oxide labeling properties of hematopoietic progenitor cells from umbilical cord blood and from peripheral blood for subsequent in vivo tracking in a xenotransplant mouse model XXXAcad Radiol125022005. 47. Daldrup-Link, H.E., Rudelius, M., Oostendorp, R.A., Jacobs, V.R., Simon, G.H., Gooding, C., et al. Comparison of iron oxide labeling properties of hematopoietic progenitor cells from umbilical cord blood and from peripheral blood for subsequent in vivo tracking in a xenotransplant mouse model XXX. Acad Radiol 12, 502, 2005.
48.
Millauer B.Wizigmann-Voos S.Schnurch H.Martinez R.Moller N.P.Risau W. et al. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesisCell728351993. 48. Millauer, B., Wizigmann-Voos, S., Schnurch, H., Martinez, R., Moller, N.P., Risau, W., et al. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72, 835, 1993.
49.
Rissanen T.T.Vajanto I.Hiltunen M.O.Rutanen J.Kettunen M.I.Niemi M. et al. Expression of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 (KDR/Flk-1) in ischemic skeletal muscle and its regenerationAm J Pathol16013932002. 49. Rissanen, T.T., Vajanto, I., Hiltunen, M.O., Rutanen, J., Kettunen, M.I., Niemi, M., et al. Expression of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 (KDR/Flk-1) in ischemic skeletal muscle and its regeneration. Am J Pathol 160, 1393, 2002.
50.
Mittermayr R.Morton T.Hofmann M.Helgerson S.van Griensven M.Redl H. Sustained (rh)VEGF(165) release from a sprayed fibrin biomatrix induces angiogenesis, up-regulation of endogenous VEGF-R2, and reduces ischemic flap necrosisWound Repair Regen165422008. 50. Mittermayr, R., Morton, T., Hofmann, M., Helgerson, S., van Griensven, M., and Redl, H. Sustained (rh)VEGF(165) release from a sprayed fibrin biomatrix induces angiogenesis, up-regulation of endogenous VEGF-R2, and reduces ischemic flap necrosis. Wound Repair Regen 16, 542, 2008.
51.
Martin P. Wound healing—aiming for perfect skin regenerationScience276751997. 51. Martin, P. Wound healing—aiming for perfect skin regeneration. Science 276, 75, 1997.
52.
Dvorak H.F.Brown L.F.Detmar M.Dvorak A.M. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesisAm J Pathol14610291995. 52. Dvorak, H.F., Brown, L.F., Detmar, M., and Dvorak, A.M. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146, 1029, 1995.
53.
Risau W. Mechanisms of angiogenesisNature3866711997. 53. Risau, W. Mechanisms of angiogenesis. Nature 386, 671, 1997.
54.
Santos T.C.Marques A.P.Horing B.Martins A.R.Tuzlakoglu K.Castro A.G. et al. In vivo short-term and long-term host reaction to starch-based scaffoldsActa Biomater643142010. 54. Santos, T.C., Marques, A.P., Horing, B., Martins, A.R., Tuzlakoglu, K., Castro, A.G., et al. In vivo short-term and long-term host reaction to starch-based scaffolds. Acta Biomater 6, 4314, 2010.
55.
Clauss M.Weich H.Breier G.Knies U.Rockl W.Waltenberger J. et al. The vascular endothelial growth factor receptor Flt-1 mediates biological activities. Implications for a functional role of placenta growth factor in monocyte activation and chemotaxisJ Biol Chem271176291996. 55. Clauss, M., Weich, H., Breier, G., Knies, U., Rockl, W., Waltenberger, J., et al. The vascular endothelial growth factor receptor Flt-1 mediates biological activities. Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. J Biol Chem 271, 17629, 1996.
56.
Barleon B.Sozzani S.Zhou D.Weich H.A.Mantovani A.Marme D. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1Blood8733361996. 56. Barleon, B., Sozzani, S., Zhou, D., Weich, H.A., Mantovani, A., and Marme, D. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 87, 3336, 1996.
57.
Shen H.Clauss M.Ryan J.Schmidt A.M.Tijburg P.Borden L. et al. Characterization of vascular permeability factor/vascular endothelial growth factor receptors on mononuclear phagocytesBlood8127671993. 57. Shen, H., Clauss, M., Ryan, J., Schmidt, A.M., Tijburg, P., Borden, L., et al. Characterization of vascular permeability factor/vascular endothelial growth factor receptors on mononuclear phagocytes. Blood 81, 2767, 1993.
58.
van Bilsen P.H.Krenning G.Billy D.Duval J.L.Huurdeman-Vincent J.van Luyn M.J. Heparin coating of poly(ethylene terephthalate) decreases hydrophobicity, monocyte/leukocyte interaction and tissue interactionColloids Surf B Biointerfaces67462008. 58. van Bilsen, P.H., Krenning, G., Billy, D., Duval, J.L., Huurdeman-Vincent, J., and van Luyn, M.J. Heparin coating of poly(ethylene terephthalate) decreases hydrophobicity, monocyte/leukocyte interaction and tissue interaction. Colloids Surf B Biointerfaces 67, 46, 2008.
59.
Yamakawa N.Tanaka T.Shigeta M.Hamano M.Usui M. Surface roughness of intraocular lenses and inflammatory cell adhesion to lens surfacesJ Cataract Refract Surg293672003. 59. Yamakawa, N., Tanaka, T., Shigeta, M., Hamano, M., and Usui, M. Surface roughness of intraocular lenses and inflammatory cell adhesion to lens surfaces. J Cataract Refract Surg 29, 367, 2003.
60.
Buschmann I.Heil M.Jost M.Schaper W. Influence of inflammatory cytokines on arteriogenesisMicrocirculation103712003. 60. Buschmann, I., Heil, M., Jost, M., and Schaper, W. Influence of inflammatory cytokines on arteriogenesis. Microcirculation 10, 371, 2003.
61.
Ferrara N.Gerber H.P.LeCouter J. The biology of VEGF and its receptorsNat Med96692003. 61. Ferrara, N., Gerber, H.P., and LeCouter, J. The biology of VEGF and its receptors. Nat Med 9, 669, 2003.
62.
Maharaj A.S.Saint-Geniez M.Maldonado A.E.D'Amore P.A. Vascular endothelial growth factor localization in the adultAm J Pathol1686392006. 62. Maharaj, A.S., Saint-Geniez, M., Maldonado, A.E., and D'Amore, P.A. Vascular endothelial growth factor localization in the adult. Am J Pathol 168, 639, 2006.
63.
Folkman J.Shing Y. AngiogenesisJ Biol Chem267109311992. 63. Folkman, J., and Shing, Y. Angiogenesis. J Biol Chem 267, 10931, 1992.
64.
Brown L.F.Yeo K.T.Berse B.Yeo T.K.Senger D.R.Dvorak H.F. et al. Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healingJ Exp Med17613751992. 64. Brown, L.F., Yeo, K.T., Berse, B., Yeo, T.K., Senger, D.R., Dvorak, H.F., et al. Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing. J Exp Med 176, 1375, 1992.
65.
Brown L.F.Olbricht S.M.Berse B.Jackman R.W.Matsueda G.Tognazzi K.A. et al. Overexpression of vascular permeability factor (VPF/VEGF) and its endothelial cell receptors in delayed hypersensitivity skin reactionsJ Immunol15428011995. 65. Brown, L.F., Olbricht, S.M., Berse, B., Jackman, R.W., Matsueda, G., Tognazzi, K.A., et al. Overexpression of vascular permeability factor (VPF/VEGF) and its endothelial cell receptors in delayed hypersensitivity skin reactions. J Immunol 154, 2801, 1995.
66.
Ornitz D.M.Itoh N. Fibroblast growth factorsGenome Biol2REVIEWS 30052001. 66. Ornitz, D.M., and Itoh, N. Fibroblast growth factors. Genome Biol 2, REVIEWS 3005, 2001.

Information & Authors

Information

Published In

cover image Tissue Engineering Part A
Tissue Engineering Part A
Volume 19Issue Number 7-8April 2013
Pages: 834 - 848
PubMed: 23173745

History

Published in print: April 2013
Published ahead of print: 14 February 2013
Published online: 30 January 2013
Published ahead of production: 22 November 2012
Accepted: 16 October 2012
Received: 23 December 2010

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Tírcia C. Santos
3B's Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Taipas, Guimarães, Portugal.
ICVS-3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration, Vienna, Austria.
Tatjana J. Morton
Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration, Vienna, Austria.
Martina Moritz
Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration, Vienna, Austria.
Sabine Pfeifer
Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration, Vienna, Austria.
Kathrin Reise
Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration, Vienna, Austria.
Alexandra P. Marques
3B's Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Taipas, Guimarães, Portugal.
ICVS-3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
António G. Castro
ICVS-3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal.
Rui L. Reis
3B's Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Taipas, Guimarães, Portugal.
ICVS-3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
Martijn van Griensven
Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration, Vienna, Austria.
Department of Trauma Surgery, Institute for Experimental Trauma Surgery, Technical University Munich, Munich, Germany.

Notes

Address correspondence to:Rui L. Reis, PhD3B's Research Group—Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAvePark4806-909 TaipasGuimarãesPortugal
E-mail: [email protected]

Disclosure Statement

No competing financial interests exist.

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/EPUB

Full Text

View Full Text

Figures

Tables

Media

Share

Share

Copy the content Link

Share on social media

Back to Top